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Abstract: Global sensitivity analysis (GSA) is a useful tool to evaluate the influence of input variables
in the whole distribution range. Variance-based methods and moment-independent methods are
widely studied and popular GSA techniques despite their several shortcomings. Since probability
weighted moments (PWMs) include more information than classical moments and can be accurately
estimated from small samples, a novel global sensitivity measure based on PWMs is proposed.
Then, two methods are introduced to estimate the proposed measure, i.e., double-loop-repeated-
set numerical estimation and double-loop-single-set numerical estimation. Several numerical and
engineering examples are used to show its advantages.

Keywords: global sensitivity analysis (GSA); importance measure; probability weighted moment
(PWM); variance-based sensitivity analysis; moment-independent sensitivity analysis

1. Introduction

The purpose of sensitivity analysis (SA) is to determine which of the inputs play more
significant roles in reducing the uncertainty in the model output. It is useful because it can
rank variables, simplify models, establish priorities for research, and so on [1]. Generally,
according to different analysis purposes, the available SA techniques can be classified
into local SA (LSA) and global SA (GSA). GSA is a more widely used sensitivity analysis
method because it does not rely on the choice of a nominal point and the information of
the full distribution range is investigated.

In the past few decades, many GSA methods have been studied. Among them, two cat-
egories of methods are widely studied and employed: variance-based global sensitivity
measures and moment-independent global sensitivity measures.

Variance-based global sensitivity measures, which are usually called Sobol’ indices,
were proposed and developed by Sobol’ [2], Iman [3], Homma [4], and Saltelli [5]. Besides,
there are several mature techniques available to solve the above indices, for instance,
Monte Carlo simulation, quasi-Monte Carlo simulation, high-dimensional model repre-
sentation (HDMR), Markovian integration [6], and the surrogate-assisted method [7,8].
Variance-based global sensitivity measures have been widely applied in various fields
such as the spray-drying process [9], heap leaching [10], the rainfall-runoff model [11],
and polymeric material [12]. However, the variance is not fully representative of uncer-
tainty, especially in some problems where higher moments have more of an effect. Cox [13]
and Huber [14] pointed out that “mean-variance decision-making violates the principle
that a rational decisionmaker should prefer higher to lower probabilities of receiving a
fixed gain, all else being equal”.

To include the whole information of output distribution, moment-independent global
sensitivity measures were proposed [15]. In this regard, Chun’s method preliminarily
needs some assumptions [15]. Although the relative entropy-based method can show a
ranking of relative importance, the value does not have an absolute physical meaning [16].
Additionally, the delta index introduced by Borgonovo is the most popularly used among
them [17]. Cui [18] extended the delta index to the failure probability to deal with reliability
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models. However, these methods have a relatively large computational cost due to the
estimation of probability density functions.

There are other alternative GSA measures. Derivative-based global sensitivity mea-
sures were introduced by Kucherenko et al. [19], which can serve as an upper bound on
the Sobol’ total sensitivity index [20]. Fort et al. proposed goal-oriented sensitivity indices,
which depend on the quantity of interest [21]. Kala proposed new quantile-oriented sensi-
tivity indices based on measuring the distance between a quantile and the average value of
the model output [22]. Baroni et al. presented an effective strategy for combining variance-
and distribution-based global sensitivity analysis [23].

In this paper, we introduce a novel sensitivity measure based on probability weighted
moments (PWMs). PWMs are popular in many science and engineering areas [24]. PWMs are
usually used to estimate parameters of a distribution. In contrast with classical moments,
high-order PWMs can be accurately estimated from small samples. In addition, PWMs are
fairly insensitive to outliers because they are linear combinations of samples [25]. They can
serve as constraints of the maximum entropy method to describe the distribution feature of
the output, which are similar to classical moments [26]. So, PWMs can reflect the influence
of uncertainty and be applied in GSA as well.

The paper continues with a review of dominating global sensitivity measure systems
in Section 2. Section 3 provides a brief introduction of probability weighted moments
and their applications. Section 4 proposes a new global sensitivity measure based on
probability weighted moments. Section 5 develops two numerical estimation methods,
i.e., double-loop-repeated-set Quasi Monte Carlo (QMC) and double-loop-single-set QMC,
for numerically estimating the presented measure. Section 6 provides three numerical
examples and one engineering example. Finally, conclusions are provided.

2. Review of Dominating Global Sensitivity Measure Systems

Consider the computational model under investigation, which is represented by
Y = g(X), where Y is the model output of interest and X = (X1, X2, . . . , Xn) is the n-
dimensional vector of the model input.

2.1. Variance-Based Global Sensitivity Measures

By the probabilistic approach, the first-order Sobol’ indices (named the Sobol’ main
indices) can be defined as:

Si =
VarXi

[
EX∼i (Y|Xi)

]
Var(Y)

=
Var(Y)− EXi

[
VarX∼i (Y|Xi)

]
Var(Y)

, (1)

whereas the Sobol’ total indices are defined as:

STi =
EX∼i

[
VarXi (Y|X∼i)

]
Var(Y)

, (2)

where X∼i means all factors except Xi. The main index of Xi represents the degree of
uncertainty of the variability of the output response when the variable Xi acts alone.
The total index represents the total degree of the influence of Xi on the output response
variance, including the interaction of Xi with all other variables. Variance-based importance
measures have been widely applied due to model independence, incorporating the effect
from the full range of variation of each input factor and reflecting the influence of each
input and interaction among inputs as well as the capacity to tackle groups of input factors.

However, variance-based indices are not sufficient to describe output variability when
the model output has a highly skewed or fat-tailed distribution [27] because the variance
of the output cannot be considered as fully representative of its statistical characteristics.
Despite many advantages, such measures show some inevitable limitations.
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2.2. Moment-Independent Global Sensitivity Measures

The delta index proposed by Borgonovo, which is based on the probability density
function (PDF) of the model output, is applied most extensively [17]:

δi = EXi [s(Xi)] =
1
2

∫ +∞

−∞

[∫ +∞

−∞

∣∣∣ fY(y)− fY|Xi
(y)
∣∣∣dy
]

fXi (xi)dxi, (3)

where fY(y) is the unconditional PDF and fY|Xi
(y) is the conditional PDF of output Y.

fY|Xi
(y) can be obtained by fixing the input variable Xi at a realization value.
Similarly, the moment-independent global sensitivity measure δi1,i2,...,ir of a group of

inputs Xi1 , Xi2 , . . . , Xir is defined as follows:

δi1,i2,...,ir =
1
2

∫ [∫ ∣∣∣ fY(y)− fY|Xi1 ,Xi2 ,...,Xir
(y)
∣∣∣dy
]

fXi1 ,Xi2 ,...,Xir
(xi1 , xi2 , . . . , xir )dxi1 xi2 , . . . , xir , (4)

where 1 ≤ i1 < i2 < . . . < ir ≤ n, 1 ≤ r ≤ n, and fXi1
,Xi2 ,...,Xir

(xi1 , xi2 , . . . , xir ) is the joint
PDF of Xi1 , Xi2 , . . . , Xir .

The delta index is also a global, quantitative, and model-free measure. Its moment-
independent property is more important. However, the delta index focuses on estimating
only one single effect, and separating main, total effect and interactions are not targeted [23].

3. Probability Weighted Moments

The PWM of a random variable was formally defined by Greenwood et al. [24] as:

Mr,s,t = E
[

XrFs(1− F)t
]
=
∫ 1

0
[x(F)]rFs(1− F)tdF, (5)

where r, s, t are real numbers; F denotes the cumulative distribution function (CDF);
and x(F) is the inverse of the CDF (also called the quantile function). The two following
forms of PWMs are commonly used:

Type 1:

αk = M1,0,k =
∫ 1

0
[x(F)](1− F)kdF (6)

and
Type 2:

βk = M1,k,0 =
∫ 1

0
[x(F)]FkdF. (7)

Because these two forms can be converted to each other, we only consider Type 2
PWMs in the following equation. From an ordered random sample of size N, x1 ≤ x2 ≤
· · · ≤ xN , unbiased estimates β̂k of βk can be obtained as [26]:

β̂k =
1
N

N

∑
i=1

[(
i− 1

k

)]
xi/
(

N − 1
k

)
, (8)

where k = 0, 1, . . . , (N − 1) are non-negative integers and the binomial coefficient is
given as: (

n
r

)
=

n!
r!(n− r)!

, n ≥ r ≥ 0; others 0 (9)

.
Equation (7) can also be written as:

βk =
∫ +∞

−∞
xF(x)k f (x)dx. (10)

From Equation (10), the PWM can be computed by multiplying each observed element
by a weight coefficient that is proportional to its probability. Hence, probability weighted
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moments usually contain more information than classical moments. When comparing
a first-order PWM with a first-order classical moment, the magnitudes of the observed
elements of the former are adjusted according to probabilities before calculating the average
value [28]. A PWM is more robust because of the insensitivity to outliers and the required
sample size is smaller.

For a non-negative random variable, βk can be interpreted as moments of the inverse
of the CDF [26]. So, they can serve as constraints in the maximum entropy (MaxEnt) or the
minimization cross-entropy [25] approach to estimate the inverse of the CDF. Generally,
the estimation using the first four moments often produces an acceptable description.
Taking the generalized Pareto distribution (GPD) as an example, its CDF and the inverse
of the CDF are given in Appendix A. In the case of c = −0.2 and d = 1, the MaxEnt
approximation combined with the first fourth-order PWMs of the Pareto quantile function
is shown in Figure 1.

Figure 1. MaxEnt approximation combined with the PWMs of the Pareto quantile function.

4. Global Sensitivity Measure Based on Probability Weighted Moments

As stated above, not only does a probability weighted moment contain more infor-
mation than conventional moments, but also it can be accurately estimated from small
samples. So, we propose a new global sensitivity measure based on PWMs. It is defined as:

ωk
i =

βk
Y(Y)− EXi

[
βk

X∼i
(Y|Xi )

]
βk

Y(Y)
= 1−

EXi

[
βk

X∼i
(Y|Xi )

]
βk

Y(Y)
, (11)

where k denotes the order of the PWMs, and the maximal order is usually chosen as 4.
Conditional PWMs βk

X∼i
(Y|Xi ) are computed with Xi at a fixed value and X∼i over their

full ranges. EXi

[
βk

X∼i
(Y|Xi )

]
is calculated over all possible Xi, since Xi is uncertain and its

true value is unknown.
To scale the above-mentioned importance measure within the interval [0,1], the final

form of the measure based on PWMs can be constructed:

ηk
i =

(
ωk

i

)2

n
∑

j=1

(
ωk

j

)2 , (12)

where n is the number of input variables.
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The numerator βk
Y(Y)− EXi

[
βk

X∼i
(Y|Xi )

]
in Equation (11) can be explained as the

difference between the original PWM and the average of conditional PWMs. When the
contribution of uncertainty from Xi to the difference is bigger, the main measure is bigger as
well. Then, we can establish the following properties of the novel global sensitivity measure:

Property 1. 0 ≤ ηk
i ≤ 1.

Property 2. ηk
i = 0 means the input variable Xi has no effect on the output.

Proof. When the computational model does not include Xi, the conditional distribution
Y|Xi is equivalent to the distribution of Y. It is obvious that EXi

[
βk

X∼i
(Y|Xi )

]
is also

equivalent to the corresponding βk
Y(Y). So, Equation (11) is equal to 0 and ηk

i = 0. �

Property 3. ηk
i = 1 denotes that only input Xi affects the output.

Proof. According to property 2, ωk
i of all variables except Xi is separately equal to 0. So,

we can obtain ηk
i = 1 by introducing the values of other variables into Equation (12). �

5. Numerical Estimation for Global Sensitivity Measures

Two numerical methods for estimating ηk
i indices are proposed in this section. Double-

loop-repeated-set numerical estimators are presented in Section 5.1 and double-loop-single-
set numerical estimators are presented in Section 5.2.

5.1. Double-Loop-Repeated-Set Numerical Estimators

The most direct method of estimating presented measures is to use the double-loop
numerical estimation method. Equations (8) and (9) show the estimator of PWMs, so the
key issue is how to estimate conditional PWMs. The main procedures are summarized
as follows:

Step 1: Generate N1 samples of the variable vector x = (x1, x2, . . . , xn) by the joint
PDF fX(x) and calculate the corresponding responses Y as well as its kth-order PWM.
These samples can be generated by Monte Carlo sampling, Latin hypercube sampling,
quasi-Monte Carlo simulation with sampling based on Sobol’ sequences [29,30], or other
sampling techniques. Here, quasi-Monte Carlo simulation is recommended for higher and
faster convergence.

Step 2: Generate N2 samples of the input variable Xi by its PDF fXi (xi) and denote

these samples as
(

xi1 , xi2 , . . . , xiN2

)
.

Step 3: The variable Xi should be fixed at xim(m = 1, 2, . . . N2) individually and

generate N3 samples of the remaining variables according to the joint PDF
n
∏
j 6=i

fXj

(
xj
)

(all variables are independent in this paper). So, the conditional PWM of responses
βk

X∼i
(Y|Xi = xim ) can be obtained, and this step needs to be repeated N2 times.

Step 4: Calculate the expectation of all conditional PWMs, i.e., EXi

[
βk

X∼i
(Y|Xi )

]
,

and ωk
i can be easily obtained using Equation (11). After finishing the calculation of ωk

i of
all variables, the normalized versions also can be evaluated in Equation (12).

Step 5: Repeat Step 1–Step 4 under different orders of PWMs. As mentioned in
Section 3, we usually let k = 1, 2, 3, and 4.

However, for estimating the presented measure of each individual input, the total
number of sampled points is N1 + n × (N2 + N2 × N3). We denote it as double-loop-
repeated-set QMC (DLRS QMC) because this method needs repeated sampling of inputs
and outputs in each inner loop. It is obvious that the computational cost would be too heavy.
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5.2. Double-Loop-Single-Set Numerical Estimators

We introduce another double-loop QMC method that needs only one set of samples of
inputs and outputs for computing presented measures, which is denoted as double-loop-
single-set QMC (DLSS QMC).

Step 1: Generate 2 × N1 samples of whole variables by the joint PDF fX(x) and assign
half of these samples to a sample matrix A:

A =


x(1)1 x(1)2 · · · x(1)n

x(2)1 x(2)2 · · · x(2)n
...

...
. . .

...
x(N)

1 x(N)
2 · · · x(N)

n

 =


X1

X2

...
XN

. (13)

Calculate the corresponding responses and estimate the kth-order PWM of Y.
Step 2: Matrix B is generated by the remaining samples, which is:

B =


x(N+1)

1 x(N+1)
2 · · · x(N+1)

n

x(N+2)
1 x(N+2)

2 · · · x(N+2)
n

...
...

. . .
...

x(2N)
1 x(2N)

2 · · · x(2N)
n

 =


XN+1

XN+2

...
X2N

. (14)

Then, generate a new sample matrix B(p,i)
A by assigning the (p,i)th component of A to

the ith column of B:

B(p,i)
A =


x(N+1)

1 x(N+1)
2 · · · x(N+1)

i−1

x(N+2)
1 x(N+2)

2 · · · x(2)i−1
...

...
. . .

...
x(2N)

1 x(2N)
2 · · · x(2N)

i−1

x(p)
i x(N+1)

i+1 · · · x(N+1)
n

x(p)
i x(N+2)

i+1 · · · x(N+2)
n

...
...

. . .
...

x(p)
i x(2N)

i+1 · · · x(2N)
n

. (15)

Step 3: Calculate the conditional PWM of responses βk
X∼i

(Y|Xi = xim ), which is based

on the sample matrix B(p,i)
A .

Steps 4 and 5 are identical to those for DLRS QMC.
The total number of sampled points is only (2 + n) × N1, contributing to a large

reduction in sampling time compared to DLRS QMC. N1, N2, and N3 are in the same order
of magnitude, which is not more than 4000 usually. Hence, to reduce the calculation cost,
the following examples are all solved by the DLSS QMC method.

6. Examples and Discussion
6.1. Numerical Example 1: Linear Function with Normal Distribution Variables

Consider the linear function:

Y = a1X1 + a2X2 + · · ·+ anXn, (16)

where xi(i = 1, 2, · · · , n) are independent and normally distributed, i.e., Xi ∼ N
(
µi, σ2

i
)
.

It is easy to calculate the values of Sobol’ indices, which are:

.Si = STi =
a2

i σ2
i

n
∑

j=1
a2

j σ2
j

(17)

The PDF of the model response is also a normally distributed variable,

Y ∼ N
(

n
∑

i=1
aiµi,

n
∑

i=1
a2

i σ2
i

)
, and the conditional response Y|Xi is also normally distributed,
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Y|Xi ∼ N

(
aiXi +

n
∑

j=1,j 6=i
ajµj,

n
∑

j=1,j 6=i
a2

j σ2
j

)
. So, we can obtain the analytical expression of

the components of presented measures in such a situation:

βk
Y(Y) =

∫ 1

0

(
n

∑
i=1

aiµi + Φ−1(F)

√
n

∑
i=1

a2
i σ2

i

)
FkdF, (18)

EXi

[
βk

X∼i
(Y|Xi )

]
=
∫

R1

∫ 1

0

aixi +
n

∑
j=1,j 6=i

ajµj + Φ−1(F)

√√√√ n

∑
j=1,j 6=i

a2
j σ2

j

Fk fXi (xi)dFdxi, (19)

where Φ−1 denotes the inverse of the CDF of the standard normal distribution.
Table 1 lists several representative cases and corresponding examples in detail. Then,

three importance measures, i.e., Sobol’ indices, delta moment-independent indices, and mea-
sures based on PWMs, are calculated, as shown in Table 2. From the results, in all cases,
the three indices have the same rank of importance. Case 1 shows that positive or negative
coefficients make no difference on the measures only if their absolute values are the same.
Case 2 shows that measures are proportional to the absolute value of the coefficient when
distribution parameters remain unchanged. The mean values of variables also have no
influence on measures only if variances stay the same, as shown in Case 3 and Case 4.
Adding the consideration of Case 5, measures mainly depend on variance. In addition,
measures estimated by the DLRS QMC are very close to the analytical values when the
sample size N is equal to 3000 or 4000, which is much smaller than the sample size of the
sampling method used to estimate Sobol’ indices or delta indices.

Table 1. Different cases of Example 1.

Same Value
of All Variables

Different Values
of All Variables Parameters

Case 1 µi,σi,|ai| / µ = [5, 5, 5, 5], σ = [1, 1, 1, 1], a = [1, −1, 1, −1]
Case 2 µi,σi, |ai| µ = [5, 5, 5, 5], σ = [1, 1, 1, 1], a = [1, 2, 3, 4]
Case 3 ai,σi,|µi| / µ = [5,−5, 5, −5], σ = [1, 1, 1, 1], a = [1, 1, 1, 1]
Case 4 ai,σi |µi| µ = [3, 5, 7, 9], σ = [1, 1, 1, 1], a = [1, 1, 1, 1]
Case 5 ai,µi σi µ = [5, 5, 5, 5], σ = [0.5, 1, 1.5, 2], a = [1, 1, 1, 1]

Note: For all cases, i = 1, 2, 3, and 4.

Table 2. Results of three importance measures.

Measures Si (STi) δi ηk
i

Case 1 [0.2500, 0.2500, 0.2500, 0.2500] [0.1808, 0.1808, 0.1808, 0.1808] [0.2500, 0.2500, 0.2500, 0.2500]
Case 2 [0.0333, 0.1333, 0.3000, 0.5334] [0.0567, 0.1231, 0.2041, 0.3182] [0.0021, 0.0361, 0.2019, 0.7599]
Case 3 [0.2500, 0.2500, 0.2500, 0.2500] [0.1808, 0.1808, 0.1808, 0.1808] [0.2500, 0.2500, 0.2500, 0.2500]
Case 4 [0.2500, 0.2500, 0.2500, 0.2500] [0.1808, 0.1808, 0.1808, 0.1808] [0.2500, 0.2500, 0.2500, 0.2500]
Case 5 [0.0333, 0.1333, 0.3000, 0.5334] [0.0567, 0.1231, 0.2041, 0.3182] [0.0021, 0.0361, 0.2019, 0.7599]

Note: The values of presented measures under a different order k remain the same.

6.2. Numerical Example 2: Linear Function with Exponential Distribution Variables

Consider the linear function with four independent inputs:

Y = g(X) = X1 − X2 + X3 − X4, (20)

where Xi (i = 1, 2, 3, 4) all obey the exponential distribution, i.e., Xi ∼ Exp(λ = 1). From the
results shown in Table 3, variables have the same influence on the output according to not
only the Sobol’ method but also the moment-independent method. However, measures
based on PWMs are somewhat different, as presented in Table 4 and Figure 2. The variables
that have absolutely the same coefficient have the same importance when ignoring the
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calculation and sampling error, meaning the measures can reflect the influence of positive
and negative coefficients with the increase in order k.

Table 3. Analytical Sobol’ indices and delta indices of Example 2.

Measures Si/STi δi

X1 0.2500 (1) 0.1930 (1)
X2 0.2500 (1) 0.1930 (1)
X3 0.2500 (1) 0.1930 (1)
X4 0.2500 (1) 0.1930 (1)

Note: The numbers in the parentheses mean the corresponding variable’s rank of importance.

Table 4. Measures based on PWMs calculated by the DLSS QMC for Example 2.

Measures ηk
i

k 1 2 3 4

X1 0.2459 (4) 0.3092 (2) 0.3469 (2) 0.3708 (2)
X2 0.2559 (1) 0.1931 (3) 0.1556 (3) 0.1319 (3)
X3 0.2476 (3) 0.3103 (1) 0.3477 (1) 0.3715 (1)
X4 0.2505 (2) 0.1874 (4) 0.1497 (4) 0.1258 (4)

Sample size 3000

Figure 2. Measures based on PWMs under different orders for Example 2.

When comparing Case 1 of Example 1 with Example 2, the former does not show
much difference, although the coefficients are the same, because the PDF of the normal
distribution is symmetric, while the PDF of the exponential distribution is asymmetric.

6.3. Numerical Example 3: Ishigami Function

Consider the Ishigami function [31], which is a highly nonlinear function with
three inputs:

Y = g(X) = sin(X1) + 7 sin2(X2) + 0.1x4
3 sin(X1), (21)

where Xi (i = 1, 2, 3) are uniformly distributed on interval [−π, π]. Table 5 lists the Sobol’
indices calculated by the analytical method and delta indices. Measures based on PWMs
calculated by the DLRS QMC are listed in Table 6, and the corresponding figure follows.
By analyzing the results, the importance rankings obtained by the main Sobol’ indices,
moment-independent indices, and new measures are the same, whereas discrepancy exists
with the Sobol’ total indices. This phenomenon can be explained by comparing Equation
(1) with Equation (11). The definitions of the Sobol’ main index and the presented measure
have a similar form, thus leading to a certain relationship between them.
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Table 5. Analytical Sobol’ indices and delta indices of Example 3.

Measures Si STi δi

X1 0.3139 (2) 0.5576 (1) 0.2259 (2)
X2 0.4424 (1) 0.4424 (2) 0.4086(1)
X3 0 (3) 0.2437 (3) 0.1798 (3)

Table 6. Measures based on PWMs calculated by the DLSS QMC of Example 3.

Measures ηk
i

k 1 2 3 4

X1 0.2109 (2) 0.2126 (2) 0.2410 (2) 0.2771 (2)
X2 0.7758 (1) 0.7731 (1) 0.7348 (1) 0.6837 (1)
X3 0.013l (3) 0.0141 (3) 0.0242 (3) 0.0382 (3)

Sample size 3000

6.4. Engineering Example: A Roof Truss Structure

Consider the roof truss structure shown in Figure 3a [32]. The top boom and other
compression bars are built using reinforced concrete, and the bottom boom and other
tension bars are built using steel. A uniformly distributed load q is applied to the roof
structure. We transform the uniform load q into a point load P = ql/4, where l is the length
of the steel bars, as shown in Figure 3b. By using the first-order elastic analysis of the
deformation, the vertical displacement ∆C of the top node C can be derived as:

∆C =
ql2

2
(

3.81
ACEC

+
1.13

ASES
), (22)

where AC and EC represent the sectional area and elastic modulus of concrete bars,
respectively; AS and ES are the sectional area and elastic modulus of steel bars, respectively,
which are also denoted in Figure 3b. Considering the serviceability criterion that the vertical
displacement ∆C should not exceed an admissible maximal deflection of 3 cm, the perfor-
mance function can be constructed as Y = 0.03− ∆C. Then, we assume that six random
inputs q, l, AC, EC, AS, and ES are independently and normally distributed. Their distribu-
tion parameters are given in Table 7.

Figure 3. (a) Roof truss structure and (b) distribution of loads and dimensions.
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Table 7. Distribution parameters of the roof truss structure.

Variable X Mean Coefficient of Variance

q (N·m−1) 20,000 0.07
l (m) 12 0.01

As (m2) 9.82 × 10−4 0.06
Ac (m2) 0.04 0.12

Es (MPa) 2 × 1011 0.06
Ec (MPa) 3 × 1010 0.06

Through computing four kinds of indices and rankings separately, as shown in
Tables 8 and 9, all methods have similar ranks of importance. The results show that load q
is the most important input among all input variables. Thus, regarding reliability design,
q should be primarily considered. Besides the load, the sectional area of concrete bars as
well as the sectional area and elastic modulus of steel bars are important. The length of
steel bars and the elastic modulus of concrete bars should be considered as unimportant
variables, which can be treated as constant values in the optimal design. In addition, this ex-
ample shows that the required sample size of measures based on PWMs is the least one
among the three methods.

Table 8. List of Sobol’ indices and delta indices of Example 4.

Measures Si STi δi

q 0.4581 (1) 0.4608 (1) 0.2831 (1)
l 0.0374 (5) 0.0378 (5) 0.0613 (5)

As 0.1710 (2) 0.1725 (2) 0.1427 (3)
Ac 0.1287 (4) 0.1298 (4) 0.1185 (4)
Es 0.1709 (3) 0.1724 (3) 0.1428 (2)
Ec 0.0300 (6) 0.0306 (6) 0.0541 (6)

Sample size 3 × 105

Table 9. Measures based on PWMs calculated by the DLSS QMC of Example 4.

Measure ηk
i

k 1 2 3 4

q 0.7657 (1) 0.7780 (1) 0.7859 (1) 0.7913 (1)
L 0.0039 (5) 0.0037 (5) 0.0035 (5) 0.0036 (5)

As 0.0891 (3) 0.0847 (3) 0.0817 (3) 0.0795 (3)
Ac 0.0491 (4) 0.0454 (4) 0.0433 (4) 0.0418 (4)
Es 0.0898 (2) 0.0858 (2) 0.0831 (2) 0.0812 (2)
Ec 0.0024 (6) 0.0025 (6) 0.0025 (6) 0.0026 (6)

Sample size 4000

To summarize, the importance ranking of presented measures is usually in accordance
with that of moment-independent indices δi when the PDF of the model output is symmetric
or approximately symmetric. However, differences could exist if the PDF of the model
output is asymmetric. In such cases, the sign of coefficients may also have an influence on
PWM-based measures.

7. Conclusions

This paper introduced a novel global sensitivity measure based on PWMs. Since a
PWM includes more information than a classical moment and can be accurately estimated
from small samples, the new measure takes advantage of its properties. PWM-based mea-
sures can reflect the influence of input variables on output uncertainty when the output
is obviously asymmetric. Subsequently, the double-loop-repeated-set QMC method and
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the double-loop-single-set QMC method were presented to estimate the new measure.
The latter method is recommended because it needs fewer sample points. Three numerical
examples were mainly used to compare the new measure with Sobol’ indices and the
moment-independent delta index, thus demonstrating its advantages. Finally, an engineer-
ing example of a roof truss structure showed the possibility of realistic application. Besides,
the measure can be used to analyze problems of groups of input factors.

There is still some further work that needs to be done. Detailed functions of influence
factors of measures based on PWMs, i.e., PDFs and coefficients, should be found. From all
the examples, the delta importance measure and presented measures often have the same
ranking. So, it is possible to find a method to link them because they both identify the
influence of the PDF.
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Appendix A

Generalized Pareto distribution
The cumulative distribution function is defined as:

F(x) = u =

{
1− (1− cx/d)1/c, c 6= 0,
1− exp(−x/d), c = 0,

(A1)

where c and d are the shape and scale parameters of distribution, respectively. The inverse
CDF can be obtained by inverting Equation (A1):

x(u) =
{ d

c
[
1− (1− u)c], c 6= 0,
−d log(1− u), c = 0

(A2)

.
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