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Abstract: Deep neural networks (DNNs) have become the de facto standard for image recognition
tasks, and their applications with respect to plant diseases have also obtained remarkable results.
However, the large number of parameters and high computational complexities of these network
models make them difficult to deploy on farms in remote areas. In this paper, focusing on the
problems of resource constraints and plant diseases, we propose a DNN-based compression method.
In order to reduce computational burden, this method uses lightweight fully connected layers to
accelerate reasoning, pruning to remove redundant parameters and reduce multiply–accumulate
operations, knowledge distillation instead of retraining to restore the lost accuracy, and then quanti-
zation to compress the size of the model further. After compressing the mainstream VGGNet and
AlexNet models, the compressed versions are applied to the Plant Village dataset of plant disease
images, and a performance comparison of the models before and after compression is obtained to
verify the proposed method. The results show that the model can be compressed to 0.04 Mb with an
accuracy of 97.09%. This experiment also proves the effectiveness of knowledge distillation during
the pruning process, and compressed models are more efficient than prevalent lightweight models.

Keywords: deep neural networks; plant disease recognition; network pruning; knowledge distillation;
model quantization

1. Introduction

With the development of computational systems in recent years, especially the rapid
progress of graphics processing units (GPUs) [1], deep learning (DL) models [2] have
made remarkable achievements in many fields, e.g., natural language processing [3],
machine translation [4], medical image analysis [5], and many others. Convolutional
neural networks (CNNs), as the basic tools of DL, have been widely applied because of
their ability to automatically extract features and process high-dimensional images better
than other approaches [6–8]. In addition, the same is true for the application of CNNs in
agriculture; they can always achieve outstanding results, whether in fruit counting [9,10],
plant phenotyping [11], or other applications as discussed in the surveys [12,13]. Plant
disease identification [14] is also a hot topic in the agriculture-based DL since it directly
affects the yields of crops and indirectly relates to human economic benefits. However, it is
of high complexity to determine whether plant leaves are diseased by optical observation,
and even domain experts cannot identify certain diseases with high accuracy, which
also requires considerable manpower and time. The great successes of CNNs in image
recognition [15]. Also make the identification of plant leaf diseases with these networks
preferable and have led to significant breakthroughs.

Regarding the development of CNNs, neural networks have been developed from the
original LeNet [16] to current networks with wider, deeper, and more parameters, such
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as AlexNet [15] and VGGNet [17]. Although this has yielded greater progress in terms
of accuracy, it also brings a large number of parameters, slow reasoning speed, and large
memory footprints. Moreover, these problems are amplified in agriculture. Since farms are
usually located in resource-constrained areas, the deployment of these models on remote
devices would be limited by network bandwidth and delays. On the edge devices, such as
mobile devices and Internet of Things devices, due to the characteristics of these resource-
constrained devices [18], such massive neural networks cannot be effectively operated.
Therefore, it is particularly critical to compress neural networks simply and efficiently.

In the agricultural field, there are few works that focus on the sizes, processing
speeds, and resource constraints of neural network models, which are exactly the issues
that should be considered. Researchers in [19] deployed a lightweight neural network
after knowledge distillation on an agricultural robot platform to distinguish between
weeds and crops. In [20–23], authors used lightweight CNNs to identify diseased crop
leaves for easier deployment on embedded devices. However, in a related study of model
compression [24], a lightweight network was only one part of the solution. Therefore, a
simpler, faster, and more efficient neural network can be obtained by combining other
related methods while incurring almost no accuracy loss. In this study, pruning, knowledge
distillation, and quantization, which are universally applicable methods, are combined to
obtain lower computational burdens and fewer parameters by compressing the lightweight
VGGNet and AlexNet, which are then applied to the leaf disease images in the Plant Village
dataset [25,26].

The rest of this article is organized as follows: Section 2 briefly describes the latest
model compression techniques. Section 3 presents the proposed method and process in
detail. Then, the experimental dataset and its settings are introduced, and the results of the
proposed method are shown in Section 4. Finally, the work of this study is summarized,
and thoughts are put forward regarding future work, which may be helpful for other
researchers performing related work, in Section 5.

2. Related Works

In the field of DL, the pursuit of model accuracy is an important aspect, but the main
challenges of deep neural networks (DNNs) also include determining how to reduce the
number of model parameters (the size of the model) and the computational cost. Model
compression is a software method, and the application cost is low. Compression does not
conflict with hardware acceleration, and the two processes can complement each other,
so the resulting models can be better deployed on cloud servers or embedded devices.
Researchers in [27,28] confirmed that most of the parameters in a given network model are
redundant, and it is very possible to establish a “simple” network by removing redundant
parameters without affecting the accuracy. The obtained neural network model has lower
complexity and can be deployed and applied more conveniently.

2.1. Pruning
2.1.1. Pruning Granularity

As the main method of model compression, pruning can be classified into fine-grained
and coarse-grained pruning according to the pruning granularity.

Fine-grained pruning, i.e., unstructured pruning, where the pruning granularity is a
single neuron, can remove unimportant neurons according to different criteria. In [27,29],
Hessian matrices were proposed for the loss function relative to the weights to remove
unimportant connections. However, due to the complexity of the calculation, this also
brought additional computational costs. In [30], the weights were set to 0 when they
were below a certain threshold, and dense matrices were transformed into sparse matrices
to accelerate the calculation. However, it is difficult to achieve substantive acceleration
without hardware support and specialized software libraries [31]. Therefore, most of the
existing pruning studies have focused on structured pruning, which can also achieve an
unstructured compression ratio and acceleration in some cases.
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Coarse-grained pruning, i.e., structured pruning, removes an entire structure, and
it can accelerate and compress models without special hardware. Among the aspects of
structured pruning, since multiply–accumulate (MAC) operations are mostly concentrated
in filters, pruning at the filter level is an important consideration. The removal of insignifi-
cant filters can reduce the memory requirements and computational budgets of the model.
Filter-level pruning can be expressed as an optimization problem:

min
δij

K
∑

i=1

ni
∑

j=1
δijL

(
wi

j

)
,

s.t.
ni
∑

j=1
δij = ni2,

(1)

where wi
j represents the jth filter in the ith convolution layer, and δij is an indicator. When

wi
j is grouped in the removed filter set, its value is 1, and when it is in the reserved filter set,

its value is 0. L(·) is used to estimate the importance of the filters. Minimizing Equation (1)
is equivalent to removing the least important filters in ni2. Therefore, determining how to
measure the importance of filters, that is, how to design L(·) becomes a top priority.

In [32], the authors sorted the filters of each convolution layer according to the L1-
norm and considered that the smaller the L1-norm of a given layer was, the lower its
importance was, which meant that it should be removed. The authors in [33] proposed
ThiNet, and the statistical information of the next layer of feature maps was applied to
the pruning of the current convolution layer. The authors in [34] proposed applying L1
regularization to the scaling factors of batch normalization (BN) layers to remove filters
with lower scaling factors. In [35], the authors considered that the ranks of the feature
maps generated by convolution layers determined the amount of information contained,
i.e., whether the filters were important, and obtained state-of-the-art results.

2.1.2. Pruning Strategies

Pruning strategies can be classified as one-shot and iterative pruning.
One-shot pruning involves achieving the preset sparsity with just one step and then

retraining the model. The process is shown in Figure 1.
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Figure 1. The network model performs pretraining first and then prunes once according to the preset evaluation criteria to
achieve the target pruning rate. Finally, the model is fine-tuned to obtain the final model.

Although this strategy is very simple and does not bring additional hyperparameters,
it can easily cause accuracy losses that cannot be repaired. In contrast, iterative pruning
prunes only a portion of the filters each iteration and retrains the model several times;
then, pruning and retraining cycles are repeated to achieve the target sparsity. The authors
compared the accuracy of the models obtained after iterative pruning and one-shot pruning
in [32], and the results showed that iterative pruning is more effective in compensating
for the loss incurred after removing the filter. Researchers in [36] proposed the use of step
sparsity to determine the number of filters to be removed in each iteration of pruning.

2.2. Knowledge Distillation

Knowledge distillation, also known as teacher–student training, was proposed in [37].
An experiment demonstrated that a well-trained network uses its output soft labels to
guide a simple, small student network through training, and dark knowledge can be easily
transferred to the student network without changing its structure. In [38], authors proposed
an ensemble of teacher networks to improve the generalization ability of a student network.



Symmetry 2021, 13, 1769 4 of 17

In [39], the authors used the attention maps of the middle layers of a teacher network
to guide the training of the student network, aiming at enabling the student network to
learn the feature maps of the teacher more effectively. Researchers in [40] found that if the
given teacher and student networks are similar in structure, the student network more
easily learns the knowledge of the teacher network, thus saving time when training a
complex model.

2.3. Quantization

One method of quantization is to cluster the model weights, which are classified into
the same category and can share weight values, to realize the compression of the model;
this approach is called vector quantization. In [41], the authors used K-means clustering
to implement vector quantization, as this method can achieve a 16–24 time compression
ratio, and the accuracy loss lies in an acceptable range. However, the storage of the shared
weight codebook and its computation also requires additional resources.

Another method of quantization is to approximate the weights of 32-bit floating-
point numbers with fewer bits (such as 16-bit or 8-bit weights), which is called fixed-
point quantization. Due to the reduction in the representation bits of weights, the size
of the network model can be reduced. Researchers in [42] showed that the use of uint-8
representations to represent the original bits could achieve effective acceleration without
sacrificing accuracy. The use of one-bit data to replace the original weight bits is called
the binary neural network [43]; although such a network can greatly reduce the network
computing and storage costs, determining how to maintain the accuracy after quantization
becomes a great challenge.

The application of quantization in the inference stage can accelerate forward propaga-
tion and further improve the compression rate and can be combined with other compression
methods. For example, in [44], the authors proposed a compression method combining
pruning, quantization, and Huffman encoding, and the model could be compressed up to
49 times.

2.4. Lightweight Networks

Unlike pruning and quantization, lightweight networks directly design an efficient
model to solve the given problem.

MobileNet [45] decomposes the standard convolution operation into depthwise con-
volution and pointwise convolution. Depthwise convolution is a convolution operation
performed in each independent channel, and pointwise convolution is a 1 × 1 convolution
operation, both of which can greatly reduce the number of required calculations without
affecting model accuracy. SqueezeNet [46] achieves approximately equal accuracy to that
of AlexNet on ImageNet; moreover, the number of parameters is 50 times less than that
of AlexNet.

2.5. DL Architectures for Plant Disease Detection

Using new or modified DL architectures has become a mainstream method for plant
disease detection. In [47], the authors proposed a lightweight model and strengthened the
generalization performance of the model on a plant disease dataset by transfer learning,
which can achieve 89.70% accuracy. In [48–50], authors used different DL architectures
(such as AlexNet, VGGNet, GoogleNet, and ResNet) to detect plant disease, and achieved
promising results, which also promoted the application of DL in agriculture. In [51], the
authors introduced a novel DL architecture considering the spot attention mechanism of
apple leaf disease and proved its performance is better than traditional DL models.

In this paper, unlike the traditional research that only uses lightweight models [20–23,47],
we combine pruning, distillation, and quantization methods to minimize the size of the
model while ensuring accuracy. Compared with existing lightweight models, our proposed
model compression method on VGGNet and AlexNet yields more competitive results (see
Section 4.3 for details).
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3. Methodology

This paper proposes a model compression method for plant disease identification,
which includes lightweight, iterative pruning, knowledge distillation, and quantization.
The specific flowchart is shown in Figure 2.
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Figure 2. The flowchart of the proposed compression method.

3.1. Lightweight on Fully Connected Layers

Before using correlation compression methods, the weight of the network model
should be reduced first. In CNNs, the fully connected layers incur a large number of
parameters. As shown in Figure 3, the fully connected layers of VGGNet and AlexNet
account for 89.36% and 95.96% of the total number of parameters, respectively. Therefore,
to simplify the models, it is necessary to compress the fully connected layers. However,
pruning the fully connected layers results in weight sparsity. If there is no special hardware
or corresponding software libraries, the acceleration effect is inconspicuous. To solve this
problem, in this study, global average pooling (GAP) [52] is used to reduce the burden
of the model, as shown in Figure 4. The feature maps of the last convolution layer are
pooled to obtain the results so that the extracted features and classification output are
directly related. On the one hand, reducing the large number of parameters can reduce the
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computational cost; on the other hand, it can prevent overfitting, and there is little effect
on accuracy.
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3.2. Iterative Pruning with Knowledge Distillation

In this study, filter-level structured pruning is applied, where the standard for measur-
ing the importance of the filters is the ranks of the model feature maps [35]; additionally,
knowledge distillation is used instead of retraining. The core flow of the proposed algo-
rithm is shown in Algorithm 1.

3.2.1. Iterative Pruning

During the process of pruning, a small batch of input images is used to accurately
predict the expected rank of the examined feature map, and Equation (1) can be more
specifically expressed as:

min
δij

K
∑

i=1

ni
∑

j=1
δijL

(
wi

j

) G
∑

K=1
Rank

(
oi

j(K, :, :)
)

,

s.t.
ni
∑

j=1
δij = ni2,

(2)

where oi
j(K, :, :) is the matrix of the feature map of input image K generated by wi

j. Rank(·)
is the rank of the feature map matrix that evaluates the average rank across G images.

To distinguish from one-shot pruning, a certain number of filters are removed at
each step during iterative pruning. Therefore, in this experiment, a polynomial function
Equation (3) is proposed to obtain the step pruning rate.

St = 1−
(

1− S f

) t+2
t f +2 (3)

where St and S f are the current and target pruning rates, respectively. t is the current
pruning step, and t f is the total number of training steps. In this way, one-shot pruning
is avoided, and the pruning of the filters can be completed within the limited number of
training steps, which realizes a tradeoff between training time and accuracy.

Algorithm 1. Framework of iterative pruning with knowledge distillation

/∗ Initialization ∗/
1: Convolution layer index to prune: L;
2: Student model pruning rate at step t: St%;
3: Student model final pruning rate at step t f : S f %;
/∗ Pretraining ∗/
4: Training lightweight model T;
5: Pretrained student model S: S← T ;
/∗ Iterative pruning ∗/

6: St = 1−
(

1− S f

) t+2
t f +2

7: Pruning (St − St−1)% filters of L with feature map ranks;
/∗ Knowledge distillation ∗/
8: Retraining model S with knowledge distillation with T;
9: If (St < S f ) then Goto Iterative pruning
/∗ Final model ∗/
10: Return student model S;

3.2.2. Retraining

In the traditional three-stage iterative pruning process, after each pruning step, the
model is retrained to restore the accuracy loss incurred by pruning. In this paper, knowl-
edge distillation [37] is used instead of retraining to obtain a better precision recovery effect,
as shown in Figure 5.
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In knowledge distillation, the teacher model uses output soft labels to enable the
student model to learn dark knowledge; this process can be defined as:

Lkd = 2T2 × LKL(SStu, STea) (4)

where the temperature parameter T is used to control the smoothness of the output to
preferably transfer the knowledge of the teacher network. LKL is the Kullback–Liebler (KL)
divergence between the soft labels of the two network models. The soft label output Sstu of
the student network can be given by:

SStu =
exp(zs/T)

n
∑

i=1
exp

(
z(i)S /T

) (5)

where zS is the output of the student network without a softmax layer. Equation (5) controls
the degree of smoothness of the output, and it is the softmax function when T = 1. STea
can also be calculated in this way.

Under the effect of knowledge distillation, the total loss function of the student
network model becomes:

Lstudent = αLkd + βCrossEntropy(zS, yTure) (6)

where yTrue denotes the ground-truth label of the output, and the latter term is the classic
cross-entropy loss. α and β are weight hyperparameters.

3.3. Fixed-Point Quantization

Quantization is applied after training, and uint-8 bit-based fixed-point quantization
without data calibration is used to compress the matrix of weights.
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4. Experimental Evaluation
4.1. Experimental Settings
4.1.1. Datasets

This paper used 54,306 images of diseased and healthy plants under controlled condi-
tions from a public database [25,26], which were obtained by researchers using a standard
digital camera with automatic mode. This database includes 38 different classes, each of
which contains disease or health data corresponding to a certain plant. Table 1 lists the
information of these 38 classes, including 14 plants and 26 diseases (some plants have only
healthy images). Eighty percent of the images were randomly selected as the training set,
while the remaining 20% were selected as the test set.

Table 1. Related information about the database images.

Class Plant Common
Name Plant Scientific Name Disease Common

Name Disease Scientific Name Images
(Number)

C_1 Apple Malus domestica – – 1645
C_2 Apple Malus domestica Apple scab Venturia inaequalis 630
C_3 Apple Malus domestica Black rot Botryosphaeria obtusa 621
C_4 Apple Malus domestica Cedar apple rust Gymnosporangium juniperi-virginianae 275
C_5 Blueberry Vaccinium spp. – – 1502
C_6 Cherry (and sour) Prunus spp. – – 854
C_7 Cherry (and sour) Prunus spp. Powdery mildew Podosphaera spp. 1052
C_8 Corn (maize) Zea mays – – 1162
C_9 Corn (maize) Zea mays Cercospora leaf spot Cercospora zeae-maydis 513

C_10 Corn (maize) Zea mays Common rust Puccinia sorghi 1192
C_11 Corn (maize) Zea mays Northern leaf blight Exserohilum turcicum 987
C_12 Grape Vitis vinifera – – 423
C_13 Grape Vitis vinifera Black rot Guignardia bidwellii 1180
C_14 Grape Vitis vinifera Esca (Black measles) Phaeomoniella chlamydospora 1383
C_15 Grape Vitis vinifera Leaf blight Pseudocercospora vitis 1076
C_16 Orange Citrus sinensis Huanglongbing Candidatus Liberibacter 5507
C_17 Peach Prunus persica – – 360
C_18 Peach Prunus persica Bacterial spot Xanthomonas campestris 2297
C_19 Pepper, bell Capsicum annuum – – 1477
C_20 Pepper, bell Capsicum annuum Bacterial spot Xanthomonas campestris 997
C_21 Potato Solanum tuberosum – – 152
C_22 Potato Solanum tuberosum Early blight Alternaria solani 1000
C_23 Potato Solanum tuberosum Late blight Phytophthora infestans 1000
C_24 Raspberry Rubus spp. – – 371
C_25 Soybean Glycine max – – 5090

C_26 Squash Cucurbita spp. Powdery mildew Erysiphe cichoracearum,
Sphaerotheca fuliginea 1835

C_27 Strawberry Fragaria spp. – – 456
C_28 Strawberry Fragaria spp. Leaf scorch Diplocarpon earlianum 1109
C_29 Tomato Lycopersicum esculentum – – 1591
C_30 Tomato Lycopersicum esculentum Bacterial spot Xanthomonas campestris pv. Vesicatoria 2127
C_31 Tomato Lycopersicum esculentum Early blight Alternaria solani 1000
C_32 Tomato Lycopersicum esculentum Late blight Phytophthora infestans 1909
C_33 Tomato Lycopersicum esculentum Leaf mold Fulvia fulva 952
C_34 Tomato Lycopersicum esculentum Septoria leaf spot Septoria lycopersici 1771
C_35 Tomato Lycopersicum esculentum Spider mites Tetranychus urticae 1676
C_36 Tomato Lycopersicum esculentum Target spot Corynespora cassiicola 1404
C_37 Tomato Lycopersicum esculentum Tomato mosaic virus Tomato mosaic virus (ToMV) 373
C_38 Tomato Lycopersicum esculentum TYLCV Begomovirus (Fam. Geminiviridae) 5357
TOTAL: 54,306

In order to reduce overfitting and improve the generalization ability of the model,
rotation mirror and mirror symmetry were used for the training set, as shown in Figure 6.
Eighty percent of the images were randomly selected as the training set, while the remaining
20% were selected as the test set.
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Figure 6. Examples of rotation mirror and mirror symmetry used for Peach Bacterial Spot image:
(a) initial; (b) rotated 90◦; (c) rotated 180◦; (d) rotated 270◦; (e) vertical mirror symmetry; (f) horizontal
mirror symmetry.

4.1.2. Configurations

In this experiment, the popular AlexNet and VGGNet-16 models with BN layers were
selected for lightweight, pruning, distillation, and quantization and applied to the public
database of plant diseases.

During the training process, the initial learning rate is 0.01, and the learning rate drops
by 50% every 20 epochs. The stochastic gradient descent with weight-decay = 5 × 10−4

and momentum = 0.9 is selected as the optimizer. The total number of epochs used to train
the original model is 60, and the batch size is set to 32.

For Equation (2), G = 640 (i.e., 20 batches) pictures are used to estimate the average
rank of the feature map generated by each filter. Then, during the iterative pruning process
of Equation (3), the final pruning rate S f is set to 0.85, 0.9, and 0.95, and t f is set to 100.
When t = 0, pruning begins, and when t = 100, the final pruning rate is obtained. After
pruning all convolution layers, training is continued for 40 additional epochs to restore
accuracy, and the learning rate is also decreased by 50% when training is half complete.
The detailed process of sparsity-level variation across the training steps during pruning
is shown in Figure 7. To prevent the introduction of excessive hyperparameters, the final
pruning rate of each layer is the same, and due to the introduction of GAP, pruning does
not operate on the last convolution layer. In addition, during knowledge distillation, for
Equations (4) and (6), T = 10, α = 0.1, and β = 0.9. All the experiments were carried out on
PyTorch 1.6, CUDA 10.1, and CUDNN 7.6.5 with an NVIDIA GeForce GTX 1080Ti GPU
and an Intel i5 10,600 k CPU.

4.2. Experimental Results

In this paper, the numbers of parameters and floating-point operations (FLOPs) are
used as the criteria for measuring the model size and computing requirements, which
represent the memory occupation and the number of additions and multiplications required
for forward propagation; these are common criteria in most related studies. Since the size
of each input image is closely related to the required FLOPs, it is necessary to change
224 × 224 ×3 to 56 × 56 ×3. As shown in Table 2, within the acceptable range of accuracy
decline, the model is accelerated by approximately 15 times.
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Table 2. The changes in the accuracy and FLOPs of VGGNet after changing the sizes of the
input pictures.

VGGNet
Input Size

224×224×3 112×112×3 56×56×3

FLOPS 15.53 G 3.97 G 1.06 G

Accuracy 99.59% 99.45% 99.43%
(+0.0%) (−0.14%) (−0.16%)

Table 3 provides various pieces of information about two DL models with and without
GAP. This shows that the decrease in model accuracy is within the acceptable range when
using GAP, and the number of parameters is greatly reduced. The accuracies of VGGNet
and AlexNet decrease by only 0.06% and 0.03%, respectively, reaching 99.37% and 98.15%.

Table 3. Comparison between the accuracy and parameters of VGGNet and AlexNet with and
without GAP.

Model VGGNet VGGNet
(GAP) AlexNet AlexNet

(GAP)

Size 512.79 Mb 47.83 Mb 218.06 Mb 7.51 Mb

Accuracy 99.43% 99.37% 99.18% 98.15%
(+0.0%) (−0.06%) (+0.0%) (−0.03%)

4.2.1. Filter Pruning

Table 4 presents the accuracies, model sizes, and FLOPs of the two architectures at
different pruning rates. In addition, VGGNet has better adaptability than AlexNet. Due to
the complicated network architecture of VGGNet, even at a 95% pruning rate, the model
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accuracy is reduced by 2.17%, and the model can be compressed by a factor of 299 and
accelerated by a factor of 284. At a pruning rate of 90%, the accuracy is 98.65%, which is a
decrease of 0.72%. While its accuracy is almost unchanged at a pruning rate of 85%, the
number of parameters is reduced by a factor of 41, and the model is accelerated by a factor
of 40.

Table 4. Change in the number of parameters, accuracy, and FLOPs of VGGNet and AlexNet under
different pruning rates.

Model Original
85% 90% 95%

Pruning

VGGNet
(GAP)

Size 47.83 Mb 1.18 Mb 0.56 Mb 0.16 Mb

Accuracy 99.37% 99.05% 98.65% 97.20%
(+0.0%) (−0.32%) (−0.72%) (−2.17%)

FLOPs 920,230,062 22,974,968 10,764,786 3,240,726

AlexNet
(GAP)

Size 7.51 Mb 0.23 Mb 0.12 Mb 0.04 Mb

Accuracy 98.15% 94.63% 92.19% 87.32%
(+0.00%) (−3.52%) (−5.96%) (−10.83%)

FLOPs 21,628,408 1,085,788 666,896 322,200

When the pruning rates of AlexNet are 85%, 90%, and 95%, its accuracy drops from
98.15% by 3.52%, 5.96%, and 10.83%, respectively, while it is compressed by approximate
factors of 25, 63, and 188 and accelerated by factors of 20, 32 and 62. Since AlexNet has
only five convolution layers, the shallow network architecture causes the filters to have
high sensitivity and limited performance, resulting in obvious accuracy losses at a high
pruning rate; however, the model size is only 0.04 Mb.

In this experiment, a lightweight network was used as the teacher model before
pruning, and a network was used as the student model to perform pruning to further
improve the accuracy. Table 5 shows the accuracy comparisons before and after knowledge
distillation, which are sufficient to prove the effectiveness of using knowledge distillation.
It is also observed that when the pruning rate is 90%, the effect of knowledge distillation
is best, and the accuracy can be improved by 0.09% and 0.63% for VGGNet and AlexNet,
respectively. When the pruning rate is 95%, the accuracy can be improved by 0.06% and
0.31% for VGGNet and AlexNet, respectively. When the pruning rate is 85%, the accuracy
can be increased by only 0.01% and 0.19%.

Table 5. Effect of knowledge distillation on the accuracy of VGGNet and AlexNet under different
pruning rates.

Model Original
85% 90% 95%

Pruning

VGGNet
(GAP)

Accuracy 99.37% 99.05% 98.65% 97.20%
Knowledge distillation

Accuracy
(KD)

_ 99.06% 98.74% 97.26%
(+0.01%) (+0.09%) (+0.06%)

AlexNet
(GAP)

Accuracy 98.15% 94.63% 92.19% 87.32%
Knowledge distillation

Accuracy
(KD)

_ 94.82% 92.82% 87.63%
(+0.19%) (+0.63%) (+0.31%)

4.2.2. Quantization

In the final step of the proposed method, uint-8 fixed-point quantization is used to
further compress the model after pruning and distillation to obtain a higher compression
ratio. Table 6 (top) shows that the accuracy of VGGNet is not obviously decreased after
quantization and increases by 0.01% at a sparsity level of 90%. When the total parameter
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size is only 0.04 Mb, which is reduced by a factor of 1196, the accuracy can still reach
97.09%, with a drop of merely 2.28% from the original accuracy rate. Especially at a sparsity
level of 85%, the accuracy of the model can still reach 99.06%.

Table 6. Change in the model size and accuracy of VGGNet and AlexNet after quantization.

Model Original
85% 90% 95%

Pruning

VGGNet
(GAP)

Size 47.83 Mb 1.18 Mb 0.56 Mb 0.16 Mb

Accuracy 99.37% 99.05% 98.65% 97.20%
(+0.0%) (−0.32%) (−0.72%) (−2.17%)

Fixed-point quantization with uint-8 bits.
Size _ 0.29 Mb 0.14 Mb 0.04 Mb

Accuracy _ 99.06% 98.75% 97.09%
(−0.31%) (−0.62%) (−2.28%)

AlexNet
(GAP)

Size 7.51 Mb 0.23 Mb 0.12 Mb 0.04 Mb

Accuracy 98.15% 94.63% 92.19% 87.32%
(+0.00%) (−3.52%) (−5.96%) (−10.83%)
Fixed-point quantization with uint-8 bits.

Size _ 0.06 Mb 0.03 Mb 0.01 Mb

Accuracy _ 94.75% 92.78% 87.51%
(−3.40%) (−5.37%) (−10.64%)

AlexNet also exhibits no significant decrease in accuracy after quantization. In Table 6
(bottom), it can be seen that at a sparsity level of 85%, the model size is reduced by a factor
of 125. It can be compressed by a factor of 751 after quantization at a high sparsity level of
95%, and the model size is only 0.01 Mb, but the accuracy is 87.51%, 10.64% lower than the
original accuracy rate.

Examining the overall effect of quantization, it can be seen that the accuracy losses of
the two kinds of network models after quantization are within the acceptable range, and
the model sizes can also be compressed approximately 4 times more. Furthermore, due to
the decrease in bits, the MAC operations of the convolution layers become simplified, and
the forward propagation speed becomes faster.

4.3. Comparsion with Lightweight Model

In order to verify the effectiveness of the proposed method on VGGNet and AlexNet
models, we compare compressed versions with the prevalent lightweight model on the
same dataset. Table 7 provides various pieces of information about MobileNet in the same
experimental environment as VGGNet and AlexNet. By comparing it with Table 3, we
can observe that lightweight networks obtain better results than uncompressed networks.
However, as shown in Figure 8, more competitive results can be obtained when these
networks are compressed and knowledge-distilled. The accuracy of VGGNet is 0.21%
higher than that of MobileNetV2 at an 85% pruning rate, and the number of parameters is
greatly reduced. From the perspective of model size and FLOPs, AlexNet is more efficient
after pruning, although its performance decreases obviously.

Table 7. Various pieces of information about MobileNetV1 and MobileNetV2 on the plant disease dataset.

Model MobileNetV1 MobileNetV2

Size 12.38 Mb 8.67 Mb
Accuracy 99.20% 98.85%

FLOPs 150,466,304 23,550,528
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Compared with traditional research using lightweight models on plant disease datasets,
the compression method introduced in this paper can provide a better tradeoff between
the size and accuracy of the model. Moreover, we can manually adjust the pruning rate to
obtain the model we want, allowing it to be better deployed in resource-constrained areas.

5. Conclusions

In this study, due to the limitations of DNN deployment and the low performance of
such networks on resource-constrained devices, the applicability of the resulting models
in the field of plant diseases is limited. Therefore, in view of the problems faced by
farms in remote areas, the VGGNet and AlexNet models are compressed to reduce the
number of required parameters and accelerate reasoning. In the compression method,
lightweight fully connected layers, pruning, knowledge distillation, and quantization are
combined to obtain efficient models with accuracy losses that fall within an acceptable
range. The experimental results also show the effectiveness of using knowledge distillation
in iterative pruning. Moreover, the compressed model is more suitable for deployment in
resource-constrained areas than the lightweight model.

In the following work, on the one hand, it will also be a key issue to find the optimal
pruning number of each convolution layer to achieve a balance between accuracy loss
and model size and to achieve the best knowledge distillation effect. On the other hand,
extending the dataset as much as possible, compressing the models on field-programmable
gate arrays (FPGAs), and deploying them in a real farm environment are additional tasks
that need to be carried out.
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