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Abstract: Fewer contribution feature components in the image high-dimensional steganalysis feature
are able to increase the spatio-temporal complexity of detecting the stego images, and even reduce
the detection accuracy. In order to maintain or even improve the detection accuracy while effectively
reducing the dimension of the DCTR steganalysis feature, this paper proposes a new selection
approach for DCTR feature. First, the asymmetric distortion factor and information gain ratio of each
feature component are improved to measure the difference between the symmetric cover and stego
features, which provides the theoretical basis for selecting the feature components that contribute to
a great degree to detecting the stego images. Additionally, the feature components are arranged in
descending order rely on the two measurement criteria, which provides the basis for deleting the
components. Based on the above, removing feature components that are ranked larger differently
according to two criteria. Ultimately, the preserved feature components are used as the final selected
feature for training and detection. Comparison experiments with existing classical approaches
indicate that this approach can effectively reduce the feature dimension while maintaining or even
improving the detection accuracy. At the same time, it can reduce the detection spatio-temporal
complexity of the stego images.

Keywords: steganalysis feature components; feature selection; distortion factor; information gain
ratio; contribution degree

1. Introduction

Steganography, another term for covert communication, is a technique for the hidden
messages in objects that do not easily arouse suspicion and then sending them to the
intended recipients, and it has received widespread attention in the field of information
security in recent years [1–14]. The digital medium “steganography” was used by illegal
organizations to covertly communicate and engage in activities that hazard national secu-
rity. Steganalysis, the corresponding attack technique, is to extract the hidden messages in
order to counter steganography and protect national security [15–26].

With digital media developing rapidly, improving the speed and accuracy of steganal-
ysis has become a pressing problem. Therefore, the digital image adaptive steganalysis
algorithm is the direction that researchers are currently focusing on, mainly by extract-
ing the steganalysis features [27–32], and using the integrated classifier for training and
detection, which can provide a detection effect. At present, researchers have developed
a series of high-dimensional steganalysis algorithms. For example, Holub et al. [27] pro-
posed the 8000-D DCTR feature of low complexity (fast) extracted from the used DCT
residuals, Song et al. [28] proposed the 17,000-D GFR feature, in which the Gabor filter
can provide steganalysis from different scales, Kodovský et al. [29] proposed the 22,510-D
CC-JRM feature established by a set of sub-model systems covering the joint distribution
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of spatial and frequency domain DCT coefficients with extensive statistical correlation,
and Fridrich et al. [30] proposed the 34,671-D SRM feature of the complete spatial domain
rich model. Although high-dimensional steganalysis features achieve high detection ac-
curacy for image-adaptive steganography, the adaptive steganalysis algorithm extracts
steganalysis features with high dimension, which leads to high spatio-temporal complexity
for detecting the stego images and affects the development of fast steganalysis. Therefore,
how to select the feature components that contribute to detecting, so as to reduce the
steganalysis feature dimension and the spatio-temporal complexity of detecting the stego
images, has become the focus of the current steganalysis research.

At present, researchers have conducted a series of studies on the selection and dimen-
sion reduction of steganalysis features [30,33–37]. These methods can be classified into
general and specific steganalysis feature selection methods depending on the objects to
which the feature selection methods are applied. General methods are suitable for measur-
ing a variety of steganalysis features, measuring the contribution of feature components to
detection of the stego images, and selecting the feature vector with a large contribution to
detecting of the stego images for training and detection. Typical methods in this type are
the following. Qin et al. [33] proposed a method with no parameter limit, which is simple
to use, and in which it is easy to understand the results of the PCA (abbreviated as PCA-D
method). This method calculates the covariance matrix and the feature values and feature
vector of the covariance matrix, and finally determines the number of selected feature
components by determining the number of principal components. However, this method
has poor effect on the nonlinear structures data. Ma et al. [34] proposed a feature selection
method based on decision rough set α-positive domain simplification. The method not only
reduces the feature dimension but maintains the detection accuracy of the stego images;
however, the feature selection depends on the classifier results, which leads to a high
time complexity of the selection. In our previous contribution [35], we proposed a feature
selection method (abbreviated as CGSM method) based on comprehensive criteria, which
combine the difference function and correlation, and select the feature components with
large difference and delete the feature components with weak correlation, which slightly
improves the detection accuracy of the stego images and reduces the feature dimension.

Specific methods are suitable for a certain steganalysis feature. Though the calculation
for this class of selection methods is simpler than those for the general class, it has a
narrower scope of application. Typical methods of this kind are outlined here. Fridrich
et al. [30] proposed a series of SRM feature selection methods for airspace-rich models,
and most of these take each sub-model of SRM as a subset and then select the features
based on the diversity of classifiers. Among them, the BEST-q-CLASS method has the best
detection performance in selecting features, reducing the feature dimension and improving
the detection accuracy of SRM steganalysis features. However, this method ignores the
redundancy between subsets when selecting features, so the feature dimension is still high
after selection. Yang et al. [36] proposed an algorithm for GFR feature subspace selection
based on Fisher’s criterion (abbreviated as Fisher-G method). The method is able to select
more efficient feature subspaces to improve the detection performance of GFR features on
the stego images in a targeted way, however, it does not improve the detection accuracy
of the stego images significantly when the quality factor is high. Yu et al. [37] proposed
a multi-scale GFR feature selection method based on the SNR criterion combined with
an improved Relief algorithm (abbreviated as SRGS method), which deletes useless and
low-contribution feature components and significantly reduces the feature dimension
while maintaining the detection accuracy. However, it has no obvious effect on other
steganalysis features.

So far, some studies have achieved different steganalysis feature selection effects [28,33–37],
such as CC-PEV, GFR, CC-JRM, SRM and J+SRM features. However, the existing methods
for DCTR feature selection effect are not satisfactory, the selected feature dimension is still
too high, the detection accuracy is reduced too much, and so on.
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In order to reduce the feature dimension of DCTR without affecting the detection of
the stego images, this paper attempts to propose a DCTR feature selection method based
on different criteria with gain-loss (abbreviated as S-FUND method). First, we try to give a
measurement algorithm based on distortion and information gain ratio according to which
we measure the difference between the covers and stegos for each steganalysis feature
component. Second, by setting the threshold, we delete the feature components with a small
contribution measured by at least one of the two criteria. Finally, the preserved feature
components are used as the final selected steganalysis feature for training and detection.
This method is expected to reduce the spatial complexity of detecting the stego images
by reducing the feature dimension while maintaining or even improving the detection
accuracy, and to reduce the time complexity of detecting the stego images by avoiding the
dependence on classification results.

The rest of this paper is organized as follows: Section 2 describes the related work.
Section 3 outlines a measurement algorithm for the difference of steganalysis feature com-
ponents. Section 4 proposes a multi-criteria-based feature selection method. Section 5
analyzes the effect of DCTR features based on S-FUND method proposed in this paper for
detecting of the stego images through a series of experimental comparisons. Section 6 fur-
ther discusses the experiment in this paper. Finally, Section 7 summarizes the whole paper.

2. Related Work

Distortion is a measure of the difference between the original signal and the altered
signal [38], and it is defined as the square root of the ratio of the total harmonic energy to
the fundamental energy by the following formula.

K =

√
P− P1

P1
=

√√√√√ ∞
∑

n=2
Pn

P1
, (1)

where P1 and P represent the fundamental energy and the total signal energy, respectively,
and Pn represents the energy of the nth harmonic. The larger the K value, the greater
the ratio of total harmonic energy to fundamental energy, i.e., the greater the difference
between harmonic energy and fundamental energy, and thus the better to distinguish
harmonic energy from fundamental energy.

The information gain ratio improves the measure of the difference between features [39],
and solves the problem of information gain bias to take more features, which is defined as
the ratio of the information gain value to the entropy HY(X) of the value of dataset X for
feature Y, with the following formula.

gR(X, Y) =
g(X, Y)
HY(X)

, (2)

g(X, Y) = H(X)− H(X|Y), (3)

H(X|Y) = H(X, Y)− H(X), (4)

where g(X, Y) represents the information gain value between dataset X and feature Y, H(X)
and H(Y) represent the entropy values of training dataset X and feature Y, respectively,
H(X|Y) represents the uncertainty of X given known Y. HY(X) = −∑n

i=1
|Xi |
|X| log2

|Xi |
|X| , n is

the number of Y values, |X| represents the number of samples in the X. The smaller the
value of gR(X, Y), the smaller the degree of uncertainty in Y decreasing with X, i.e., the
smaller the difference between them.

In previous research, researchers have often used one criterion first to select some of
the features that are useful for detecting the stego images (written as “First Selection”), and
then using another criterion for a second selection based on the “First Selection” [33–37].
Although this does reduce the feature dimension, the two criteria are used sequentially,
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i.e., one criterion is measured ahead of the other, so that there are inconsistencies in the
measurement using the two criteria.

For example, Yu et al. [37] proposed the SRGS method to reduce the feature dimension.
First, the effective SNR criterion is improved, and valuable feature components are selected.
On this basis, the Relief algorithm is improved, the redundant feature components in the
remaining feature components are deleted. Afterwards, the valuable and non-redundant
feature components are finally selected. However, in the SRGS method, when using the
Relief algorithm, some components retained by the SNR criterion are unable to be measured
by other criteria. There is the same dilemma in [34,35]. This requires the reliability of the
selected features to be further improved.

Therefore, it is necessary to find a more rigorous method for selecting valuable feature
components to further reduce the feature dimension and improve the detection accuracy.

3. Measure of Difference

The greater the difference between the cover and stego features, the better it is for
distinguishing the cover features from the stego features, and thus the better it is for de-
tecting the stego images. On the contrary, feature components with little and no difference
between the cover and stego features are considered useless features. These features lead to
the feature dimension increasing, resulting in unnecessary detection time and cost, which
is detrimental to the application of steganalysis and hinders its development. Therefore,
the feature components which contribute to distinguishing the cover and stego images are
selected as possible. In order to measure the difference between the cover and stego images
for steganalysis, distortion factor and information gain ratio are introduced in this paper.

3.1. Distortion-Based Measurement

When hiding messages are embedded by the steganography algorithm, some of the
feature components of the covers are changed, which makes the difference between the
cover and stego features. Considering that not all feature components change to the same
degree, the greater the difference between the cover and stego features, the better the
distinction factor between them. We improve Equation (1) so that it can measure the
distortion factor of the cover images before and after steganography, as follows.

Ki =

√
f C
i − f S

i
f C
i

=

√√√√√√
n
∑

j=1
( f C

ij − f S
ij )

f C
i

, (5)

where f C
i and f S

i represent the values of the ith steganalysis feature in the cover and
stego images, respectively, f C

ij and f S
ij represent the value of the ith steganalysis feature

component in jth the cover images or the stego images, respectively. The larger the Ki
value, the more distortion factor that occurs in the cover images when the information is
embedded in the images, the greater the difference between the cover and stego features,
the more favorable the feature component is for detecting the stego images, and the more it
should be preserved.

3.2. Information Gain Ratio Based Measurement

In order to measure the difference between the cover and stego features of a ste-
ganalysis feature component in many aspects, this subsection introduces the information
gain ratio.

In previous work, researchers have used information gain to measure the difference
of feature components between the cover and stego features, with the following equation.

g( f S
i , f C

i ) = H( f S
i )− H( f S

i | f
C
i ), (6)

H( f S
i | f

C
i ) = H( f S

i , f C
i )− H( f S

i ), (7)
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where g( f S
i , f C

i ) represents information gain value of the feature component between the
cover and stego images, H( f C

i ) and H( f S
i ) represent information entropy values of feature

components between the cover and stego images, respectively, H( f C
i ) = −∑n

j=1 | f C
ij |log2| f C

ij |,
H( f S

i ) = −∑n
j=1 | f S

ij |log2| f S
ij |, H( f S

i | f
C
i ) represents conditional entropy values of the fea-

ture components in the stego images under the condition that the values of the feature
components in the cover images are known, H( f S

i | f
C
i ) = −∑n

j=1 | f C
ij |log2| f S

ij |. The larger

the g( f S
i , f C

i ) value, the greater the information gain of the steganalysis feature components
between the cover and stego images, and thus the greater the difference between them,
and then the better it is for detecting stego images.

However, it is known from previous research that when the feature number is large,
it is easier to obtain a more definite subset based on this feature division, i.e., a lower
H( f S

i | f
C
i ) value, and because the value of H( f C

i ) is a certain, the information gain is greater.
Therefore, if information gain is used as the basis for feature selection, there is a problem
of bias towards selecting features with more values. In order to solve this problem, this
paper uses the information gain ratio to measure the difference of feature components
between the cover and stego images. The information gain ratio of feature components can
be defined as the ratio of g( f S

i , f C
i ) value to the partial entropy of the feature component in

the cover images with respect to it in the stego images. We improve Equation (2) so that it
can measure the difference in the feature components between the cover and stego images
as follows.

gR( f S
i , f C

i ) =
g( f S

i , f C
i )

H f C
i
( f S

i )
, (8)

H f C
i
( f S

i ) = −
n

∑
j=1

| f C
ij |
| f S

ij |
log2

| f C
ij |
| f S

ij |
= −

n

∑
j=1

f C
ij

f S
ij

log2

f C
ij

f S
ij

, (9)

where H f C
i
( f S

i ) represents the partial entropy of the value of the feature component in the

cover images with respect to it in the stego images. A larger gR( f S
i , f C

i ) value indicates that
the feature component should be preserved.

In the next section, we describe in detail the algorithmic steps and performance
analysis of the proposed S-FUND method in this paper.

4. S-FUND Method

Based on the above, this paper proposes an S-FUND method, which treats the two
criteria for measuring the difference between the cover and stego features as the same.
First, two criteria are used to measure the difference between the cover and stego features.
Afterwards, the feature component with the larger difference in order is deleted. Finally,
the preserved feature components are used as the final feature.

4.1. Specific Algorithm

We present the specific algorithm of S-FUND method according to the main steps
described above, as shown in Algorithm 1.

Thus, in this paper, we measure the difference between the cover and stego features us-
ing distortion factor and information gain ratio. This method reduces the feature dimension
significantly, thus reducing the spatio-temporal complexity of detecting the stego images.

Next, Figure 1 is given, which is based on Algorithm 1, and visually depicts S-FUND
method process to select the steganalysis features.
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Algorithm 1 Specific algorithm of S-FUND method

Input: The original feature F = [ f1, f2, f3, · · · , fN ];
Output: Final selection of steganalysis feature based on S-FUND method F′ =

[ f ′1, f ′2, f ′3, · · · , f ′m], where m is the final feature dimension;
1: for i = 1 to N do
2: for j = 1 to n do
3: Using Equation (5) to measure the sum of the ith feature component differences

between the cover and stego images (written as ∑n
j=1( f C

ij − f S
ij ));

4: Using step 3 and Equation (5)
⇒ Computing the Ki value of the ith feature component between the cover and
stego images;

5: end for
6: end for
7: Feature components arranged in descending order according to Ki value in step 4

F1 = [ f 1
1 , f 1

2 , · · · , f 1
N ];

8: for i = 1 to N do
9: for j = 1 to n do

10: Using Equation (7) to calculate the H( f C
i | f

S
i ) value of the feature component in

the cover images with respect to it in the stego images;
11: According to the H( f S

i | f
C
i ) value from step 10, using Equation (6)

⇒ Calculating the g( f S
i , f C

i ) value of the feature component between the cover
and stego images;

12: Using Equation (9) to calculate the H f C
i
( f S

i ) value of the feature component in
the cover images with respect to the value of the feature component in the stego
images;

13: According to the g( f S
i , f C

i ) value in step 11, the H f C
i
( f S

i ) value in step 12, using
Equation (8)
⇒ Calculating the gR( f S

i , f C
i ) value of the feature component between the cover

and stego features;
14: end for
15: end for
16: According to the gR( f S

i , f C
i ) value in step 13, steganalysis feature components in de-

scending order F2 = [ f 2
1 , f 2

2 , · · · , f 2
N ];

17: Setting threshold T ;
18: for i = 1 to N do
19: Sorting results according to steps 7 and 16

⇒ Calculating the difference between the kth feature component ranked according
to the two criteria (written as f ms

1 = f 1
1 − f 2

1 );
20: end for
21: Deleting the feature components which the absolute value of the ranking difference is

greater than the threshold T;

f ms
1 ⇒

 preserve f ms
1 < T

delete f ms
1 ≥ T

(10)

22: Preserving the m-dimensional eligible component for training and detection as the final
selected feature.



Symmetry 2021, 13, 1775 7 of 18

Cf C
f

Cf C

nf Sf
Sf S

nfSf

Cf C
f

Cf C

nf
Sf

Sf S

nfSf

SC ff
SC ff
SC ff

S

n

C

n ff

SC

R ffg
SC

R ffg
SC

R ffg

S

n

C

nR ffg

S

n

C

n ff

K

K

K

nK

nK

f

f

f

nf

nf

S

n

C

nR ffg

f

f

f

nf

nf

SC ffg
SC ffg
SC ffg

S

n

C

n ffg

S

n

C

n ffg

C

f
fH S

C

f
fH S

C

f
fH S

C

nf
fH S

n

C

nf
fH S

n

f f f
nf

f f f nf

ff ff ff nn ff

T af bf cf kf

f f f mf

K

Rg

Figure 1. Process of the S-FUND method.

In the next subsection, we analyze the time complexity of each of the main steps
in S-FUND method and compare it with the time complexity of the classification results
relying on Fisher’s linear discriminant integrated classifier to give the readers a better
understanding of the performance of this method.

4.2. Performance Analysis

The time complexity of the main steps of the proposed S-FUND method is analyzed
separately, and the time complexity of other existing classic methods are compared, as
shown in Table 1.

There is no nested relationship between the steps in Table 1, so the time complexity
of the S-FUND method proposed in this paper is equal to the maximum time complexity
of all the steps. When O(Nlog2N) ≤ O(Nn), i.e., log2N ≤ n, the time complexity of the
S-FUND method is O(Nn); when log2N > n, the time complexity of the S-FUND method
is O(Nlog2N). However, existing feature selection methods rely on the classification results
of the Fisher linear discriminant integrated classifier [40], which has a time complexity of:

O(FLD) = O(LNtrnd2
sub) + O(Ld3

sub) (11)

where L represents the number of individual learners, Ntrn represents number of train-
ing sets per type, dsub represents subspace dimension, so the time complexity of this
class of selection methods is O(FLDdepend) must be greater than or equal to O(FLD), i.e.,
O(FLDdepend) ≥ O(LNtrnd2

sub) + O(Ld3
sub). Thus, the time complexity of the selection

method that relies on Fisher Linear Discriminant integrated classifier results is much
greater than O(Nn) or O(Nlog2N). Because the DCTR feature dimension is 8000, n < N
and log2N < N. The time complexity of S-FUND method is less than that of PCA-D,
Steganalysis-α, Fisher-G and SRGS methods, and it is similar to that of the CGSM method.
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Table 1. Time complexity analysis of the specific steps and other classic methods.

Steps/Method Step/Algorithm/Reference Time Complexity

Calculate distortion factor Steps 1–6 O(Nn)

Calculate infor gain ratio Steps 8–15 O(Nn)

Descend order by distortion Step 7 O(Nlog2N)

Descend order by infor gain ratio Step 16 O(Nlog2N)

Delete feature components Steps 17–21 O(N)

Preserve of eligible components Step 22 O(k)

S-FUND method Algorithm 1 O(Nn) or O(Nlog2N)

PCA-D method [33] O(N3)

Steganalysis-α method [34] O(LNtrnd2
sub) + O(Ld3

sub)

CGSM method [35] O(Nn) or O(Nlog2N)

Fisher-G method [36] O(N2)

SRGS method [37] O(N2m)

Therefore, the S-FUND method greatly reduces the running time complexity and
improves the efficiency of detecting the stego images.

4.3. Threshold Analysis

In order to have a better selection of S-FUND method, we need to explain the threshold
T in Algorithm 1.

Based on previous work and experimental experience, when the DCTR feature is
reduced to about 40% of the original by different methods, they all show worse detection
effect than the original, and the detection effect will decrease as the feature dimension
decreases. In this method, when the feature dimension is reduced to about 40% of the
original, the threshold is 0.15.

Therefore, we initially set T = 0.15, if f ms
1 is greater than T, that is, f ms

1 > 0.15, it
means that the contribution degree of the feature components measured by the two criteria
is quite different. Thus, the two feature components are removed to reduce the feature
dimension. We are able to obtain the value of T, i.e., T = 0.15, 0.14, 0.13, . . . , 0.02 and 0.01 by
setting the steps of 0.01. Then, by comparing the detection accuracy under these thresholds
T, S-FUND method with the highest detection accuracy is selected as the final detection
effect under this payload. In this way, more valuable feature components can be selected,
and the feature dimension will be greatly reduced without affecting the detection accuracy,
so as to achieve the purpose of feature selection for steganalysis.

5. Experimental Results and Analysis

In order to detect the performance of the S-FUND method proposed in this paper,
a series of selection and comparison experiments were conducted using 8000-D DCTR
feature [27]. All experiments were run in MATLAB R2018a with an Intel i7-8550U CPU
and an 8G RAM computer to ensure that the different methods could be fairly compared.
Experimental result figures were processed and generated in OriginPro 8.5.

5.1. Experimental Setup

The computer software, hardware, image library and steganalysis features used in
all the experiments in this paper are the same to ensure that the different methods can be
compared fairly and more reliably.

We performed a series of operations on the BOSSbase 1.01 image library of the website
(BOSSbase 1.01 image library from the URL: http://dde.binghamton.edu/download/,
accessed on 3 March 2020) to prepare for the next experiments, with the following steps.

http://dde.binghamton.edu/download/
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(1) Converting 10,000 images in PGM format from the BOSSbase 1.01 image library
into JPEG images with a compression quality factor of 95 (QF = 95).

(2) Generating 10,000 JPEG cover images using SI-UNIWARD [6] steganography to
generate 10,000 × 5 = 50,000 images with payload of 0.1, 0.2, 0.3, 0.4 and 0.5 (bpAC).

(3) The DCTR [27] extraction algorithm was used to extract 8000-D steganalysis fea-
tures from the cover and stego images, and 10,000 × (1 + 5) = 60,000 steganalysis features
were obtained. The reason for this is that the cover images become stego images after em-
bedding information, training and detection are paired, that is, the images are symmetric.

Steganalysis effect depends not only on the types of steganalysis features, but also
on the different steganography schemes and payloads. Early steganography schemes
can be accurately detected by high-dimensional steganalysis features (detection accuracy
can reach more than 80%), such as LSB, nsF5 [1], and so on. In recent years, adaptive
steganography has achieved low embedding jitter, such as SI-UNIWARD [6]. Solving the
ones difficult to detect is the focus of this paper. Moreover, the detection accuracy of the
same steganalysis features will be higher with the increase of payloads.

Meanwhile, the steganographic images with high payloads can be visually distin-
guished to a certain extent, which loses the significance of steganalysis, thus, the payloads
of this paper are 0.1, 0.2, 0.3, 0.4 and 0.5. The specific experimental object settings are
shown in Table 2.

Table 2. Experimental subject setup.

Subject Image library Image pixel Image type Image format

Setup BOSSbase 1.01 512 × 512 Grayscale image JPEG

Subject Quality factor Payloads Steganography Extraction

Setup 95 0.1, 0.2, 0.3, 0.4, 0.5 SI-UNIWARD [6] DCTR [27]

Subject Number of covers Number of stegos Training features Testing features

Setup 10,000 × 1 10,000 × 5 10,000 ÷ 2 10,000 ÷ 2

Number of steganalysis features 10,000 × (1 + 5) = 60,000

Kodovský et al. [40] proposed the FLD ensemble classifier based on random forest
algorithm and Monte Carlo thought, and it is widely used to train and detect for steganaly-
sis feature selection [33–37]. Therefore, the FLD integrated classifier is used in this paper,
which can achieve the purpose of fair comparison between different methods. Firstly,
one-half of the cover image features and their corresponding stego image features with dif-
ferent payloads are randomly selected from each feature set as the training set. Afterwards,
the remaining cover image features and their corresponding stego image features with
different payloads are used as the test set. The error rates in this integrated classifier are
calculated as

PE = min
PFA

PFA + PMD

NTS
= min

PFA

PFA + PMD

2
, (12)

where PFA and PMD represent the false alarm rate and missed detection rate, respectively,
NTS represents the number of test sets, because the test set contains a cover image set
and a stego image set, i.e., NTS = 2. The error rate represents the ratio of the number
of classification errors to the total number of tested feature components. The lower the
detection error rate, the better the selected feature components are at detecting the stego
images. In order to show more intuitively the results of the comparison experiment, we
use the following equation—PA = 1− PE to convert the detection error rate obtained by
the classifier into detection accuracy. PA represents average detection accuracy—the larger
PA value is, the better the selected features are for detecting the stego images.
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The experiment consisted of four parts:

1. Comparison experiment based on the S-FUND method before and after the selection
of DCTR steganalysis feature [27] (Section 5.2);

2. Comparison experiment with Random-D method (Section 5.3);
3. Comparison experiment with CGSM method [35] (Section 5.4);
4. Comparison experiment with PCA-D method [33] (Section 5.5).

5.2. Selection Experiment

Holub et al. [27] proposed an 8000-D DCTR image steganalysis feature. The feature is
a first-order statistic of the quantized noise residuals obtained from the decompressed JPEG
image using 64 discrete Cosine transform kernels. The DCTR feature has lower dimension
and computational complexity, and better detection performance.

In order to obtain the detection accuracy of the S-FUND method, we set T = 0.15, 0.14,
0.13, . . . , 0.02 and 0.01 by setting the steps of 0.01, if f ms

1 is greater than T, the two feature
components are removed to reduce the feature dimension.

In the S-FUND method, we delete the steganalysis feature components that dif-
fer more than the threshold values measured by two criteria. Firstly, in order to effec-
tively reduce the feature dimension, we consider the difference between the two criteria
greater than 15% of the original feature dimensions to be large, and for 8000-D DCTR
feature, we delete the component of steganalysis features with a difference greater than
8000 × 15% = 1200 dimensions. The experimental results for the selected feature dimen-
sions and detection accuracy are shown in Table 3.

Table 3. Comparison of experimental results before and after feature selection based on the S-FUND method.

Payload Dim/PA Origin 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

0.1
Dim 8000 5791 5601 5378 5114 4826 4538 4255 3936 3623 3254 2872 2435 2015 1451 849
PA 0.5239 0.5253 0.5265 0.5256 0.5254 0.5268 0.5270 0.5262 0.5257 0.5253 0.5251 0.5246 0.5239 0.5221 0.5208 0.5202

0.2
Dim 8000 5739 5552 5320 5062 4790 4497 4184 3870 3539 3178 2790 2383 1895 1347 822
PA 0.5256 0.5289 0.5290 0.5272 0.5290 0.5297 0.5305 0.5302 0.5289 0.5278 0.5276 0.5272 0.5260 0.5244 0.5228 0.5200

0.3
Dim 8000 5653 5434 5224 5001 4745 4446 4143 3801 3452 3106 2750 2280 1826 1352 848
PA 0.5385 0.5395 0.5394 0.5392 0.5380 0.5374 0.5395 0.5385 0.5364 0.5355 0.5355 0.5352 0.5340 0.5318 0.5287 0.5252

0.4
Dim 8000 5531 5310 5085 4873 4608 4317 4013 3690 3339 3036 2664 2275 1778 1332 813
PA 0.5700 0.5689 0.5692 0.5698 0.5676 0.5673 0.5666 0.5643 0.5648 0.5624 0.5596 0.5580 0.5563 0.5521 0.5472 0.5414

0.5
Dim 8000 5192 4971 4758 4548 4315 4055 3789 3530 3261 2953 2621 2181 1756 1304 807
PA 0.6291 0.6219 0.6221 0.6196 0.6182 0.6204 0.6172 0.6150 0.6137 0.6119 0.6108 0.6089 0.5900 0.5892 0.5803 0.5740

In Table 3, ‘Dim’ represents the feature dimension, and represents the detection
accuracy. From Table 3, it can be seen that the S-FUND method can significantly reduce the
feature dimension while maintaining or even improving the detection accuracy at different
payloads. For example, when payload = 0.1, the selected features based on S-FUND
method can achieve a detection accuracy of 0.5270, which is 0.31% higher than the original,
and the selected feature is 3462 dimensions lower than the original feature dimension.
Moreover, when T = 0.04, while maintaining the detection accuracy of the stego images,
the feature dimension selected based on S-Fund method is only 30.44% of the original.
When payload = 0.2, 0.3, the features selected based on S-FUND method can all reduce the
DCTR feature dimension to different degrees, and the detection accuracy is improved by
0.49% and 0.16%, respectively. Moreover, the features selected based on S-FUND method
are only 29.79% and 51.79% of the original while maintaining the detection accuracy of the
stego images, which reduces the spatio-temporal cost of classifier training.
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In order to compare the selection of DCTR steganalysis feature by S-FUND method
more visually, the feature dimension and detection accuracy before and after selection are
shown in Figure 2 below.

In Figure 2, the horizontal axis represents threshold value and the vertical axis repre-
sents the corresponding feature dimension and detection accuracy, and the five lines from
top to bottom represent the effects of the DCTR features selected at five different payloads,
and the points of optimal performance at each payload are processed and labeled with
values. It can be clearly seen from the figure that the S-FUND method can maintain or even
improve the detection accuracy of DCTR feature while significantly reducing the feature
dimension, which proves the effectiveness of the S-FUND method.
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Figure 2. Comparison of the S-FUND method for DCTR feature selection before and after selection.

5.3. Comparison Experiment with Random-D Method

In order to make a fair comparison between the different methods, the experimental
setup of this comparison experiment is the same as in Section 5.1. For different payloads,
the following is a comparison of the detection accuracy of the selected features of S-FUND
method and the selected features of Random-D method for the stego images. We let the
feature dimensions selected by the Random-D method be equal to the corresponding
feature dimensions selected by S-FUND method, and compare their detection accuracy;
the comparison results are shown in Table 4.
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Table 4. Comparison of experimental results before and after feature selection based on the S-FUND method.

Dim 5791 5601 5378 5114 4826 4538 4255 3936 3623 3254 2872 2435 2015 1451 849

0.1
Random 0.5221 0.5219 0.5210 0.5207 0.5208 0.5206 0.5201 0.5174 0.5142 0.5139 0.5131 0.5127 0.5122 0.5095 0.5072
S-FUND 0.5253 0.5265 0.5256 0.5254 0.5268 0.5270 0.5262 0.5257 0.5253 0.5251 0.5246 0.5239 0.5221 0.5208 0.5202

Dim 5739 5552 5320 5062 4790 4497 4184 3870 3539 3178 2790 2383 1895 1347 822

0.2
Random 0.5255 0.5248 0.5242 0.5230 0.5231 0.5233 0.5233 0.5228 0.5211 0.5209 0.5201 0.5196 0.5152 0.5124 0.5118
S-FUND 0.5289 0.5290 0.5272 0.5290 0.5297 0.5305 0.5302 0.5289 0.5278 0.5276 0.5272 0.5260 0.5244 0.5228 0.5200

Dim 5653 5434 5224 5001 4745 4446 4143 3801 3452 3106 2750 2280 1826 1352 848

0.3
Random 0.5349 0.5347 0.5333 0.5321 0.5313 0.5301 0.5290 0.5281 0.5272 0.5268 0.5255 0.5249 0.5220 0.5186 0.5154
S-FUND 0.5395 0.5394 0.5392 0.5380 0.5374 0.5395 0.5385 0.5364 0.5355 0.5355 0.5352 0.5340 0.5318 0.5287 0.5252

Dim 5531 5310 5085 4873 4608 4317 4013 3690 3339 3036 2664 2275 1778 1332 813

0.4
Random 0.5664 0.5662 0.5636 0.5600 0.5594 0.5577 0.5554 0.5541 0.5528 0.5519 0.5487 0.5422 0.5380 0.5313 0.5248
S-FUND 0.5689 0.5692 0.5698 0.5676 0.5673 0.5666 0.5643 0.5648 0.5624 0.5596 0.5580 0.5563 0.5521 0.5472 0.5414

Dim 5192 4971 4758 4548 4315 4055 3789 3530 3261 2953 2621 2181 1756 1304 807

0.5
Random 0.6193 0.6178 0.6152 0.6129 0.6123 0.6114 0.6101 0.6072 0.6045 0.6001 0.5950 0.5820 0.5806 0.5697 0.5559
S-FUND 0.6219 0.6221 0.6196 0.6182 0.6204 0.6172 0.6150 0.6137 0.6119 0.6108 0.6089 0.5900 0.5892 0.5803 0.5740

It can be seen from Table 4 that the S-FUND method has better detection accuracy
than Random-D method when DCTR feature is reduced to the same dimension at different
payloads. For example, when payload = 0.3, the detection accuracy of the features selected
by the S-FUND method is 0.52%, 0.61%, 0.83%, 0.97%, 0.98% and 0.98% higher than that of
the Random-D method by reducing the feature dimension to 5653, 4745, 3801, 2750, 1826
and 848 dimensions, respectively.

In order to compare the effects of S-FUND method and Random-D method on the
selection of DCTR feature more visually, we created Figure 3 based on Table 4.
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Figure 3. Comparison with Random-D method selected DCTR feature.

In Figure 3, the horizontal axis represents the number of feature dimensions, and
the vertical axis represents the corresponding detection accuracy. Five line graphs from
top to bottom represent the effects of DCTR features selected by S-FUND and Random-D
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selection at five different payloads. From Figure 3, we can see that the S-FUND method
has better detection accuracy than the Random-D method at different payloads.

Additionally, we found that as the number of selected features decreases, the difference
in detection accuracy between the two methods of the stego images increases. For example,
when payload = 0.1, the difference between the two methods increases from 0.32% to
1.3%. The reason for this phenomenon may be the following: as the number of selected
features decreases, the useful features will more likely be deleted by Random-D, while the
useless features will be deleted by S-FUND. Therefore, as the number of selected decreases,
the difference between the detection accuracy of the stego images based on the features
selected by S-FUND method and Random-D selection method will increase.

5.4. Comparison Experiment with CGSM Method

Wang et al. [35] proposed a method for steganalysis feature selection based on the
difference function and Pearson’s correlation coefficient. The method first presents a differ-
ence function-based feature measurement algorithm to measure the difference between
the cover and stego features. Afterwards, the Pearson correlation coefficient is improved
to measure the correlation between the feature components and the image classification
result. Finally, the feature component with large difference function is selected and the
feature component with small Pearson correlation coefficient is deleted. This method is
able to select the effective feature components to improve the detection performance of the
stego images, however, there is a sequence between the two algorithms, which makes it
difficult to avoid selecting useless features or deleting valuable features.

For the DCTR steganalysis feature with different payloads, the following is a com-
parison between the S-FUND method and the CGSM method when the same feature
dimensions are selected, and the comparison results are shown in Table 5.

Table 5. Comparison of experimental results with CGSM-selected DCTR feature.

Dim
0.1

Dim
0.2

Dim
0.3

Dim
0.4

Dim
0.5

CGSM S-FUND CGSM S-FUND CGSM S-FUND CGSM S-FUND CGSM S-FUND

5791 0.5241 0.5253 5739 0.5246 0.5289 5653 0.5372 0.5395 5531 0.5682 0.5689 5192 0.6218 0.6219

5601 0.5234 0.5265 5552 0.5252 0.5290 5434 0.5384 0.5394 5310 0.5679 0.5692 4971 0.6214 0.6221

5378 0.5231 0.5256 5320 0.5243 0.5272 5224 0.5355 0.5392 5085 0.5666 0.5698 4758 0.6195 0.6196

5114 0.5222 0.5254 5062 0.5236 0.5290 5001 0.5369 0.5380 4873 0.5641 0.5676 4548 0.6183 0.6182

4826 0.5225 0.5268 4790 0.5256 0.5297 4745 0.5360 0.5374 4608 0.5642 0.5673 4315 0.6166 0.6204

4538 0.5211 0.5270 4497 0.5227 0.5305 4446 0.5340 0.5395 4317 0.5614 0.5666 4055 0.6141 0.6172

4255 0.5219 0.5262 4184 0.5227 0.5302 4143 0.5340 0.5385 4013 0.5588 0.5643 3789 0.6097 0.6150

3936 0.5201 0.5257 3870 0.5238 0.5289 3801 0.5344 0.5364 3690 0.5569 0.5648 3530 0.6056 0.6137

3623 0.5199 0.5253 3539 0.5239 0.5278 3452 0.5321 0.5355 3339 0.5556 0.5624 3261 0.6019 0.6119

3254 0.5185 0.5251 3178 0.5216 0.5276 3106 0.5309 0.5355 3036 0.5504 0.5596 2953 0.5963 0.6108

2872 0.5157 0.5246 2790 0.5186 0.5272 2750 0.5270 0.5352 2664 0.5449 0.5580 2621 0.5892 0.6089

2435 0.5132 0.5239 2383 0.5154 0.5260 2280 0.5214 0.5340 2275 0.5401 0.5563 2181 0.5854 0.5900

2015 0.5105 0.5221 1895 0.5136 0.5244 1826 0.5210 0.5318 1778 0.5329 0.5521 1756 0.5784 0.5892

1451 0.5063 0.5208 1347 0.5061 0.5228 1352 0.5142 0.5287 1332 0.5284 0.5472 1304 0.5691 0.5803

849 0.5042 0.5202 822 0.5040 0.5200 848 0.5067 0.5252 813 0.5189 0.5414 807 0.5553 0.5740

It can be seen from Table 5 that S-FUND method has better detection accuracy than
CGSM method when the selected DCTR feature is reduced to the same dimensions by both
the S-FUND method and the CGSM method at different payloads. For example, when
payload = 0.1, the detection accuracy of selected features of the stego images by S-FUND
method is 0.12%, 0.43%, 0.56%, 0.89%, 1.16% and 1.6% higher than that of CGSM method
when the feature dimension is reduced to 5791, 4826, 3936, 2872, 2015 and 849.

In order to compare the selection effects of S-FUND and CGSM methods on the DCTR
steganalysis features more visually, we made Figure 4 based on Table 5.
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Figure 4. Comparison with CGSM method selected DCTR feature.

In Figure 4, the horizontal axis represents the feature dimension and the vertical axis
represents the corresponding detection accuracy. Five line graphs from top to bottom
represent the effects of S-FUND and CGSM methods for selecting DCTR feature at five
different payloads. From Figure 4, it can be seen that the S-FUND method has better
detection accuracy than the CGSM method when both methods are reduced to the same
dimensions under different payloads. Simultaneously, as the number of selected features
decreases at different payloads, the difference in detection accuracy between the two
methods increases—for example, when payload = 0.1, the difference in detection accuracy
between the two methods increases from 0.12% to 1.6%.

Furthermore, we found that the difference in detection accuracy of the stego images
between the features selected by the two selection methods is greater at high payloads.
For example, when payload = 0.1, 0.2, 0.3, 0.4 and 0.5, the differences are 1.6%, 1.6%,
1.85%, 2.25% and 1.87%, respectively. The reason for this phenomenon may be that more
information is embedded in the high payload, and the difference between the cover and
stego features is larger, which makes it easier to detect the stego images with the features
selected by S-FUND method. Therefore, at high payloads, the difference in detection
accuracy of the stego images with the features selected by S-FUND method is larger than
that of CGSM method.

5.5. Comparison Experiment with the PCA-D Method

Qin et al. [33] proposed the PCA-D method which has no parameter restrictions, is
simple to use, and the results are easier to understand. However, the method is not efficient
and is less effective for data with nonlinear structure. The main process is: Firstly, each
feature component is subtracted from its respective mean. Secondly, the covariance matrix
and the eigenvalues and eigenvectors of the covariance matrix are calculated. Thirdly, the
feature values are sorted in descending order. Finally, the number of principal components
(the number of selected feature components) is determined, and the feature component
is selected as the final selected feature vector, and the comparison experimental results
between the S-FUND and the PCA-D methods are shown in Table 6.
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Table 6. Comparison of experimental results with PCA-D-selected DCTR feature.

Dim
0.1

Dim
0.2

Dim
0.3

Dim
0.4

Dim
0.5

PCA-D S-FUND PCA-D S-FUND PCA-D S-FUND PCA-D S-FUND PCA-D S-FUND

5791 0.5099 0.5253 5739 0.5089 0.5289 5653 0.5201 0.5395 5531 0.5450 0.5689 5192 0.5796 0.6219

5601 0.5111 0.5265 5552 0.5147 0.5290 5434 0.5209 0.5394 5310 0.5409 0.5692 4971 0.5840 0.6221

5378 0.5070 0.5256 5320 0.5117 0.5272 5224 0.5197 0.5392 5085 0.5408 0.5698 4758 0.5776 0.6196

5114 0.5099 0.5254 5062 0.5118 0.5290 5001 0.5225 0.5380 4873 0.5396 0.5676 4548 0.5846 0.6182

4826 0.5148 0.5268 4790 0.5114 0.5297 4745 0.5211 0.5374 4608 0.5388 0.5673 4315 0.5867 0.6204

4538 0.5148 0.5270 4497 0.5199 0.5305 4446 0.5264 0.5395 4317 0.5457 0.5666 4055 0.5874 0.6172

4255 0.5070 0.5262 4184 0.5172 0.5302 4143 0.5202 0.5385 4013 0.5461 0.5643 3789 0.5904 0.6150

3936 0.5133 0.5257 3870 0.5194 0.5289 3801 0.5215 0.5364 3690 0.5469 0.5648 3530 0.5865 0.6137

3623 0.5143 0.5253 3539 0.5169 0.5278 3452 0.5262 0.5355 3339 0.5475 0.5624 3261 0.5911 0.6119

3254 0.5147 0.5251 3178 0.5159 0.5276 3106 0.5241 0.5355 3036 0.5493 0.5596 2953 0.5889 0.6108

2872 0.5156 0.5246 2790 0.5152 0.5272 2750 0.5293 0.5352 2664 0.5493 0.5580 2621 0.5966 0.6089

2435 0.5144 0.5239 2383 0.5188 0.5260 2280 0.5289 0.5340 2275 0.5511 0.5563 2181 0.5894 0.5900

As can be seen from Table 6, the DCTR features selected by S-FUND methods have
better detection accuracy than those selected by PCA-D method for the cover images when
the DCTR feature is reduced to the same dimensions at different payloads by the two
methods. For example, when payload = 0.2, the detection accuracy of S-FUND method is
0.02%, 1.83%, 0.95% and 1.2% higher than that of the PCA-D method when the feature is
reduced to 5739, 4790, 3870 and 2790 dimensions, respectively. When payload = 0.4, using
the two methods, the detection accuracy of the features selected by S-FUND method is
2.39%, 2.85%, 1.79% and 0.87% higher than that of the PCA-D method by reducing the
feature dimensions to 5531, 4608, 3690 and 2664 dimensions, respectively.

In order to compare more intuitively the effects of the selected features of S-FUND
and PCA-D methods for DCTR feature, we created Figure 5 based on Table 6.
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Figure 5. Comparison with PCA-D-method-selected DCTR feature.
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In Figure 5, the horizontal axis represents the feature dimension, the vertical axis
represents the corresponding detection accuracy, and the five line graphs from top to
bottom represent the effects of S-FUND and PCA-D methods for selecting DCTR feature at
five different payloads. From Figure 5, it can be seen that the S-FUND method has better
detection accuracy than the PCA-D method when the two methods are reduced to the same
dimension at different payloads. For example, when payload = 0.1, the feature dimensions
selected by the two methods are 5791 and 2435, and the differences in detection accuracy
are 1.54% and 0.95%. When payload = 0.3, the feature dimensions selected by the two
methods are 5653 and 2280 and the differences in detection accuracy are 2.00% and 0.51%.
When payload = 0.5, the feature dimensions selected by the two methods are 5192 and
2621, and the differences in detection accuracy are 4.25% and 1.23%.

6. Discussion

The S-FUND method has also been used in other steganalysis feature selection experi-
ments, such as CC-JRM. Therefore, the method in this paper is a general feature selection
method for steganalysis. It is worth mentioning that the contribution of this paper is not
only the introduction of distortion and information gain ratio to measure the difference of
feature components between the cover and stego images, but also the idea that the two
criteria are considered at the same time.

Last but not least, since this work considers the two criteria at the same time, they
need to measure the same kind of criteria, that is, they either measure the contribution
degree, or both measure the degree of similarity, or both measure redundancy, and so on.
The different kinds of criteria in this task force have certain limitations. Regarding the
CGSM method and the SRGS method, one involves measuring the similarity between the
feature components, and the other measuring the uselessness of the feature component.
Such criteria cannot be applied by this paper. In the next work, we are expected to propose
a novel method for different kinds of standards. When the kinds of criterion are different,
the combination of the these can be carried out—this method considers to combine the
similarity between feature components and the value of the component. Among the two
feature components with similarity, the component with a small contribution is deleted.

7. Conclusions

In order to effectively reduce the number of DCTR steganalysis feature while main-
taining or even improving the detection accuracy of the stego images, this paper proposes
a feature selection approach based on distortion factor and information gain ratio. First,
the distortion factor and information gain ratio are improved to measure the difference of
each steganalysis feature component between the cover and stego images. Second, two
measurement values of each feature component are arranged in descending order. Based
on the above, the feature components with large different ranking according to the two
measurements are deleted. Finally, the preserved feature components are used as the
final feature vector. This approach can effectively reduce the DCTR feature dimension
while maintaining or even improving the detection accuracy of the stego images, thus
reducing the spatial complexity of detecting the stego images. Moreover, by comparing
the time complexity of S-FUND method and the selection method that relies on the FLD
classifier results, it is demonstrated that the approach in this paper can greatly improve the
operational efficiency, thus reducing the time complexity of the classifier to detect the stego
images and reducing the cost of detection.

We have conducted a large number of comparison experiments to indicate that DCTR
feature selected by S-FUND method substantially reduce the feature dimension while
maintaining or even improving the detection accuracy of the stego images. And then, we
compared S-FUND method with Random-D, CGSM, and PCA-D methods to indicate that
the features selected by S-FUND method are more detection accurate of the stego images.
For example, in the comparison experiments with PCA-D method, the features selected by
the S-FUND method up to 4.25% more higher than PCA-D method for the stego images.
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