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Abstract: In this paper, we study the symmetric travelling wave solutions of the b-family of the
Novikov equation. We show that the b-family of the Novikov equation can provide symmetric
travelling wave solutions, such as peakon, kink and smooth soliton solutions. In particular, the
single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-anti-kink, bell-shape soliton
and hat-shape soliton solutions are presented in an explicit formula.
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1. Introduction

The b-family of the Camassa–Holm equation

mt + umx + buxm = 0, m = u− uxx, (1)

where b is an arbitrary constant and u(x, t) is fluid velocity. Equation (1) was first proposed
by Holm and Stanley in studying the exchange of stability in the dynamics of solitary waves
under changes in the nonlinear balance in a 1 + 1 evolutionary PDE related to shallow
water waves and turbulence [1,2]. In the case of b 6= 0, peakon solutions of Equation (1)
were discussed in [1,2]. In the case of b = 0, Xia and Qiao showed that Equation (1)
provides N-kink, bell-shape and hat-shape solitary solutions [3]. For b = 2, Equation (1)
becomes the well-known Camassa–Holm (CH) equation

mt + umx + 2uxm = 0, m = u− uxx, (2)

which was originally implied in Fokas and Fuchssteiner in [4], but became well-known
when Camassa and Holm [5] derived it as a model for the unidirectional propagation of
shallow water over a flat bottom. The CH equation was found to be completely integrable
with a Lax pair and associated bi-Hamiltonian structure [4–6]. The famous feature of the
CH equation is that it provides peaked soliton (peakon) solutions [4,5], which present an
essential feature of the travelling waves of largest amplitude [7–9]. For b = 3, Equation (1)
becomes the Degasperis–Procesi (DP) equation

mt + umx + 3uxm = 0, m = u− uxx, (3)

which can be regarded as another model for nonlinear shallow water dynamics with
peakons [10,11]. The integrability of the DP equation was shown by constructing a Lax
pair, and deriving two infinite sequences of conservation laws in [12].

In this paper, we are concerned with the b-family of the Novikov equation

mt + u2mx + buuxm = 0, m = u− uxx, (4)

where b is an arbitrary constant. It is easy to see that the b-family of the Novikov
Equation (4) has nonlinear terms that are cubic, rather than quadratic, of the b-family
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of CH Equation (1). The Cauchy problem of the b-family of the Novikov Equation (4) was
studied in [13].

For b = 3, Equation (4) becomes the Novikov equation

mt + u2mx + 3uuxm = 0, m = u− uxx, (5)

which was discovered by Vladimir Novikov [14] in a symmetry classification of nonlocal
PDEs with quadratic or cubic nonlinearity. In [15,16], it was shown that the Novikov
equation provides peakon solutions such as the CH and DP equations. Additionally,
the Novikov Equation (5) has a Lax pair in matrix form and a bi-Hamiltonian structure.
Moreover, it has infinitely many conserved quantities.

The purpose of this paper is to investigate the solutions of the b-family of the Novikov
Equation (4) in the case of b 6= 0 and b = 0. We will show that Equation (4) possesses
symmetric travelling wave solutions, such as peakon, kink and smooth soliton solutions.
In particular, the single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-anti-
kink, bell-shape soliton and hat-shape soliton solutions are presented in an explicit formula
and plotted.

The rest of this paper is organized as follows. In Section 2, we derive the N-peakon
solutions in the case of b 6= 0. In Section 3, we discuss the N-kink and smooth soliton
solutions in the case of b = 0.

2. Peakon Solutions

In this section, we derive the N-peakon solutions in the case of b 6= 0. We assume the
N-peakon solution as the form

u =
N

∑
j=1

pj(t)e
−|x−qj(t)|, (6)

where pj(t) and qj(t) are to be determined. The derivatives of (6) do not exist at x = qj(t),
thus (6) can not satisfy Equation (4) in a classical sense. However, in the distribution,
we have

ux = −
N

∑
j=1

pj(t) sgn(x− qj(t))e
−|x−qj(t)|, (7)

m = 2
N

∑
j=1

pj(t)δ(x− qj(t)), (8)

mt = 2
N

∑
j=1

pj,tδ(x− qj(t))− 2
N

∑
j=1

pjqj,tδ
′(x− qj(t)), (9)

mx = 2
N

∑
j=1

pj(t)δ′(x− qj(t)). (10)

Substituting (6)–(10) into (4) and integrating against the test function with compact
support, we obtain that pj(t) and qj(t) evolve according to the dynamical system:

qj,t =

(
N
∑

i=1
pie
−|qj−qi |

)2

, 1 ≤ j ≤ N,

pj,t = (b− 2)pj

(
N
∑

i=1
pie
−|qj−qi |

)(
N
∑

i=1
pi sgn(qj − qi)e

−|qj−qi |
)

, 1 ≤ j ≤ N.
(11)
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For N = 1, (11) is reduced to {
q1,t = p2

1,
p1,t = 0.

Thus, the single peakon solution ( See Figure 1 ) is

u = ±
√

ce−|x−ct|, c > 0. (12)

For N = 2, (11) is reduced to

q1,t =
(

p1 + p2e−|q1−q2|
)2

,

q2,t =
(

p1e−|q2−q1| + p2

)2
,

p1,t = (b− 2)p1 p2

(
p1 + p2e−|q1−q2|

)
sgn(q1 − q2)e−|q1−q2|,

p2,t = (b− 2)p1 p2

(
p2 + p1e−|q1−q2|

)
sgn(q2 − q1)e−|q2−q1|.

(13)

Solving (13), we haveq1(t)− q2(t) = C,

p1(t) = −p2(t) = −
1√

2bte−2C − 2bte−C − 4te−2C + 4te−C
.

(14)

In particular, for C = 1, q2(t) = t, b = 1, the solution (See Figure 2) becomes

u(x, t) = − 1√
2te−1 − 2te−2

e−|x−t−1| +
1√

2te−1 − 2te−2
e−|x−t|. (15)

Figure 1. The positive single peakon solution determined by (12) with c = 1 at time t = 2.
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Figure 2. The two-peakon solution (15) at time t = 2.

3. Kink and Smooth Soliton Solutions

In this section, we discuss the N-kink and smooth soliton solutions in the case of
b = 0, namely

mt + u2mx = 0, m = u− uxx. (16)

We suppose that the N-kink solution as the form

u =
N

∑
j=1

cj sgn(x− qj(t))
(

e−|x−qj(t)| − 1
)

, (17)

where cj are arbitrary constants and qj(t) are to be determined. The derivatives of (17) do
not exist at x = qj(t), thus (17) can not satisfy Equation (4) in a classical sense. However, in
the distribution, we have

ux = −
N

∑
j=1

cje
−|x−qj(t)|, (18)

mt = 2
N

∑
j=1

cjqj,tδ(x− qj(t)), (19)

mx = −2
N

∑
j=1

cjδ(x− qj(t)). (20)

Substituting (17)–(20) into (16) and integrating against the test function with compact
support, we obtain that qj(t) evolves according to the dynamical system:

qj,t =

(
N

∑
i=1

ci sgn(qj − qi)
(

e−|qj−qi | − 1
))2

, 1 ≤ j ≤ N. (21)

For N = 1, we have q1,t = 0, which yields q1 = c, where c is an arbitrary constant.
Thus the single kink solution (See Figures 3 and 4) is stationary and it reads

u = c1 sgn(x− c)
(

e−|x−c| − 1
)

. (22)
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Figure 3. The stationary kink solution determined by (22) with c1 = c = 1.

Figure 4. The stationary anti-kink solution determined by (22) with c1 = −1, c = 1.

For N = 2, (21) is reduced toq1,t =
[
c2 sgn(q1 − q2)

(
e−|q1−q2| − 1

)]2
,

q2,t =
[
c1 sgn(q2 − q1)

(
e−|q2−q1| − 1

)]2
.

(23)

If c2
1 = c2

2, we obtainq1(t) =
[
c1 sgn(C1)(e−|C1| − 1)

]2
t,

q2(t) = q1(t)− C1,
(24)

where C1 is an arbitrary constant. The solution (See Figures 5 and 6) becomes

u(x, t) = c1 sgn(x− q1(t))
(

e−|x−q1(t)| − 1
)
+ c2 sgn(x− q2(t))(e−|x−q2(t)| − 1), (25)

where q1 and q2 are given by (24).
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Figure 5. The bell-shape solution determined by (25) with c1 = C1 = 1, c2 = −1 at time t = 2.

Figure 6. The hat-shape solution determined by (25) with c1 = 1, c2 = −1, C1 = 15 at time t = 2.

If c2
1 6= c2

2, we obtain

q1(t)− q2(t) = ln

(
1 + LambertW(e(c

2
1−c2

2)t)

LambertW(e(c
2
1−c2

2)t)

)
4
= g(t). (26)

In particular, for q1(t) = 1
2 g(t) and q2(t) = − 1

2 g(t), the solution (See Figures 7 and 8)
becomes

u(x, t) = c1 sgn(x− 1
2

g(t))
(

e−|x−
1
2 g(t)| − 1

)
+ c2 sgn(x +

1
2

g(t))
(

e−|x+
1
2 g(t)| − 1

)
. (27)
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Figure 7. The two kink solution determined by (27) with c1 = 2, c2 = 1 at time t = 4.

Figure 8. The two anti-kink solution determined by (27) with c1 = −2, c2 = −1 at time t = 4
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