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Abstract: Time delay is an obstacle in the way of actively controlling non-linear vibrations. In this
paper, a rotating blade’s non-linear oscillations are reduced via a time-delayed non-linear saturation
controller (NSC). This controller is excited by a positive displacement signal measured from the
sensors on the blade, and its output is the suitable control force applied onto the actuators on the
blade driving it to the desired minimum vibratory level. Based on the saturation phenomenon,
the blade vibrations can be saturated at a specific level while the rest of the energy is transferred
to the controller. This can be done by adjusting the controller natural frequency to be one half of
the blade natural frequency. The whole behavior is governed by a system of first-order differential
equations gained by the method of multiple scales. Different responses are included to show the
influences of time delay on the closed-loop control process. Also, a good agreement can be noticed
between the analytical curves and the numerically simulated ones.

Keywords: time delay; saturation phenomenon; rotating blade; active vibration mitigation

1. Introduction

The rotating blade is considered the cornerstone of the turbo-machinery industry.
Due to its high spinning speed and distributed mass, it may suffer from unwanted vibra-
tions. A huge number of researchers have focused their attention on analyzing and/or
controlling (passively or actively) such vibrations for safe operation. Active control tech-
niques have proved their flexibility and adaptation to the control process than passive
control techniques that were used as a back-up for active control. However, active con-
trol techniques have inherently exhibited a huge issue of time delay. This issue arose
because of the delay in acquiring the feedback signal and/or applying the control sig-
nal. Yao et al. [1] worked on a thin-walled rotating blade and considered a preliminary
twisting, a preliminary setting for this blade. They also examined the whole behavior in
case of rotating speed variation. They utilized the Hamilton principle for extracting the
blade’s equations of motion. Wang and Zhang [2] discussed a spinning blade stability
where it had periodic time-varying coefficients for both the linear and non-linear geometric
models. Yao et al. [3] investigated the air velocity variation which caused uncertainties in
the aerodynamic load, the geometric non-linearity, the perturbed angular speed, and the
centrifugal force. Sina and Haddadpour [4] examined both the axial and torsional vibra-
tions of a thin-walled rotating box beam with preliminary twisting and primary-secondary
warping. Wang and Qu [5] focused on the torsional excitation affecting a rotating beam
which involved both quadratic and cubic non-linearities. Pesek et al. [6] achieved ex-
perimental and numerical works on a rotating blade’s interaction utilizing a frictional
element that was placed in the shroud between the blade heads. Hamed and Amer [7]
presented a non-linear saturation controller (NSC) study to suppress a non-linear structural
composite beam’s vibration amplitude at the simultaneous resonance of sub-harmonic
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and internal cases. Bian et al. [8] examined the effects of the simultaneous resonance
(primary resonance and 2 : 1 internal resonance) on the chaotic dynamics and global
bifurcations of a thin-walled compressor blade. Kim and Chung [9] introduced an accurate
non-linear model of a rotating beam with elastic deformations for an efficient dynamic
analysis. Li et al. [10] proposed an accurate analytical technique for studying the forced
Mathieu oscillator based on the parameters variation method. Luo et al. [11] considered the
centrifugal stress to investigate the accurate design prototype’s dynamic characteristics of a
thin-walled rotating plate. Zhang et al. [12] utilized analytical and numerical techniques to
study the local bifurcation and stability of a rotating blade accompanied by extremely hot
supersonic gas flow. Zhao et al. [13] considered the thermal shock and tip-rub in a rotating
plate to obtain its dynamic characteristics. Asghari and Hashemi [14] utilized the modified
couple stress theory to consider the small-scale effects for analyzing the micro-spinning
Rayleigh beams 3D vibrations. Cao et al. [15] investigated an aero-engine turbine blade’s
vibrational behavior with preliminary twisting, preliminary setting angle, and thermal
barrier coating layers. Kandil and Eissa [16] suppressed the two peaks of the positive
position feedback (PPF) controller’s performance with imposed V-curves by coupling two
additional non-linear saturation controllers (NSC) to the rotating blade. Farsadi et al. [17]
modeled structurally thin-walled beams to study the aeroelastic behavior of the prelimi-
nary twisting and the high aspect ratio wings. Kandil and El-Gohary [18,19] studied the
effects of time delay on the vibration control performance for reducing the oscillations
of a rotating beam via proportional derivative (PD) and NSC controllers. Khaniki [20]
concluded the disability of the nonlocal elastic theory differential form for presenting a
reliable investigation on transverse vibrational behavior of rotating beams. Li et al. [21]
built their dynamic model based on the finite element method in order to analyze the non-
linear characteristics of a flexible blade contained in a centrifugal force field. Yao et al. [22]
investigated the varying-rotating-speed blade dynamic responses to the supersonic airflow
and the cross-section warping effect. Gu et al. [23] used the shallow shell theory consid-
ering the torsion and neglecting two radii of curvatures for treating the rotating blade as
a cantilever pre-twisted panel with initial exponential function. The authors [24,25] pre-
sented the functionally graded rotating composite Timoshenko beams that were reinforced
by carbon nanotubes or graphene platelets for studying their linear and non-linear free
vibrations. Umer and Botto [26] studied experimentally the non-linear contact forces effect
on the vibration amplitude of a rotating blade. Yang et al. [27] investigated the presence of
1 : 2 internal resonance, primary parametric resonance, and 1/2 subharmonic resonance to
explore the non-linear vibrations of a carbon fiber-reinforced polymer laminated cylindrical
shell. Yao et al. [28] considered a preliminary setting angle in building the model of a
rotating cylindrical shell to investigate the aero-engine compressor blade non-linear dy-
namic responses. Zhang et al. [29] revealed the simultaneous resonance (both primary and
internal 2 : 1) of a rotating preliminary twisting blade which was subjected to a flap-wise
gas excitation with thermal gradient. Khosravi et al. [30] presented the rotating composite
beams that were reinforced by carbon nanotubes for studying the influence of uniform
temperature elevation leading to instability. Han et al. [31] formulated the steady-state
dynamic responses of rotating bending-torsion coupled composite Timoshenko beams sub-
jected to distributive and/or concentrated harmonic loadings. Hamed et al. [32,33] applied
either time-delayed PPF or PD controllers on a multi-excitation atomic force microscopy
(AFM) model in order to extract the time delay effects on the vibration control process.
It is worth mentioning the importance of the homotopy perturbation method (HPM) in
solving linear and non-linear problems. He [34–36] proposed a new perturbation technique
coupled with the homotopy technique where the equation’s small parameters were not
required leading to eliminating the limitations of the traditional techniques. Noeiaghdam
et al. [37] proposed the HPM to study the second-kind linear Volterra integral equations
with a discontinuous kernel. They validated the solution’s accuracy by analyzing the
convergence and error of the studied formulation. Hussain et al. [38] used the HPM to find
an approximate analytical solution of the bi-stable Allen–Cahn equation. They observed a
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good agreement between the analytical and numerical solutions when recording the error
estimates. Javeed et al. [39] presented the HPM for solving fractional-derivative partial
differential equations, even though the ordinary-derivative partial differential equations
were not defined in the given domain.

This work focuses on actively controlling a rotating blade’s non-linear oscillation via
macro fiber composite (MFC) and non-linear saturation control algorithm. According to
the active control process shown in Figure 1, the closed-loop control may suffer from time
delay in acquiring the feedback signal (from MFC sensors) and/or applying the control
signal (into MFC actuators). The wafers of sensors and actuators are implanted in the
centroids of the bottom and top of the rotating blade, respectively. They are distributed
along the blade’s length as shown in Figure 1. Based on the saturation controller, the blade
vibrations can be saturated at a specific level while the rest of the energy is transferred to
the controller. This can be done by adjusting the controller frequency ωc to be one half of
the blade frequency ω. In this work, all we care about in the measurement process is the
time delay and its effect on the control process. The measurement noise was not considered
in this model in order to focus our discussion on the time delay effect. We are including this
issue in future work to make our controller more realistic. The whole behavior is governed
by a system of first-order differential equations gained by the method of multiple scales.
The stability criteria can be extracted due to Lyapunov’s linearization technique to indicate
the time delay borders at which the whole system switches its stability.
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2. The Amplitudes and Phases Equations of the Blade and Controller

This model derivation is given briefly in the Appendix A. As seen in Figure 1, the hor-
izontal and vertical deflections of the blade’s cross-section have been represented by x(t)
and y(t), respectively. This cross-section, subjected to harmonic excitation, is governed by
the following equations of motion [1]:

..
x + 2µ

.
x + ω2x + α1

.
y + α21y + α3

[
x3 + xy2

]
− α41x

[
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

]
= f α5Ω sin(Ωt) (1a)

..
y + 2µ

.
y + ω2y + α1

.
x + α22x + α3

[
y3 + x2y

]
− α42y

(
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

)
= 0, (1b)

where µ is the viscous damping, ω is the natural frequency, {α1, α21, α22} are the linear
coupling parameters, α3 is the non-linear coupling parameter, {α41, α42} are the parametric
excitation coefficients, α5 is the external excitation coefficient, { f0, f } are the excitation
force amplitudes, and Ω is the rotating blade’s angular speed. Applying the time-delayed
saturation controller signal u(t) to Equation (1), the overall equations will be:

..
x + 2µ

.
x + ω2x + α1

.
y + α21y + α3

[
x3 + xy2

]
− α41x

[
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

]
= f α5Ω sin(Ωt) + c1u2

τ2
(2a)
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..
y + 2µ

.
y + ω2y + α1

.
x + α22x + α3

[
y3 + x2y

]
− α42y

(
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

)
= 0 (2b)

..
u + 2µc

.
u + ω2

c u = c2xτ1 u, (2c)

where µc is the controller’s damping, ωc is its natural frequency, {c1, c2} are gains of the
control and feedback signals, {τ1, τ2} are delay times, xτ1 = x(t− τ1) is the time-delayed
feedback signal, and uτ2 = u(t− τ2) is the time-delayed control signal. We can scale some
parameters in Equation (2) to make them appear later in the perturbation equations by
assuming the following:

α1 = εα̂1, α21 = εα̂21, α22 = εα̂22, α3 = εα̂3, α41 = εα̂41, α42 = εα̂42, α5 = εα̂5, c1, 2 = εĉ1, 2, µ = εµ̂, µc = εµ̂c, (3)

where ε is an extremely small perturbation parameter. Hence, the multiple time scales
(T0 = t and T1 = εt) can be used to suppose approximate solutions of the following
expansion forms [40]:

x(t; ε) = x0(T0, T1) + εx1(T0, T1) + O
(

ε2
)

(4a)

y(t; ε) = y0(T0, T1) + εy1(T0, T1) + O
(

ε2
)

(4b)

u(t; ε) = u0(T0, T1) + εu1(T0, T1) + O
(

ε2
)

(4c)

xτ1(t; ε) = x0τ1(T0, T1) + εx1τ1(T0, T1) + O
(

ε2
)

(4d)

uτ2(t; ε) = u0τ2(T0, T1) + εu1τ2(T0, T1) + O
(

ε2
)

. (4e)

Also, the first and second time derivatives in Equation (2) can be transformed into:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ O

(
ε2
)
= D0 + εD1 + O

(
ε2
)

(5a)

d2

dt2 =
∂2

∂T2
0
+ 2ε

∂2

∂T0∂T1
+ O

(
ε2
)
= D2

0 + 2εD0D1 + O
(

ε2
)

. (5b)

Substituting Equations (3)–(5) into Equation (2) then comparing the powers of ε on
both sides yield:

O
(

ε0
)

:

D2
0x0 + ω2x0 = 0 (6a)

D2
0y0 + ω2y0 = 0 (6b)

D2
0u0 + ω2

c u0 = 0 (6c)

O
(

ε1
)

:

D2
0x1 + ω2x1 = − 2D1D0x0 − 2µ̂D0x0 − α̂1D0y0 − α̂21y0 − α̂3

[
x3

0 + x0y2
0
]

+ α̂41x0

[
f0 f
(
eiΩT0 + e−iΩT0

)
+ f 2

4
(
eiΩT0 + e−iΩT0

)2
]
− i f α̂5Ω

2
(
eiΩT0 − e−iΩT0

)
+ ĉ1u2

0τ2

(7a)

D2
0y1 + ω2y1 = − 2D1D0y0 − 2µ̂D0y0 − α̂1D0x0 − α̂22x0 − α̂3

[
y3

0 + x2
0y0
]

+ α̂42y0

[
f0 f
(
eiΩT0 + e−iΩT0

)
+ f 2

4
(
eiΩT0 + e−iΩT0

)2
] (7b)
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D2
0u1 + ω2

c u1 = −2D1D0u0 − 2µ̂cD0u0 + ĉ2x0τ1 u0. (7c)

The complex form solutions of Equation (6) and the time-delayed signals can be
expressed as follows:

x0 = A1eiωT0 + A1e−iωT0 (8a)

x0τ1
∼= A1eiω(T0−τ1) + A1e−iω(T0−τ1) (8b)

y0 = A2eiωT0 + A2e−iωT0 (8c)

u0 = A3eiωcT0 + A3e−iωcT0 (8d)

u0τ2
∼= A3eiωc(T0−τ2) + A3e−iωc(T0−τ2), (8e)

where the coefficients A1 to A3 and their complex conjugates (A1 to A3) are functions of
the slow time T1. We have initially tested the simultaneous resonance case (Ω = ω =
2ωc) as the worst resonance case. This can be described by the parameters σ1 and σ2 to
represent the differences in the proposed resonance case as Ω = ω + σ1 = ω + εσ̂1 and
2ωc = ω + σ2 = ω + εσ̂2. They are used with Equation (8) into Equation (7) to get the
solvability conditions:

−2iω
.
A1 − 2iµωA1 − iωα1 A2 − α21 A2 − 3α3 A2

1 A1 − α3 A1 A2
2 − 2α3 A1 A2 A2 +

α41 f 2

2 A1 +
α41 f 2

4 A1e2iσ1t

− i
2 α5Ω f eiσ1t + c1 A2

3ei(σ2t−2ωcτ2) = 0
(9a)

− 2iω
.
A2 − 2iµωA2 − iωα1 A1 − α22 A1 − 3α3 A2

2 A2 − α3 A2
1 A2 − 2α3 A1 A1 A2 +

α42 f 2

2
A2 +

α42 f 2

4
A2e2iσ1t = 0 (9b)

− 2iωc
.
A3 − 2iµcωc A3 + c2 A1 A3e−i(σ2t+ωτ1) = 0. (9c)

The quantities An (n = 1, 2, 3) can be rewritten in the exponential form, including the
amplitudes an and phases βn as follows:

An =
1
2

aneiβn ⇒
.
An =

.
an

2
eiβn + i

an

2

.
βneiβn . (10)

An autonomous system of differential equations can be obtained by substituting
Equation (10) into Equation (9) as:

.
a1 = −µa1 − α1

2 a2 cos φ2 − α21
2ω a2 sin φ2 − α3

8ω a1a2
2 sin(2φ2) +

α41 f 2

8ω a1 sin(2φ1)− α5Ω f
2ω cos φ1

+ c1
4ω a2

3 sin(φ3 − 2ωcτ2)

(11a)

.
φ1 = σ1 +

α1
2

a2
a1

sin φ2 − α21
2ω

a2
a1

cos φ2 − α3
4ω a2

2 −
α3
8ω a2

2 cos(2φ2)− 3α3
8ω a2

1 +
α41 f 2

8ω cos(2φ1) +
α41 f 2

4ω

+ α5Ω f
2ω

sin φ1
a1

+ c1
4ω

a2
3

a1
cos(φ3 − 2ωcτ2)

(11b)

.
a2 = −µa2 −

α1

2
a1 cos φ2 +

α22

2ω
a1 sin φ2 +

α3

8ω
a2

1a2 sin(2φ2) +
α42 f 2

8ω
a2 sin(2φ1 − 2φ2) (11c)

.
φ2 = α1

2
a1
a2

sin φ2 + α22
2ω

a1
a2

cos φ2 +
α3
4ω a2

1 +
α3
8ω a2

1 cos(2φ2) +
3α3
8ω a2

2 −
α42 f 2

8ω cos(2φ1 − 2φ2)− α42 f 2

4ω

+ α1
2

a2
a1

sin φ2 − α21
2ω

a2
a1

cos φ2 − α3
4ω a2

2 −
α3
8ω a2

2 cos(2φ2)− 3α3
8ω a2

1 +
α41 f 2

8ω cos(2φ1) +
α41 f 2

4ω

+ α5Ω f
2ω

sin φ1
a1

+ c1
4ω

a2
3

a1
cos(φ3 − 2ωcτ2)

(11d)

.
a3 = −µca3 −

c2

4ωc
a1a3 sin(φ3 + ωτ1) (11e)



Symmetry 2021, 13, 85 6 of 17

.
φ3 = σ2 − c2

2ωc
a1 cos(φ3 + ωτ1) +

α1
2

a2
a1

sin φ2 − α21
2ω

a2
a1

cos φ2 − α3
4ω a2

2 −
α3
8ω a2

2 cos(2φ2)− 3α3
8ω a2

1 +
α41 f 2

4ω

+ α41 f 2

8ω cos(2φ1) +
α5Ω f

2ω
sin φ1

a1
+ c1

4ω
a2

3
a1

cos(φ3 − 2ωcτ2),
(11f)

where φ1 = σ1t− β1, φ2 = β2− β1, and φ3 = σ2t+ 2β3− β1. The steady-state analysis
of the studied blade model can be fulfilled by imposing the conditions

.
an =

.
φn = 0 into

Equation (11). The resulting non-linear algebraic equations system cannot be solved
analytically, leading us to adopt the Newton–Raphson numerical technique. The extracted
equilibrium solutions of the amplitudes an and phases φn can be classified as either stable
or unstable, according to Lyapunov’s linearization technique [7,16,18,19,32,33,40].

3. Results and Discussion
3.1. Relation between the Parameters and the Steady-State Amplitudes

This subsection involves the steady-state response curves of the blade vibrational
amplitudes versus different parameters. These curves are plotted depending on the fixed
points of Equation (11). In the following figures, the solid lines refer to stable trajectories,
while the dashed lines refer to unstable ones. The asterisks refer to bifurcation points
where SN is the Saddle-Node point, H is Hopf point, and PF is the pitchfork point. Re-
garding the whole system safe operation, the adopted parameter’s values are: µ = 0.5,
µc = 0.001, Ω = ω = 2ωc = 100, α1 = −0.82, α21 = −0.003, α22 = −0.001, α3 = 0.9,
α41 = 0.55, α42 = 0.5, α5 = 6.55, f0 = 7, f = 2, c1 = 5, c2 = 15, σ1 = σ2 = 0, τ1 = τ2 = 0.
Figure 2 shows the effect of the feedback signal delay τ1 on the blade and controller vibra-
tional amplitudes at no control signal delay (τ2 = 0). The amplitudes switch from stability
to instability at τ1

∼= 0.0039, which is considered a border value of the stable amplitudes
region. Figure 3 clarifies the effect of τ2 on the blade and controller vibrational amplitudes
at τ1 = 0. It is the same as in Figure 2 where τ2 ∼= 0.0039 is considered a border value
of the stable amplitudes region. This guides us to conclude a border line equation of the
stable amplitudes region based on Figures 2 and 3 to be τ1 + τ2 = 0.0039. As a result,
the constraint τ1 + τ2 < 0.0039 is guaranteeing stable amplitudes, as shown in the shaded
region of Figure 4.
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We are interested in studying how the rotating speed Ω (σ1 = Ω − ω) affects the
vibrational amplitudes of the blade and controller. Figure 5 shows the dependence of the
blade vibrational amplitudes on the detuning σ1 before control. For σ1 > 0, it can be seen
that the blade amplitudes increase and pass through SN points leading to jump phenomena,
and pass through H points leading to stability switching. That is why we want to control
the response in this region. Figure 6 depicts the same discussion in Figure 5 but with
applying the saturation control algorithm at various combination values τ1 + τ2. All SN
and H points in Figure 5 have disappeared in Figure 6, while PF points have appeared
to invert the blade amplitudes’ path to the V-shaped curve. This makes the blade leave
the old response trajectory (before control) into a new V-curve trajectory. As seen in the
figure, the blade amplitudes have been notched down to minimum values at σ1 = 0 and
they are not affected by changing the time delays combination τ1 + τ2 within their safe
constraint. On the other hand, the controller has amplitude peaks that have risen directly
by increasing the time delays combination.
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Figure 6. Vibrational amplitudes of the blade and controller in terms of the speed detuning σ1 at
different combinations τ1 + τ2.

Figures 7 and 8 have been plotted to demonstrate the effects of varying the control
signal gain c1 and the feedback signal gain c2 on the blade and controller amplitudes
response to σ1 at τ1 + τ2 = 0.0025. The steady-state form of Equations (11e) and (11f)
shows that the amplitude a1 (and so a2) is only dependent on the parameter c2 (in the case
that a3 6= 0). Thus, the parameter c1 affects only the controller amplitude a3 without any
extra effects on the blade amplitudes (a1 and a2) as seen in Figure 7. It also shows that
the controller amplitude is inversely proportional to c1. On the other hand in Figure 8,
increasing (decreasing) c2 widens (tightens) the bandwidth of the V-shaped curve to extend
the work of the controller.
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Figures 9 and 10 clarify the response of the blade and controller amplitudes to the
excitation force f before and after control at σ1 = 0. It is shown in Figure 9 that the
increase in f makes a sharp increase in the blade amplitudes before control. After control in
Figure 10, we notice the saturation phenomenon where the blade vibrations are saturated
at the zero level, which is the main advantage of NSC. The rest of the vibration energy
is channeled to the controller, as shown. The main drawback, appearing due to the time
delay, is that the force f should not exceed the value f ∼= 6.5; otherwise, the blade will pass
through the H point and exhibit unstable motions.
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3.2. Time Response and Phase Plane

The incoming figures show the blade responses to the time before and after con-
trol, besides the phase planes for indicating the blade equilibrium behavior after control.
These figures are plotted using the fourth-order Runge–Kutta algorithm by numerically
integrating Equation (2). Before control, the blade responses to time are shown in Figure 11,
while Figure 12 presents the blade and controller time responses after control at zero time
delays. We can see that the blade horizontal and vertical oscillations have been suppressed
by about 97% of their uncontrolled levels. Regarding the time delay effect, Figure 13 clarifies
the blade and controller time responses after control at safe time delays (τ1 + τ2 = 0.0025).
Here, the blade horizontal and vertical oscillations have been suppressed by about 96% of
their uncontrolled levels. This guides us to assure that the reduction ratio (with safe time
delays) has decreased slightly where it cannot be noticed. In Figure 14, we impose unsafe
time delays (τ1 + τ2 = 0.005) on the control process. The blade and controller oscillations
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have unstable waveforms meaning that the controller loses its efficiency in mitigating the
blade vibrations as long as the time delays have passed the border line τ1 + τ2 = 0.0039.
All the steady-state oscillations are in the form of multi-limit cycles, as shown in the figure.
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3.3. Verification of the Analytical Solutions

Here in this section, we present comparison figures (Figures 15–18) to clarify the good
agreement between the analytical and numerical solutions. It is also a verification of the
analytical solutions approached by the multiple scales method.
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4. Conclusions

In this research, rotating blade non-linear oscillations were reduced via a time-delayed
non-linear saturation controller (NSC). This controller was excited by a positive displace-
ment signal measured from the blade, while its output was the control force to be applied
on the blade. Based on the saturation phenomenon, the blade vibrations could be saturated
at a specific level forcing the rest of the energy to be transferred to the controller. The whole
behavior was governed by a system of first-order differential equations gained by the
method of multiple scales. Different responses were included to show the influences of
time delay on the closed-loop control process. From this analysis, we could conclude the
following items:

1. The time delays constraint τ1 + τ2 < 0.0039 is a safe guarantee for stable blade
vibrations after control.

2. The bifurcation points (SN and H), that were present before control, were eliminated
after control.

3. After control, the bifurcation points (PF) have appeared to switch the blade speed
response to a V-shaped curve, making it reach a minimum value at σ1 = 0.

4. The control gain c1 affected only the controller without any extra effects on the blade
amplitudes.

5. The blade vibrations were saturated at zero level due to the saturation phenomenon,
while vibration energy was channeled to the controller.

6. The existence of the time delay diminished the excitation force’s stable range to make
it not exceed a critical value; otherwise, the blade would pass through H point and
exhibit unstable motions.

7. This encourages us to suggest that the reduction ratio (with safe time delays) has
decreased slightly where it cannot be noticed.

8. Safe time delay occurrence has slightly reduced the vibration reduction ratio from
about 97% to about 96% where it could not be noticed.
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9. The blade and controller exhibited multi-limit cycles as long as the time delays have
passed the border line τ1 + τ2 = 0.0039.
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Appendix A

For easing the analysis, the cross-section, shown in Figure A1, will be considered
un-deformable neglecting the transversal shear force. Its thickness is very small when
compared to its gyration radius along with neglecting the axial elongation. The blade’s total
length and thickness are L and h, respectively. The source of rotation is a rigid hub attached
to the blade and spinning with a speed Ω and a harmonic excitation F = f0 + f cos(Ωt).
According to the pre-twisting and flexure of the blade, a final angle of γ + β rises during
the rotation (β = β0z/L). The rotational axes x and y can be related mathematically to the
fixed axes xp and yp. We consider the kinetic energy, the strain energy, and external forces’
virtual work as K, U, and W, respectively. If we let the operator of variation as δ, then the
equations of motion can be derived using the Hamilton principle:

t∫
0

(δK− δU + δW)dt = 0. (A1)

A detailed mathematical analysis is undertaken in [1] to finally extract the normalized
motion equations:

..
u0 − F2u0 − F2[R(z)u′′0 + R′(z)u′0

]
+ ρ1∆Tu′′0 −

[
ρ2(z)v

′′
0 − ρ3(z)u

′′
0
]′′

= u′0
(
u′0u′′0 + v′0v′′0

)
+ u′′0

[
1
2 (u
′
0)

2 + 1
2 (v
′
0)

2
]
−

.
F(R0 + z) + px

(A2a)

..
v0 − F2[R(z)v′′0 + R′(z)v′0

]
+ ρ1∆Tv′′0 −

[
ρ2(z)u

′′
0 − ρ4(z)v

′′
0
]′′ = v′0

(
u′0u′′0 + v′0v′′0

)
+ v′′0

[
1
2
(
u′0
)2

+
1
2
(
v′0
)2
]
+ py, (A2b)

where
.
() = ∂/∂t and ()′ = ∂/∂z. The partial differential Equation (A2) can be

discretized via the Galerkin procedure by letting,

u0 = ϑ(z)x(t) (A3a)

v0 = ϑ(z)y(t), (A3b)

where x(t) and y(t) are the horizontal and vertical time-functions of the studied rotational
blade, ϑ(z) is the undamped linear free mode of the studied rotational blade is expressed as:

ϑ(z) = −
[

cosh Γ + cos Γ
sinhΓ + sin Γ

]
[sinh(Γz)− sin(Γz)] + cosh(Γz)− cos(Γz), (A4)
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where Γ is the roots of cosh Γ cos Γ + 1 = 0. Substituting Equations (A3) and (A4) into
Equation (A2), with the aid of Galerkin procedure, yields

..
x + 2µ

.
x + ω2x + α1

.
y + α21y + α3

[
x3 + xy2

]
− α41x

[
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

]
= f α5Ω sin(Ωt). (A5a)

..
y + 2µ

.
y + ω2y + α1

.
x + α22x + α3

[
y3 + x2y

]
− α42y

(
2 f0 f cos(Ωt) + f 2 cos2(Ωt)

)
= 0, (A5b)

where all the parameters above have been stated in [1].
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