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Abstract: Chlorambucil (Chl), Melphalan (Mel), and Cytarabine (Cyt) are recognized drugs used in
the chemotherapy of patients with advanced Chronic Lymphocytic Leukemia (CLL). The optimal
treatment schedule and timing of Chl, Mel, and Cyt administration remains unknown and has
traditionally been decided empirically and independently of preclinical in vitro efficacy studies.
As a first step toward mathematical prediction of in vivo drug efficacy from in vitro cytotoxicity
studies, we used murine A20 leukemic cells as a test case of CLL. We first found that logistic growth
best described the proliferation of the cells in vitro. Then, we tested in vitro the cytotoxic efficacy
of Chl, Mel, and Cyt against A20 cells. On the basis of these experimental data, we found the
parameters for cancer cell death rates that were dependent on the concentration of the respective
drugs and developed a mathematical model involving nonlinear ordinary differential equations. For
the proposed mathematical model, three equilibrium states were analyzed using the general method
of Lyapunov, with only one equilibrium being stable. We obtained a very good symmetry between
the experimental results and numerical simulations of the model. Our novel model can be used as a
general tool to study the cytotoxic activity of various drugs with different doses and modes of action
by appropriate adjustment of the values for the selected parameters.

Keywords: A20 cells; cytotoxicity rate; in vitro experiments; logistic cancer growth rate; stability
analysis; tumor doubling time

1. Introduction

CLL is the most common leukemia in adults and is characterized by the uncontrolled
growth of mature B lymphocytes (B cells) [1]. Advances in basic research and therapeutics
over the last few years have significantly improved the treatment and clinical outcomes of
patients with CLL [2–5]. Nonetheless, new mathematical models that could aid researchers
and clinicians to decide how best to combine traditional and novel agents and to sequence
these treatments might result in a reduction in the treatment side effects and the develop-
ment of drug resistance, which would in turn lead to deep and long-term remissions.

Mathematical modeling of cancer growth has a long history and has been reviewed
before [6–9]. Ordinary Differential Equations (ODE) are used in mathematical models to
define the modification of continuous variables and to consider the change over time or
space and may vary in complexity from a single equation to multivariable systems. Earlier
efforts led to the creation of models with a simplified empirical structure, presented as
ODEs, describing the growth of tumor size using exponential or sigmoidal functions [10].
Over the past decade, several mathematical models have described the dynamics of blood
cancers under the influence of various drugs and/or immunotherapy [11–14]. With special
regard to CLL, several studies [15–17] have modeled the interaction between peripheral
blood lymphocytes and CLL cells. These studies produced dynamic systems and identified
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parameters that describe the growth rate of cancer cells. Kuznetsov et al. [18] was one
of the first groups to provide a sensitivity analysis and to describe the observation that
cancer cells remain in an apparently dormant state for a prolonged time before entering a
rapid growth phase. More recently, Reference [19] used a compartmental model to separate
circulating CLL cells from those in lymphoid tissues. This model tracked the production
of new CLL cells and showed that the growth rate and death rate of CLL cells are similar.
These examples demonstrate that mathematical modeling can have various applications in
cancer therapy. However, a major limitation of these quantitative models is that they are
not based on real-life experimental data. Furthermore, these models depict the relationship
between CLL growth and the immune response to it, but they do not describe or predict
the optimal use of drugs for this disease.

Previous studies have explored combining tumor growth kinetics and drug pharma-
cokinetics with computational machine learning to predict the treatment sequence [20],
drug neurotoxicity, and efficacy in drug discovery [21,22]. However, machine learning
requires large datasets, and the resulting algorithm is not readily available to the investiga-
tor. The model described in our work was based on that used by [23], who employed a
system of ODEs to study chemotherapy and immunotherapy in CLL, but we introduced
modifications and focused on the effect of chemotherapy on CLL cell growth.

We first grew A20 murine leukemic cells as a surrogate for CLL cells and described
their growth rate mathematically. We then tested in vitro the cytotoxicity of three drugs,
Chlorambucil (Chl), Melphalan (Mel), and Cytarabine (Cyt), against the cells, using the
results to build a dynamic model that incorporates both cancer cell growth and death
rates in relation to drug concentration. We then performed model validation and finally
a stability analysis. Our results led to the development of a new model that allows the
prediction of the optimal drug concentration that will produce the maximum death of
cancer cells. Our novel model can be used as a general tool to study the cytotoxic activity
of various drugs with different doses and modes of action by appropriate adjustment of
the values for the selected parameters.

2. Materials and Methods
2.1. Cells and Reagents

A20 murine leukemic cells (obtained from the ATCC, VA, USA) were grown in RPMI
1640 (Thermo Fischer Scientific, Waltham, MA, USA). All media were supplemented with
10% Fetal Bovine Serum (FBS) (Thermo Fischer), 1% L-glutamine, and 0.33% Pen-Strep
solution. Cells were maintained at 37 °C and 5% CO2. Cell growth was measured with the
XTT-based Cell Proliferation Kit (Biological Industries, Bet Haemek, Israel) according to
the manufacturer’s instructions.

To determine the growth rate, A20 cells were seeded at three concentrations: 5× 103;
1× 104, and 5× 104/mL. An aliquot was taken from the cultures every 12 h from the 48th
until the 312th hour for total and viable cell counting. Experiments were repeated three
times. The cells were stained using trypan blue, and live and dead cells were counted with
a hemocytometer from duplicate samples of the same culture (Figure 1).
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Figure 1. Hemocytometer cell counting. Using a microscope, the live (transparent circle) and dead
(blue circle) cells were counted per milliliter separately. The average cell count from each of the sets
of 16 corner squares was multiplied by 2 to correct for the 1:1 dilution from the trypan blue addition
and then multiplied by 10,000.

2.2. Drug Cytotoxicity Assay

We chose to study the effect of three drugs known to induce cell death by interfering
with DNA replication by different mechanisms. Chlorambucil is an alkylating agent that in-
duces cross-links between DNA strands, resulting in interference with DNA replication [24].
Melphalan alkylates guanine, which leads to interstrand and intrastrand DNA adducts,
resulting in inhibition of DNA and RNA synthesis and eventual cell death [25]. Cytarabine,
also known as arabinosylcytosine (ARA-C), is a pyrimidine analog and competes with
cytidine for incorporation into the DNA, leading to cessation of DNA replication and DNA
damage response mechanisms [26].

Drug cytotoxicity was determined by culturing A20 cells in macroplate wells (Nun-
clon) at an initial concentration of 5× 104/well for 72 h in culture medium containing either
Chl, Mel, or Cyt at concentrations ranging from 0–50 µM. Cell viability was assessed by
using the XTT assay, which measures cellular ATP levels. Absorbance in the wells was
measured at 450 nm and subtracted from the reference absorbance at 630 nm. Culture
medium was used as the background control.

2.3. Validation of the Model

The data from the in vitro experiments and the parameters from Table 1 were used
to validate our model. In addition, computer simulations were performed using fourth-
order adaptive step Runge–Kutta integration, as implemented in the ODE45 subroutine
of MATLAB.



Symmetry 2021, 13, 1760 4 of 17

Table 1. Table of parameters based on experimental results related to the model of Equations (3)–(5).

Parameter Physical Interpretation (Units) Estimated Value Reference
t Time of cell culture (h) 0–312 Experimental data
r A20 growth rate (h−1) 0.07 Experimental data
K Maximal tumor cell population (cells/mL) 4× 106 Experimental data

µA Living cells become dead (h−1) 3.7× 10−8 From simulation
a Drug dose that produces 50% maximum effect (mL) 2× 103 From [27]

µAC Cytotoxicity rate in the presence of drug (h−1) see Tables A1–A3 From simulation
µCA Deactivation rate of drug due to killing of A20 cells (h−1) µAC × 10 From simulation
µC Chemical deactivation rate of drug (h−1) 0.462—Chl; 0.347—Mel; 0.231—Cyt From [28]
d Dissolution rate of dead A20 cells (h−1) 0.017 From simulation
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3. Results and Discussion
3.1. Cell Growth and Death Dynamics

To determine cell growth and death rates, A20 cells were sampled every 12 h for
total and viable cell counts (Figure 2). The natural decrease in cell viability after the
maximum peak was due to suboptimal growth conditions resulting from nutrient depri-
vation, decreased pH, and cell overcrowding, which induces cell death by necrosis and
apoptosis [29].

Figure 2. Growth and natural death dynamics of A20 cells in vitro at different starting concentration:
5× 104 (blue line), 1× 104 (red line), and 5× 103 (green line) over 312 h. The cells were counted every
12 h starting at the 48th hour. The results at each time point are the mean +/− the standard deviation
of 3 repeated experiments.

3.2. Drug Cytotoxicity

Cells were cultured for 72 h in fresh medium containing either Chl, Mel, or Cut, and
the cellular metabolic status was determined. The results are shown in Figure 3.

Figure 3. Inhibition of A20 cell growth in vitro under the influence of Chl (blue bars), Mel (red bars),
and Cyt (green bars) after 72 h. Each graph point represents the mean +/− the standard deviation for
three repeated experiments.

As can be seen above (Figure 3), Chl was the least effective of the three drugs, produc-
ing only 56% cell growth inhibition at the maximum concentration used in the experiment,
50 µM, while Mel induced 92% inhibition at this dose. At the lowest dose of 1.56 µM,



Symmetry 2021, 13, 1760 6 of 17

Chl induced only 7% growth inhibition, while Mel induced 49% inhibition. On the other
hand, Cyt maintained a high plateau level of growth inhibition of between 96% and 92%
inhibition down to 3.125 µM.

These experiments provided the basis for the development of our dynamic model.

3.3. Formulation of the Model

Based on cell counts with a hemocytometer (Figures 1 and 2), A20 cells can be divided
into two groups: live cells (transparent circle in Figure 1) and dead cells (blue circle in
Figure 1), denoted as A and Ad, respectively, in the mathematical model developed by
us. Dead cells (Ad) are formed because of apoptosis and/or necrosis in culture after the
death of living A cells. The death rate of living A cells depends on several conditions in
the culture environment: the concentration of essential nutrients in the cells, the supply
and uptake of oxygen, and the disposal of waste products such as ammonia and various
acidic products [29–31]. The total number of living and dead cells cannot exceed a certain
capacity (K) in the closed space of the culture. The dynamics of living and dead cells of
type A20 in a closed environment is described using differential equations as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

= rA
⎛

⎝
1−

A
K

⎞

⎠
− µA AAd,

dAd
dt

= µA AAd − dAd.

(1)

(2)

dA
dt

describes the dynamics of living A20 cells. It comprises two terms: one positive,

corresponding to the logistic cancer growth characterized by the coefficient, r, which is
limited by the maximal tumor cell number, K; one negative term, corresponding to living
cells becoming dead at a rate of µA.

dAd
dt

describes the dynamic of dead A20 cells. It is comprised of two terms: the positive

term is the death of A20 cells with a rate coefficient of µA due to apoptosis or necrosis and
depends on living A20 cells competing for survival (oxygen consumption and nutrition) in
an enclosed space; the negative term corresponds to dissolution of dead cells at a rate of d.

We extended the model by adding a new equation that represents the dynamics of
chemotherapeutic drugs. Based on previous studies [23] and our experiments in vitro, we
formulated an ODE model to mathematically explain the interaction between CLL cells
and chemotherapeutic drugs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

= rA
⎛

⎝
1−

A
K

⎞

⎠
− µA AAd −

µAC AC
a +C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term 1

,

dAd
dt

= µA AAd − dAd +
µAC AC

a +C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term 2

,

dC
dt

= −µCC −
µCACA

a +C
,

(3)

(4)

(5)

dC
dt

describes the first-order pharmacokinetics of a drug [32]. The drug was given only

once at the beginning of the experiment, i.e., C(0) is a constant value and depends on the
dose of the drug.

µC is the deactivation rate calculated by formula µC =
ln(2)
t1/2

, where t1/2 is the in vitro elimi-
nation half-life, about 1.5 h for Chl, 2 h for Mel, and 1–3 h (biphasic) for Cyt
(www.drugbank.ca accessed on 17 September 2021).

www.drugbank.ca
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The terms 1 and 2 of the Equations (3) and (4) represent the log-kill hypothesis [33],
with a Michaelis–Menten drug saturation response [34], a+C; µAC is the death rate resulting
from the action of the drug on the cancer cells. The parameter µAC changes depending
on the drug dose and on the particular drug. We chose the parameter µCA to be ten-times
more than µAC, assuming that there are 10–100 drug molecules attacking each cancer cell.
Ultimately, the parameter µCA does not play a significant role in the model, since there are
many more drug molecules than cancer cells, and it only reflects the amount of available
drug molecules. The parameter a represents the drug concentration that produces 50% of
the maximum activity of the drug in each cell population [27].

We performed a mathematical analysis of our model by identifying fixed points and
their stability. It was found that the system is characterized by three fixed points, one of
which is stable asymptotically (Appendix A, Table A4).

3.4. Estimation of the Parameters of the Model

In this section, we evaluate the model parameters (Table 1), together with the detailed
methods and the literature sources for their evaluation:

• A(0) = 5× 104 (cells/mL)—the initial number of A20 cells;
• Ad(0) = 2500 (cells/mL)—the initial number of dead A20 cells (cell cultures commonly

consist of at least 5% of dead cells);
• C(0) = dose (µM) × 6× 1014 (number of drug molecules/mL)—the dose concentration

of Chl, Mel, or Cyt (this number may vary depending on the drug, but not significantly
since all these drugs are related to the same type of small molecules).

The number of drug molecules was calculated using the formula:

The number o f drug molecules =
m ×Na

M
,

where:

• m = the mass of drug in kg;
• Na = Avogadro number = 6.022× 1023 (constant);
• M = the molar mass of drug (Chl 304.212 g/mol; Mel 305.2 g/mol; Cyt 243.217 g/mol).

For example, for 50 µM of Chl, i.e., 50 µM = 15.15 µL = 0.00001515 kg, it would be:

The number o f Chl molecules =
0.00001515× 6.022× 1023

304.212
= 3× 1016

= 50× 6× 1014.

The cell doubling time was calculated using an exponential growth rate:

N(t) = N(0)ert

or

r =
ln(N(t)/N(0))

t
,

where:

• N(t) = the number of cells at time t;
• N(0) = the number of cells at Time 0;
• r = growth rate;
• t = time (usually in hours).

The tumor doubling time is calculated as:

TDT =
ln(2)

growth rate
.
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Thus, according to Figure 2, when N(0) = 12× 104 by the 84th hour, N(t) = 349× 104 by the
132th hour, and t = 132− 84 = 48, the growth rate of A20 cells would be:

r =
ln(3490000/120000)

48
= 0.07 (h−1

),

and the cell doubling time would be:

TDT =
ln(2)
0.07

= 9.9 (h).

Thus, according to Figure 2 the number of A20 cells double in less than 12 h.
The parameters used in this study are summarized in Table 1.

3.5. Validation of the Cancer Cell Growth Dynamics Model

Figure 4 compares the numerical simulations and the in vitro experimental growth
and natural death curves for A20 cells at different starting cell concentrations.

Figure 4. The time evolution of A (A20 living cells, solid lines) and actual experimental data from
Figure 2 (A20 cells in vitro, dashed lines) at different initial cell concentrations: 5× 104 cells/mL (blue
lines), 1× 104 cells/mL (red lines), or 5× 103 cells/mL (green lines).

To assess the closeness of the fit between the simulation and experimental curves,
the root-mean-squared errors (RMSEs) were calculated using the formula:

RMSE =

√
∑

n
i (Simi − Expi)

2

n
,

where Sim is the numerical simulation data (predicted value), Exp is the experimental data
(observed value), and n is the number of observations (see Appendix A, Table A5).

The RMSEs for the initial cell concentrations are: 5 × 104 cells/mL = 0.016; 1 × 104

cells/mL = 0.013; 5× 103 cells/mL = 0.008. The data showed a strong correlation between
the simulation and experimental results for both the time and cell concentration at both the
maximum and final data points. The correlation held for all three starting concentrations
(all RMSEs were < 0.1), but was most symmetric for the lowest starting concentration
(5× 103 cells/mL).

3.6. Validation of the Cancer Cell Drug Cytotoxicity Dynamics Model

By inserting the parameters from Table 1 into Equations (2) and (3), we could numeri-
cally simulate the effect of Chl, Mel, or Cyt on A20 cells, as depicted in Figure 5.
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Figure 5. Numerical simulations of the model Equations (1)–(3) represent the number of A20
cells affected by different concentrations of: (A) Chl; (B) Mel; (C) Cyt. Dashed curves are different
concentrations of the drug; solid red curves are the control, without the drug. Initial concentration of
A20 cells: A(0) = 2× 104.

After 72 h, the concentration of A20 growth without drug increased to A(72) =
1,646,260. The additional 50 µM of Chl (A) reduced the growth to A(72) = 717,369 cells/mL,
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which equals 56.4% growth inhibition; 50 µM of Mel induced 92% growth inhibition (B),
and 6.25 µM of Cyt induced 94.8% growth inhibition (C). The complete set of calculated
data for all drug concentrations is presented in Appendix A (Tables A1–A3).

We then compared the degree of A20 growth inhibition from the numerical simula-
tion of the model (Equations (3)–(5)) (Figure 5) with the output obtained by the in vitro
experiments (Figure 3). The results are shown in Figure 6.

Figure 6. Comparison between the model simulations (textured bars) and experimental data (fill
bars) of A20 cell growth inhibition under the influence of different doses of Chl, Mel, or Cyt after
72 h.

Figure 6 demonstrates that our simulation coincided with the experimental data for
the high doses of each drug. For the intermediate doses, there appeared to be a slight
deviation between the two sets of data. This deviation was artificial since we tried to
maintain consistency in the decrease of the parameter µAC in accordance with the decrease
in the drug dose. This resulted in a discrepancy of 30% for each drug. However, it is
important to note that maintaining this consistency is not necessary, and it is possible to
juxtapose the experimental and simulation results with absolute accuracy by choosing the
appropriate parameter µAC.

The RMSE for each drug was calculated (see Appendix A, Table A6). The data showed
a strong correlation between the simulation and experimental results for cell growth
inhibition by various drug concentrations. The correlation held for all three drugs (all
RMSEs were < 0.1), but was most apparent for Cyt (RMSE = 0.018).

4. Conclusions

We constructed a mathematical model (Equations (3)–(5)) of the cytotoxic efficacy of
different CLL drugs Chl, Mel, and Cyt. We showed that Cyt is the most effective drug
amongst those tested in killing A20 leukemic cells. We applied a multistep approach to the
parameter estimation, which is appropriate for the analysis of experimental in vitro data
with different concentrations.

Our simulation results indicated that the model correctly describes the interaction of
drugs with leukemic cells. The data showed a strong correlation between the numerical
simulations and experimental results for both the growth of the tumor cells and of their
killing by the drugs, essentially due to the fact that we separated the dynamics of dead and
living cells, since this plays a large role in in vitro experiments in closed spaces.

The advantage of our model is that it is flexible and can be adjusted to various drugs
with different doses by changing the values of certain parameters. While the results in
this work were generated using one cell line, clearly, this model is fundamental and can
be applied to any other cancer cell line once the cell’s growth rate has been calculated.
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Already at this stage of development, the presented model is a tool for predicting the most
effective drug in the treatment against CLL. In our further researches, we plan to expand
the current model and to achieve the approach for in vivo experiments.

Although recent years have witnessed significant progress in the therapy of patients
with CLL, the disease remains incurable, and new treatments are needed. This improved
tool for CLL chemotherapy modeling will ultimately have basic research and therapeutic
value. We believe that quantitative simulation of cancer chemotherapies, based on experi-
mentally validated mathematical modeling, provides an opportunity for the researcher,
and eventually the clinician, to address data for predicting possible scenarios of cancer
developing in individual patients and establishing an efficient treatment protocol.
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Appendix A

Appendix A.1. Simulated Effect of Drugs on A20 Cells

Tables A1–A3 present the data on the variations of parameter µAC, the type and dose
of drug, and number of cells at the 72nd hour of the numerical simulations (see Figure 5).

Table A1. Simulated effect of chlorambucil on A20 growth parameters.

Concentration of Chl
(µM)

Parameter
µAC

Number of Cells at 72nd Hour
(cells/mL)

Cell Growth Inhibition
(%)

0 - 1,646,260 0
50 0.018 717,369 56.4
25 0.0126 913,673 44.5
12.5 0.0088 1,089,350 33.8
6.25 0.006 1,235,190 25
3.125 0.004 1,349,710 18
1.5625 0.003 1,435,539 12.8
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Table A2. Simulated effect of melphalan on A20 growth parameters.

Concentration of Mel
(µM)

Parameter
µAC

Number of Cells at 72nd Hour
(cells/mL)

Cell Growth Inhibition
(%)

0 - 1,646,260 0
50 0.0397 132,518 92
25 0.0278 240,547 85.4
12.5 0.0195 388,950 76.4
6.25 0.0136 567,233 65.5
3.125 0.0095 757,405 54
1.5625 0.0067 940,943 42.8

Table A3. Simulated effect of cytarabine on A20 growth parameters.

Concentration of Cyt
(µM)

Parameter
µAC

Number of Cells at 72nd Hour
(cells/mL)

Cell Growth Inhibition
(%)

0 - 1,646,260 0
6.25 0.046 85,683 94.8
3.125 0.0322 168,014 89.8
1.5625 0.0225 291,671 82.3
0.78 0.0158 452,951 72.5
0.39 0.011 637,807 61.3
0.195 0.0077 827,114 49.7
0.098 0.0054 1,003,650 39
0.049 0.0038 1,156,420 29.7
0.024 0.0026 1,281,250 22.2
0.012 0.0018 1,378,920 16.2
0.006 0.0013 1,452,970 11.7

Appendix A.2. Fixed Point Stability Analysis

By setting all equations for A∗, A∗
d , and C∗ to zero, the fixed points of our model

were derived. We chose only the non-negative equilibria, assuming all initial conditions to
be positive.

The system of Equations (3)–(5) in equilibria is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rA
⎛

⎝
1−

A
K

⎞

⎠
− µA AAd −

µAC AC
a +C

= 0,

µA AAd − dAd +
µAC AC

a +C
= 0,

−
µCACA

a +C
− µCC = 0.

(A1)

(A2)

(A3)

where the initial conditions are the same as described in Section 3.4:

• A(0) = 5× 104 (cells/mL);
• Ad(0) = 2500 (cells/mL);
• C(0) = 50× 6× 1014 (number of drug molecules/mL).

From Equation (A1), it follows:

A
⎛

⎝
r −

rA
K
− µA Ad −

µACC
a +C

⎞

⎠
= 0Ô⇒

Ô⇒ A∗
0 = 0; r −

rA∗

K
− µA A∗

d −
µACC∗

a +C∗ = 0.
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From Equation (A2), it follows:

A
⎛

⎝
µA Ad +

µACC
a +C

⎞

⎠
− dAd = 0Ô⇒

Notice that when C∗ ≠ 0, from Equation (A3), it follows that A∗ = −
µC(a +C∗)

µCA
, i.e., either

A∗ < 0 or C∗ < 0.

Ô⇒ C∗
i = 0, i = 0; 1, 2;

A∗
1 =

d
µA
Ô⇒ r −

rA∗
1

K
− µA A∗

d = 0Ô⇒ A∗
d1 =

r
µA
−

rd
Kµ2

A
.

Thereby, from Equations (A1)–(A3), there are three non-negative equilibria for considera-
tion: when A∗ = 0 and C∗ = 0,

E∗0 = {A∗
= 0; A∗

d = 0; C∗
= 0},

when A∗ equals
d

µA
and C∗ = 0,

E∗1 = {A∗
=

d
µA

; A∗
d =

r
µA
−

rd
Kµ2

A
; C∗

= 0},

and when A∗
d = 0 and C∗ = 0Ô⇒ A∗ = K,

E∗2 = {A∗
= K; A∗

d = 0; C∗
= 0}.

To analyze the asymptotic stability of each equilibrium of the above nonlinear sys-
tem, the eigenvalues of the Jacobian were calculated at a particular equilibrium where
λ̄ = [λ1, λ2, λ3] were set at:

Λ = max
i

{Re(λi)}.

If Λ < 0, then all real parts of the eigenvalues are negative, and we can determine that the
equilibrium is asymptotically locally stable.

Steady states of the system in Equations (A1)–(A3):
The system is characterized by the three following fixed points. Using the parameters

from Table 1, we obtain the eigenvalues for every equilibrium.

1. E∗0 = {A∗ = 0; A∗
d = 0; C∗ = 0}.

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r 0 0
0 −d 0
0 0 −µC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of this Jacobian are:

λ̄ = [0.07;−0.017;−0.462].

Thus, the fixed point E∗0 is unstable. Equilibrium E∗0 exists only if A(0) = Ad(0) =
C(0) = 0, which has no biological significance;
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2. E∗1 = {A∗ =
d

µA
; A∗

d =
r

µA
−

rd
Kµ2

A
; C∗ = 0}.

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
rd

KµA
−d −

µACd
aµA

r −
rd

KµA
0

µACd
aµA

0 0 −
µCAd
µAa

− µC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of this Jacobian are:

λ̄ = [−0.004;−0.004;−41.8].

Thus, there is an asymptotic stability (Figure A1A);
3. E∗2 = {A∗ = K; A∗

d = 0; C∗ = 0}.

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−r −KµA −
µACK

a
0 KµA − d

µACK
a

0 0 −
µCAK

a
− µC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of this Jacobian are:

λ̄ = [−0.07; 0.131;−360.462].

Thus, E∗2 is unstable. From a biological point of view, E∗2 means that the dose of
chemotherapy was insufficient, which permitted the cancer cells to achieve the maxi-
mum growth capacity. However, considering that E∗2 is unstable, as can be seen in
Figure A1B, after 60 h, the cancer cells experience a natural death.

Figure A1. Numerical simulation of Equations (A1)–(A3) with the parameters as in Table 1.
The graph shows the progression over time (up to 600 h) of live (red solid line) and dead (black solid
line) A20 cells and the drug (black dashed line). In (A), the initial conditions are: A(0) = 4.6× 105;
Ad(0) = 1.7× 106; C(0) = 10. In (B), the initial conditions are: A(0) = 3.5× 106; Ad(0) = 10; C(0) = 100.

Table A4. Summary of the stability analysis.

Fixed Points A∗ A∗d C∗ Stability

E∗0 0 0 0 unstable

E∗1
d

µA

r
µA
−

rd
Kµ2

A
0 asymptotically stable

E∗2 K 0 0 unstable
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Appendix A.3. The Root-Mean-Squared Errors

In order to measure how much error there is between our experimental data and
numerical simulations, we first normalized our data using formula:

σ(z)i =
zi

∑
n
i zi

,

then we calculated the RMSE using formula:

RMSE =

√
∑

n
i (σ(Sim)i − σ(Exp)i)

2

n
,

where Sim is a predicted value; Exp is an observed value; n is the number of observations.
The result can be seen in Tables A5 and A6; the smaller the RMSE value is, the closer the
predicted and observed values are.

Table A5. Comparison of CLL cell growth dynamics (cells/mL) between experimental data and
numerical simulations.

5 × 104 1 × 104 5 × 103

Time (h) Exp Sim Exp Sim Exp Sim

48 50,000 54,054 10,000 10,070 10,000 5228
60 70,000 122,897 10,000 22,602 10,000 8821
72 100,000 273,025 10,000 50,236 10,000 14,854
84 120,000 577,722 30,000 109,941 20,000 24,948
96 590,000 1,114,930 80,000 234,397 30,000 41,736
108 1,850,000 1,862,730 80,000 477,462 40,000 69,424
120 2,580,000 2,621,770 320,000 900,296 120,000 114,512
132 3,490,000 3,180,420 800,000 1,509,560 130,000 186,545
144 3,650,000 3,498,490 1,190,000 2,184,030 550,000 298,370
156 2,440,000 3,641,320 3,120,000 2,732,350 820,000 464,737
168 2,320,000 3,654,730 3,070,000 3,052,090 1,030,000 697,464
180 2,020,000 3,500,150 2,950,000 3,162,600 1,300,000 996,212
192 1,710,000 3,062,170 2,760,000 3,125,520 1,440,000 1,338,190
204 1,550,000 2,364,930 2,120,000 2,990,300 1,600,000 1,676,040
216 1,450,000 1,672,210 2,020,000 2,785,060 1,770,000 1,951,030
228 1,240,000 1,149,160 1,900,000 2,523,550 1,980,000 2,114,600
240 960,000 779,597 1,540,000 2,212,900 2,160,000 2,141,610
252 870,000 551,455 1,240,000 1,859,650 2,050,000 2,029,460
264 850,000 388,608 1,030,000 1,474,810 1,900,000 1,791,020
276 720,000 276,498 980,000 1,078,450 1,440,000 1,451,290
288 500,000 198,206 750,000 702,772 1,030,000 1,050,550
300 210,000 142,884 520,000 388,800 880,000 648,799
312 50,000 103,435 160,000 171,158 240,000 318,579

RMSE 0.016 0.013 0.008
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Table A6. Comparison of cell growth inhibition (%) between experimental data and numerical
simulations.

Concentration of Drug (µM)
Chlorambucil Melphalan Cytarabine

Exp Sim Exp Sim Exp Sim

50 56 56.4 92 92
25 53 44.5 89 85.4

12.5 39 33.8 87 76.4
6.25 33 25 86 65.5 95.2 94.8
3.125 28 18 76 54 93.5 89.8

1.5625 7 12.8 49 42.8 88.7 82.3
0.78 87 72.5
0.39 85.2 61.3
0.195 80.5 49.7
0.098 66.25 39
0.049 29.5 29.7
0.024 18.9 22.2
0.012 14.5 16.2
0.006 7.7 11.7

RMSE 0.027 0.02 0.018

References
1. Gaidano, G.; Foà, R.; Dalla-Favera, R. Molecular pathogenesis of chronic lymphocytic leukemia. J. Clin. Investig. 2012,

122, 3432–3438. [CrossRef] [PubMed]
2. Burger, J.A. Treatment of Chronic Lymphocytic Leukemia. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32726532/

(accessed on 30 July 2020).
3. Huang, L.W.; Wong, S.W.; Andreadis, C.; Olin, R.L. Updates on Hematologic Malignancies in the Older Adult: Focus on Acute

Myeloid Leukemia, Chronic Lymphocytic Leukemia, and Multiple Myeloma. Curr. Oncol. Rep. 2019, 21, 35. [CrossRef]
4. Sharma, S.; Rai, K.R. Chronic lymphocytic leukemia (CLL) treatment: So many choices, such great options. Cancer 2019,

125, 1432–1440. [CrossRef]
5. Parikh, S.A. Chronic lymphocytic leukemia treatment algorithm 2018. Blood Cancer J. 2018, 8, 93. [CrossRef] [PubMed]
6. Friedman, A. A hierarchy of cancer models and their mathematical challenges. Discret. Contin. Dyn. Syst. Ser. B 2004, 4, 147–160.

[CrossRef]
7. Lowengrub, J.S.; Frieboes, H.B.; Jin, F.; Chuang, Y.L.; Li, X.; Macklin, P.; Wise, S.M.; Cristini, V. Nonlinear modeling of cancer:

Bridging the gap between cells and tumours. Nonlinearity 2009, 23, R1. [CrossRef] [PubMed]
8. Altrock, P.M.; Liu, L.L.; Michor, F. The mathematics of cancer: Integrating quantitative models. Nat. Rev. Cancer 2015, 15, 730.

[CrossRef]
9. Michor, F.; Beal, K. Improving cancer treatment via mathematical modeling: Surmounting the challenges is worth the effort. Cell

2015, 163, 1059–1063. [CrossRef] [PubMed]
10. Araujo, R.P.; McElwain, D.S. A history of the study of solid tumour growth: The contribution of mathematical modeling. Bull.

Math. Biol. 2004, 66, 1039–1091. [CrossRef] [PubMed]
11. Eymard, N.; Volpert, V.; Kurbatova, P.; Volpert, V.; Bessonov, N.; Ogungbenro, K.; Aarons, L.; Janiaud, P.; Nony, P.; Bajard, A.; et al.

Mathematical model of T-cell lymphoblastic lymphoma: Disease, treatment, cure or relapse of a virtual cohort of patients. Math.
Med. Biol. A J. IMA 2018, 35, 25–47. [CrossRef] [PubMed]

12. Berezansky, L.; Bunimovich-Mendrazitsky, S.; Shklyar, B. Stability and controllability issues in mathematical modeling of the
intensive treatment of leukemia. J. Optim. Theory Appl. 2015, 167, 326–341. [CrossRef]

13. Tang, M.; Zhao, R.; van de Velde, H.; Tross, J.G.; Mitsiades, C.; Viselli, S.; Neuwirth, R.; Esseltine, D.L.; Anderson, K.; Ghobrial, I.M.;
et al. Myeloma cell dynamics in response to treatment supports a model of hierarchical differentiation and clonal evolution. Clin.
Cancer Res. 2016, 22, 4206–4214. [CrossRef]

14. Kurbatova, P.; Bernard, S.; Bessonov, N.; Crauste, F.; Demin, I.; Dumontet, C.; Fischer, S.; Volpert, V. Hybrid model of
erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. Appl. Math. 2011, 71, 2246–2268. [CrossRef]
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