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1. Introduction

In [1], the notion of a semi-symmetric metric connection on a Riemannian manifold
was introduced by H. A. Hayden. Some properties of a Riemannian manifold endowed
with a semi-symmetric metric connection were studied by K. Yano [2]. Later, the properties
of the curvature tensor of a semi-symmetric metric connection in a Sasakian manifold
were also investigated by T. Imai [3,4]. Z. Nakao [5] studied the Gauss curvature equation
and the Codazzi-Mainardi equation with respect to a semi-symmetric metric connection
on a Riemannian manifold and a submanifold. The idea of studying the tangent bundle
of a hypersurface with semi-symmetric metric connections was presented by Gozutok
and Esin [6]. In [7], Demirbag investigated the properties of a weakly Ricci-symmetric
manifold admitting a semi-symmetric metric connection. N. S. Agashe and M. R. Chafle
showed some properties of submanifolds of a Riemannian manifold with a semi-symmetric
non-metric connection in [8,9]. In [10,11], the study of non-integrable distributions, as a
generalized version of distributions, was initiated by Synge. In [12], a regular distribution
was shown in a Riemannian manifold.

Besides this, in [13-15], an important inequality was established by B. Y. Chen, called
Chen inequality. In geometry, by studying different submanifolds in various ambient
spaces, we can obtain similar results. In [16,17], Mihai and Ozgii presented the relationships
between the mean curvature associated with the semi-symmetric metric connection, scalar,
and sectional curvatures and the k-Ricci curvature. In this paper, we obtain the Chen
inequalities of non-integrable distributions of real-space forms endowed with the first
generalized semi-symmetric non-metric connection and the second generalized semi-
symmetric non-metric connection.

In the literature, we find several works that were conducted with Einstein manifolds
and manifolds involving a constant scalar curvature. In [18], Dobarro and Unal studied
Ricci-flat and Einstein Lorentzian multiply-warped products and constant scalar curvatures
for this class of warped products. In [19-21], the authors obtained some results with Einstein
warped-product manifolds with a semi-symmetric non-metric connection.
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In Section 2, we obtain the Gauss, Codazzi, and Ricci equations for non-integrable
distributions with the first generalized semi-symmetric non-metric connection by estab-
lishing the Gauss formula and the Weingarten formula. Meanwhile, the result of the Chen
inequality is presented. In Section 3, we obtain the Gauss, Codazzi, and Ricci equations
for non-integrable distributions by establishing the Gauss formula and the Weingarten
formula and the second generalized semi-symmetric non-metric connection. Meanwhile,
we obtain the result of the Chen inequality. Finally, in Section 4, some examples based on
non-integrable distributions in a Riemannian manifold with generalized semi-symmetric
non-metric connections are presented.

2. Non-Integrable Distributions with the First Generalized Semi-Symmetric
Non-Metric Connection

Let (M, g) be a m-dimensional smooth Riemannian manifold, where g is the Rieman-
nian metric and V is the Levi—Civita connection on (M, g). For X,Y € T'(M), denote VxY
the covariant derivative of Y with respect to X and represent by I'(M) the C*°(M)-module
of vector fields on M.

Definition 1. If there are X,Y € TI'(D) such that [X,Y] is not in T'(D), we say that D is a
non-integrable distribution, where D is a sub-bundle of the tangent bundle T M with a constant
rank n and T'(D) is the space of sections of D.

Let ¢P be a metric tensor field in the distribution D and let gP * be a metric tensor
field in the orthogonal distribution to D, such that ¢ = ¢° @ ¢P g

Definition 2. Let 70 : TM — D, P : TM — D" be the projections associated to the tangent
bundle TM; then, VRY = 7P (VxY) and [X, Y|P = 7P ([X,Y]) and [X,Y]P" = 70" ([X, Y])
forany X,Y € T(D).

By [12], we obtain

VY = fVRY, VR(fY) = X(f)Y + fVRY, 1)
where X,Y € I'(D) and f € C*(M).
VReP =0, T(X,Y):=VRY-VPX—[X,Y]=—[XY]P, @)
and
VxY = V2Y + B(X,Y). (3)

where B(X,Y) = n0" VxY and B(X,Y) # B(Y, X).

Definition 3. For any V € T(TM), let w be a 1-form satisfying w(V) = g(U, V), here U €
[(TM) is a vector field. Let Aj,Ay € C®(M), we give the definition of the first generalized
semi-symmetric non-metric connection on M
VxY = VxY + Mw(Y)X — Ag(X, Y)U. 4)
Let UP = 7PU and UP" = 7P U; then, U = UP + UP".
Definition 4. Let

VxY = VRY + B(X,Y), VRY = 7PVyY, B(X,Y) = nP VyY. ®)
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Then,
VRY = VRY 4+ Mw(Y)X — Mg(X, Y)UP, B(X,Y) = B(X,Y) — Ag(X,Y)UP",  (6)

where B(X,Y) is called the second fundamental form with the first generalized semi-symmetric
non-metric connection.

Then, by (2) and (6), we obtain
VREP)(Y.2) = (A2 = M) (X, Z)w(Y) + g(X, V)w(Z)], @)
TP(X,Y) = —[X, Y]P" + A [w(Y)X — w(X)Y].

If D = TM, we obtain the following results:

Theorem 1. Ifa linear connection VP : T(D) x T(D) — T'(D) on D satisfies Equation (7), then
this connection is unique.

We choose {Ej, ..., E,} as an orthonormal basis of D and let H = Lyn, B(E;, E;) €
I'(D) be the mean curvature vector associated to V on D. Similarly, let H = % Y1 B(Ei, Ej);
then, H = H — A, UP CIfH = 0, we say thgt D is minimal with the first genere}}ized semi-
symmetric non-metric connection V. If V44 = 0, we say that curve v is V-geodesic.
If every V-geodesic with an initial condition in D is contained in D, we say that D is totally
geodesic with the first generalized semi-symmetric non-metric connection V.

Let h(X,Y) = 3[B(X,Y) + B(Y,X)] and h(X,Y) = 1[B(X,Y) + B(Y, X)]; then, ac-
cording to [12], we obtain the following:

Proposition 1. (1) If D is totally geodesic with respect to the first generalized semi-symmetric
non-metric connection V, then B(X,Y) is dissymmetrical.

(2) When U & F(Dl, H=HUEe I'(D), and vice versa.

(3) If h = HgP (or h = HgP), then D is umbilical with respect to V (resp. V).

Proposition 2. If D is umbilical with respect to V, then D is umbilical with respect to V,
and vice versa.

Proof. For X,Y € D, by h(X,Y) = h(X,Y) — /\2g(X,Y)LlDl and H = H — AUl
then HgP (X, Y) = HgP(X,Y) — AZUDLgD(X, Y). Therefore, we obtain Proposition 1. [

Thus, by Definition 4, we obtain
Vxii = Vxy + Mw(n)X, (8)
where 17 € T(D+) and X € T'(D). We define
1
8P (A4yX,Y) = g" (B(X,Y), 1), ©)

where A, : T(D) — I'(D) is the shape operator with respect to V. Let Lyn = nb* Vxn;
then, V1 = nPVxn + Ly, and so we can get the Weingarten formula with respect to V

nPVxn = —AyX, Vxn=—A,X+Lxy, (10)

where Ly : T(D) x T'(D+) — I'(D+) is a metric connection on D+ along T'(D). Let gﬂ =
(Ay — Mw(n))T; then, by (8) and (10), we have the Weingarten formula with respect to V

Vi = —AyX+ Ly, (11)
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Given X1, Xp, X3 € T'(TM), we define the curvature tensor R with respect to v
R(X1,X2)X3 1= Vx,Vx, X3 — Vx,Vx, X3 — 6[xl,xz]Xs- (12)
Given X1, X3, X3 € T'(D), we define the curvature tensor RP on D with respect to VD

> =D & =D & = L
RP(Xy,X3) X3 := VR VR X3 — VR, VR X5 — V&,XZ]DX3 — mP[[Xy, X2)P7, X3]. (13)

In (13), RP is a tensor field created by adding the extra term — 7" [[X}, X5]P 5 Xs3].
Given X1, Xp, X3, X4 € T'(D), similarly, we define the Riemannian curvature tensor R
and RP

R(X1, X2, X3,X4) = §(R(X1,X2)X3,X4), RP(Xy, X2, X3, Xs) = g(RP(Xy, X2) X3, Xg). (14)

Theorem 2. If Xy, X, X3, X4 € T(D), we obtain the Gauss equation for D with respect to V

ﬁ(Xll XZ/ X3/ X4) = ﬁD(Xl/XZI XS/ X4) +g(B(X2/ X4)/B(X1/X3)) - g(B(Xl/X4)/B(X2/ X3)) (15)

+8(B(X3, Xy), [X1, Xp]) — Mw(B(X1, X3))8(X2, X4) + Mw(B(X2, X3))8(X1, X4)
— Ag(X1, X3)w(B(X2, X)) + A28(X2, X3)w(B(X1, X4)).

Proof. From (5) and (11), for X3, X5, X3 € T'(D), we have

6X16X2X3 = ﬁg] 6?2)(3 + E(Xl, 622}(3) — AE(XZ,XS)Xl (16)
+ AlW(E(XQ, X3))X + ngl (E(Xz, X3)),
Vx,Vx, X3 = %Qﬁglxg; + B(Xa, §§1X3) = Ap(x,,x,) X2 (17)
+Mw(B(X1, X3))Y + Ly, (B(X1, X3)).
For X1, X, € T(TM), we have
Vx, X2 = Vi, X1 + [X1, Xa] + Mw(X2) X1 — Maw(Xq) Xa. (18)
Then, by (11) and (18), we have
=~ 1 1 1
Vi xot X8 = —Ay ot Xa + Ly, ([X1, X2]P7) + Mw(X3)[X1, Xo]P™ + [[X4, Xo] P, X3]. (19)
By (19) and (5), we get
Vix, %1 X3 = Vix, 0 X3 + Vg 301 X3 (20)
- 6&1/X2]DX3 T g([Xl' XZ}D' X3) = A[X1,X2]DL X3
+LE([X0, X2)P) 4+ Maw(X3)[X1, X2)P + [[X1, Xo]P, Xa).
By (12)—(20), we have
R(X1, X2) X3 =RP (X1, X2) X3 — 7P [[X1, X2]P, X3] + B(X1, VE, X3) (1)

n - D n D
— B(Xz, VX1X3) — B([X1, Xz] ,Xg,) — AE(XZ,Xg,)Xl -+ AE(Xl,X3)X2
+ Ly, (B(X2,X3)) — L, (B(X1, X3)) + AMw(B(X2, X3)) X1 — Mw(B(X1, X3)) X2
1 1
+ A xpt X3~ Ly ([X1,X2]P) — Mw(X3)[Xy, X2]P .
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By the second equality in (6) and (9), (14), (21), we get Theorem 2. [
Corollary 1. If U = 0, then w = 0 and V= V, and we have

R(X1, X2, X3, Xq) =RP (X1, X2, X3, X4) — g(B(X1, X4), B(X2, X3)) (22)
+g(B(X2,X4),B(X1,X3)) +g(B(X3,X4), [XLXZD-

Theorem 3. If X, X, X3 € T(D), we get the Codazzi equation with respect to V

(R(X1,X2)X3)P" =(Lg, B) (X2, X3) — (L, B) (X1, X3) — Mw(X1)B(Xa, X3) (23)

+ Mw(Xp)B(Xy, X3) — P [[X1, Xo]PT, Xa] — LE([X1, X2]P7)
— Mew(Xs3)[X1, X2)P,

where (Lx B)(X2, X3) = Ly, (B(X2, X3)) — B(VE X2, X3) — B(X, V X3).
Proof. By (21), we have

(R(X1, X2)X3)P" = — 2P [[X1, Xo]P, Xa] + B(Xy, VE X5) (24)
— B(X2, VR X3) — B([X1,X2]P, X3) + Ly, (B(X2, X3))
— L, (B(X1, X3)) — LZ([X1, Xo]P7) = Me(X3)[X1, Xa]P

By (18), (24) and (25), we get

(R(X1, X2)X3)P" = — 2P [[X1, Xo]P, Xa] + B(Xy, VE X3) — B(Xp, VR X3) (25)

— B(VR Xo — VR, X1 — Mw(Xp)X; + Mw(X1) X, X3) + Lx (B(X2, X3))
fag €1

— L, (B(X1, X3)) — L5 (X1, X2]P) = Mew(X3)[Xy, Xa]P

Thus, (23) holds. O

Corollary 2. If U = 0, then we have

(R(X1,X2)X3)P" =(Ly, B)(X2, X3) — (L, B) (X1, X3) (26)
— 7P [[X1, X)P, Xa] — LE (X, X0 P).

Theorem 4. If X1, X, € T(D), 7 € T(D™), we get the Ricci equation for D with respect to V

(R(X1, Xo)m)P" = —B(Xy, A, Xa) + B(Xp, Ay X1) + RE (X4, X2)p 27)

where

1 1 =
RY (X1, Xo)1 = Ly, Lyt — Ly L, 11 = L xy 07 = 7 Vi xo) 1
Proof. From (5) and (11), we have
Vx, Vi = =Vg (A;X2) — B(X1, AyXz) — A%le + Ly, L, 1, (28)

Vx, Vi = =V (AyX1) — B(X2, AyXq) — ALWXZ + Ly, Lx, 1, (29)
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By 6[X1/X2]17 = 6[X],Xz]Dﬁ + 6 plL1,we have

[X1,X2]
Vixux)l = = Ay (X1, X2]P) + L[lX],XZ]DU + nD6[X1’X2]DiT] + ”Dlﬁ[xl,xz]m 7. (30)
So (27) holds. O
Corollary 3. If U = 0, then we have
(R(X1, X2)p)P" = ~B(X1, AyXa) + B(Xo, AyX1) + R (X, Xo)n,  (31)

where

1 1
RY (X1, Xo)11 = Ly, L, — L, Lx, 1 = Lig, xu0 = T Vi, 3,11

Now, we present the proof of the Chen inequality with respect to D and v. By
(Vxw)(Y) = X(w(Y)) —w(VxY), we let

x(X1, X2) = (Vx,w)(X2) — Mw(X1)w(X2) + %8(551/?(2)60(11)/
B(X1,X2) = @

where X1, Xp € T(TM). In [16], we get

g(X1, Xa) + w(Xq)w(Xa).

R(X11X2/ X3/ X4) = R(X11X2/ X3/ X4) + Ala(Xll X3)g(X2/ X4) - A]“(XZI X3)g(X1/ X4) (32)
— Aa(M = A2)8(Xo, X3) B(X1, Xa) + Ao (A1 — A2)g(X1, X3) B(X2, X4)
+ Azg(Xl, X3)IX(X2, X4) — /\2g(X2, X3)0((X1,X4).

Let {Ei,...,Ey,Eyy1,...,Em} be a local orthonormal frame in M and
D = span{Ej,...,E;}. Andlet A = Y' ; a(E;, Ei),u = Y"1 B(E;, E;). Let M be an m-
dimensional real space form of constant sectional curvature ¢ endowed with the first
generalized semi-symmetric non-metric connection V. The curvature tensor R with respect
to the Levi—Civita connection on M is expressed by

R(X1, X2, X3, Xq) = c{g(X1, X4)8(X2, X3) — (X1, X3)g(X2, X4)}. (33)
By (33) and (35), we get
R(X1, Xp, X3, X4) = c{g(X1, X4)8(X2, X3) — §(X1, X3)8(X2, X4) — A2g(X2, Xa)a (X1, X4) (34)

+ A2 (A — A2)g(X1, X3) B(X2, Xg) — Aa(M — A2)g(X2, X3)B(X1, X4)
— Ma(Xz, X3)8(X1, Xa) + A2g (X1, X3)a (X2, Xy4).

Let IT C D, be a two-plane section. Denote by KP(I1) the sectional curvature of D
with the induced connection VP defined by

~ 1 ~ =
KP(IT) = 5[RP(Ey, By, By, E1) — RP(Ey, Ea, By, Ba)), (35)

where E;, E; are orthonormal bases of IT and KP (IT) is independent of the choice of E1, Es.
For any orthonormal basis {Ey,...,Es} of D, the scalar curvature TP with respect to D and
VP is defined by

~ 1 ~
TD =5 Z RD(Ei/ E]/ E]/ El) (36)
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Let Eq, E; be the orthonormal bases of II C D such that the following definitions are
independent of the choice of the orthonormal bases:

Z 8(B(E;, E), [Ej, Ei]), 7
1<1]<n
qn=NM ;Az (a(Ex, 1) +a(Ey Ea)] — 58(B(Ey, Ea) — B(Ey E), [Ey Eal)  (39)
&()\1 _ Az)[ﬁ(ElrEl) + 'B(EZ, EZ)] + );2[ (B(El/ El)) + CU(B(EZ/ EZ))]
+ﬁ[ (B(E1, E1)) + w(B(Ey, E2))].

2

Theorem 5. Let TM = D @ D+, dimD = n_> 3, and let M be a manifold with constant
sectional curvature c endowed with a connection V; then, we get the Chen inequality:

~ = n+1)(n—-2 A +A A
p_go(rn) < ¢ )2( o - (= 1A = (= Ag) (n— D
Y M By abLaly =2 1ypn
> (n —1)nw(B) > (n—1nw(B)+ A~ +Q" + 20— 1) | H]| +2||B|| . (39)
where ||B|]? = 21] 18(B(E;, E;), B(E;, Ej)) is the squared length of B and |B||? =

ii—18(B B(E;, Ej), B(E,, E;)) is the squared length of B.

Proof. We choose the orthonormal bases {E,...,E,} and {E,.1,...,En} of D and D+,
respectively, such that IT C D = span{E;, E; }. By Theorem 2, (34) and (35), we obtain

m
RP(I1) =c— Q"+ Y [hjyhby — Hiphty). (40)
r=n+1
Then, we get
® -1 Y RP(E,E,E,E) (41)
1<i#j<n
_ n(nz— 1)C M ;—)\2( 1A — &()\1 Ap)(n—1)p — %(n —1)nw(B)
M

-5 (n=1)nw(B) B) + AP + 2 Y [WH — L]

ii'"jj ijyi
r=n+11<i<j<n

Thus,
~ ~ n+1)(n—2 A+ A A
N R R L A B IR
~ 20— 1w (B) ~ 2L (n — w(B) + AP + Q1
m
+ ) (W +hy) Y K+ Y MR- Y HhG Rk
r=n+1 3<j<n 3<i<j<n 1<i<j<n

By Lemma 2.4 in [22], we get

il 2
() ¥ ome ¥ g < D e @)

r=n+1 3<j<n 3<i<j<n ( )
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We note that

m
Y. = Y M+ ] (43)
r=n+1 1<i<j<n
m
= 2 [— 2 hqjh]r'l_ Z hfj ]r'i}
r=n-+1 3<j<n 2<i<j<n
i 5 (1}, + () y (h¥j)2+(h}i)2]
< — I 4 —
r=n+1 3<j<n 2 2<i<j<n
m (h )%+ (h7,)? (B2 4+ (H)?2 n ()2 ()2 + (KL)2
SE[Z 1j j1 + Z ij ji +Z(zz)+(12) (21)]
r=n+1 3<j<n 2 2<i<j<n 2 i=1 2 2
_IBI?
>

Thus, (39) holds. O

Remark 1. When U € T'(D), that is B = B, we get the following inequality

w0 ko < DD MR g 20, g - 1
Mt Ay, D, an, WPm=2) o 1.0

Corollary 4. If D is totally geodesic with respect to V and h, = h}, = 0, then the equality case
of (39) holds, and vice versa.

Proof. From the equality case of (42) and the equality case of (43), Corollary 3 holds. O

Corollary 5. If D is an integrable distribution—that is if X, Y € I'(D)—then [X, Y] is in T'(D).

Then,
0 _ RP(1) < (”+1)2(”‘2)c— M ;AZ (n—1)A— %(/\1 —Ap)(n—1)p
~ 20— Do(B) — 2 r - Dno(B) + 0"+ BB h + Jy 5)
where
O = M2 0By By) + By E)] + 52 (0 — A)IB(EL Br) + (B2 E2)]  (46)
+ 22 w(B(Es, E1)) + w(B(Ez, E2))] + S [w(B(Ey En)) + w(B(Ez, E2))]

We choose the orthonormal basis {Ej, ..., E,} of D and let X = E;. We define

™=

Ric”(X) = Y RD(X,E, B, X); AP(X) = Y g(B(E, X), [E, X)), (47)
i=2

2

1BX|)? = é{gw(x, E)), B(X,E;)) + g(B(E;, X), B(E;, X))].
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Theorem 6. Let TM = D @ D+, dimD = n > 2, and let M be a manifold with constant
sectional curvature c endowed with a connection V, then

Ric” (X) < (1 —1)c — MA 4+ Aa(X, X) + Ao (1 — n)a(X, X) (48)
#Aa(h =)= DX X) ~ Do~ Dl B(X, )
— no(B) + Meo(B(, 30) + I+ L2 4 AP (),

Proof. By (34)—(36), we have

Ric”(X) = (1 —1)c — MA + Aa(X, X) + Az (1 — n)a(X, X) (49)
—A(A1 = Ap)(n = 1)B(X, X) — Aa(n — 1w (B(X, X)) — Aynw(B)

m n
+Mw(B(X, X))+ Y Y[ — 1] + AP(X).

r=n+1j=2
From [22], we get
n+p n )
)3 Zhhh}]_ 1 " |2 (50)
r=n+1j=2
We note that
n + (h7))? X2
()” < 1) _ 1B
Z Zhgjh]rl< Z Z = (51)
r=n+1j=2 r=n+1j=2

Thus, (48) holds. O

Corollary 6. Ifhgj = —h;l for2 <j<mandhjy —hyy —---— hy, =0, then the equality case
of (48) holds, and vice versa.

Corollary 7. If D is an integrable distribution—that is if X, Y € I'(D)—then [X, Y] is in T'(D).

Then,
Iiich(X) <(m—1ec—MA+Ma(X, X) + 221 —n)a(X, X) + Az2(A — A2) (n — 1)B(X, X) (52)
— Aa(n—1)w(B(X, X)) — Mnw(B) + Mw(B(X, X)) + %ZHHHZ n w

3. Non-Integrable Distributions with the Second Generalized Semi-Symmetric
Non-Metric Connection

Definition 5. For any V € T(TM), let w be a one-form satisfying w(V) = g(U,V); here,
U € I'(TM) is a vector field. Let f1, f» € C®(M); we give the definition of the second generalized
semi-symmetric non-metric connection on M as follows:

VxY = VxY + fLw(X) + hw(Y)X. (53)
Similarly to (2.5), for X, Y € T'(D)
VxY = VyY+B(X,Y), VyY =7PVyyY, (54)

where B(X,Y) = P LVXY, and we call it the second fundamental form with respect to
the second generalized semi-symmetric non-metric connection. Therefore, we have

VY = VRY + fiw(X)Y + frw(Y)X, B(X,Y) = B(X,Y), (55)
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where f1, fo € C*(M).
By (3.3), we have

VR(EP) (Y, Z) = —2w(X)g (Y, Z) — frw(Y)gP (X, Z) — frw(Z)gP(X,Y),  (56)
T2(X,Y) = - [XY]? + (£ - fi)[w(Y)X — w(X)Y].

If D = TM, we have the following results:

Theorem 7. If a linear connection v I'(D) x T'(D) — I'(D) on D satisfies the Equation (56),
then this connection is the uniqueness.

Proposition 3. D is minimal (or umbilical) with respect to \V if and only if D is minimal (or
umbilical) with respect to V.

Let
Vi = —AyX + Ly, (57)
where A, = (A; — fow(1))I. Then, by the definition of R and R°, we get
Theorem 8. If X1, X, X3, X4 € I'(D) and ny € T (D), we have

=D

1
R(X1, Xp, X3, X4) = R (X1, X, X3, Xy) — 72 [[X1, X2]P", Xa] — g(B(X1, X3), B(X2, X3)) (58)

+g(B(X3, Xa), [X1, X)) — frwo([X1, X2]P)g(X3, Xa) — fog(Xa, Xa)w(B(X1, X3))
+ 8(B(X2, X4), B(X1, X3)) + f28(X1, Xg)w(B(X2, X3)).

(R(X1,X2)X3)P" =(Lx, B)(Xa, X3) — (L, B) (X1, X3) (59)

+ (fi — f2)w(X1)B(V) + (fo — fi)w(X2)B(X1, X3) — 72" [[X4, Xa]P, Xs]
— L (X1, X)) + (fi — fo)w(Z)[X1, )P,

+—1 +1 D <D
where (LXlB)(Xz, X3) = LXI(B(Xz, Xg)) - B(VX1X2, X3) - B(Xz, VX1X3>'

— — — 7l
(R(X1, X2)y)P" = —B(X1, A, X2) + B(Xp, A,X1) + R" (X1, X2)7, (60)

where

=L+ =L =1 -1 =L -1 1=
R™ (X1, X2)y := L, Lx,)1 — Ly, Lx, 1 — Lix, xo0f1 = T2 Vix, 171

Remark 2. We use the equality VxY = VI;?Y + B(X,Y) to prove Theorem 7. We use the equality
VxY = VY + B(X,Y) to prove Theorems 1-3. This is the difference between the two cases.

We may define KD(H), TP, and for X, Y € T(TM), we obtain
a1 (X,Y) = (Vxw)(Y).

Similarly, let Ay = Y1 a1(E;, E;). In [17], for X4, X2, X3, X4 € T(D), we have

R(X1, X5, X3, X4) = R(X1, X2, X3, Xy) — fixr(, X2, X1)8(Z, W) + fra1(X1, X2)8(X3, X4) (61)

— for1 (X, X3)8(X1, Xa) + foa1 (X1, X3)8(Xo, X4) + frw(Xo)w(Xa)g(X1, Xa)
— fw(X1)w(X4)g (X2, X3).
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Let M be an m-dimensional real space form of the constant sectional curvature ¢ endowed with
the second generalized semi-symmetric non-metric connection V. By (33) and (61), we get

R(Xy, Xo, X3, Xy) = c{g(X1, X4)8(X2, X3) — g(X1, X3)8(Xa, X4) } — fra1 (X2, X1)8(X3, Xg) (62)
+ fia1 (X1, X2)8 (X3, X4) — fonq (X2, X3)8 (X1, X4) + forr (X1, X3)8(X2, X4)
+ fw(X)w(Z)g(X1, Xy) — fFw(X1)w(X3)g(Xa, Xa).

Let
tr(aq|r1) = a1(Eq, E1) + a1 (E2, Ez), tr(B|m) = B(E1, E1) + B(E2, Ep), (63)
Qs — _%gw(gl,}sg ~ B(Ex, 1), [E1, Ea)),
tr(w?|r7) = w(E}) + w(E3).

Theorem 9. Let TM = D @ D+, dimD = n > 3, and let M be a manifold with constant
sectional curvature c endowed with a connection V, then

_ 2
7P —KD(H) < Wc — %(n — 1A — %n(n —1Dw(H) + %(n —1)n  (64)
Lo ln) + (Bl + 42 + 0 1+ L - 1)y

2

n?(n —2) s 1, o
WHHH +§||B||~

Proof. We choose orthonormal bases {E;,---,E,;} and {E,.1,---,Eu} of D and D+,
respectively. Let Eq, Ep be the orthonormal bases of I1 C D. By (62), we obtain

Lo+

R(E1, Ea, By, Ey) = —c+ foar (Ey, E1) — fw(E1)*. (65)
By (58), we have
—D
R (EI/ Ej, Eq, Ez) =—C +f2061 (El, El) — f22w<El)2 +g(B(E1,E2),B(E2, El)) (66)

— 8(B(E1, Eq), B(E2, E2)) + fow(B(Ey, E1)) — §(B(E1, E2), [E1, E2)).

Similarly, we have

RP(Ey, Ex, Ea, E1) =¢ — foa1 (Ep, E2) + f3w(Es)? — §(B(Ey, E2), B(Es, Ey)) (67)
+ g(B(E1, E1), B(E2, E2)) — fow(B(Ey, E2)) — §(B(Ez, E1), [E1, E2]).

Thus, we obtain

R®(11) =c ~ Zte(aaln) ~ Zg(te(Blmm), 1) (68)
4 %tr(w &) + Y [Hiyhyy — hiphby).
r=n+1

Similarly to (67), we have

R (EZIE]/E]/E) f2‘X1( jr ])+f2w(E) g<B(E E) B(E]/El)) (69)
+g(B(EirEz)/B( jr ])) frw(B ( ))_g(B(Eer) [EUE]D
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Then,

1
D __
T = §1<Z R (EUE]/E]/E> (70)

<i#j<n
= an_l)c— 2(11—1))\1 f2 n(n—1)w(H)+ AP
f2 h}’ hr _ h}’ hl’
’)/ + 2 Z ii'"jj ij ]1]

r=n+11<i<j<n

where = Z]” 1 w(Ej)?. Thus,

?D—KD(H):WC—%M—UA 20 = 1) (H) (71)

2
- %tr(alln) + %g(tr(Bm), u)+ AP + o' %(n —1)y

m
Yo [ Y Hphy—hphh,— ) hGhG A+ R

r=n+1 1<i<j<n 1<i<j<n

Thus, (64) holds. O

Corollary 8. If D is totally geodesic with respect to V and hl, = h; = 0, then the equality case
of (3.12) holds, and vice versa.

Corollary 9. If D is an integrable distribution—that is, if X,Y € T'(D)—then [X,Y] is in T'(D).
Then,

2 — kP11 < (n+D)n=2) Q(n —1)A — én(n ~1)w(H) + fzzz(n ~1)n  (72)

2 2
+ L) + Zote(im) + E -1
7’12 n—
- Lirte ) + Fo =2 IR + 51181

Theorem 10. Let TM = D @ D+, dimD = n>2 and let M be a manifold with constant
sectional curvature c endowed with a connection V; then,

Ric”(X) < (n—1)c — fodr + for1 (X, X) — fonw(H) (73)
2 X112
+ Fao(B(X, X)) + By + B+ i+ B 4 an (),
Proof. By (69), we have

Ric” (X) = (n—1)c — ol + a1 (X, X) — fonw(H) (74)
X112 m n

+ fw(B(X, X)) + f29 + fAw(X)? 4+ AP(X) + @ + ) 1 ;[ uhj; — by -
r=n+1j=

Thus, (73) holds. O

Corollary 10. If hqj = —h]r.1 for2 < j<mnandhjy —hy, — -+ — hy, = 0, then the equality case
of (73) holds, and vice versa.
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Corollary 11. If D is an integrable distribution—that is, if X, Y € T'(D)—then [X,Y] is in (D).
Then,

Ric” (X) < (n—1)c = oh1 + o (X, X) — fonw(H) (75)
|BX |12

2
+ fo0(B(X, X)) + fy + fo(X)? + L[ H[2 + 1=

4. Examples

Example 1. Let S® be a unit sphere and dimS® = 3, which we consider as a Riemannian manifold
endowed with the metric induced from R*. Denote by TS® = 3 the tangent space of S°; we choose
an orthonormal basis X1, Xo, X3 of TS3 at each point, which satisfies

(X1, Xo] =2X3, [X1,X3] = —2Xp, [X2, X3] = 2X;. (76)
Let V be the Levi-Civita connection on S®. By (76) and the Koszul formula, we have

VX1X2 = X3, VX2X1 =—X3,, VX1X1 = VXZXZ = VX3X3 =0, (77)
Vx, Xz =—-X3, Vx, X1 =X, Vx,Xs=-VxX;=X.

Consider a non-integrable distribution D1 = span{ Xy, X, }, then, we can get a metric of D;.
Let U = X1 + X3. By (77), we have

V%X]- =0, Vi,j=1,2, B(Xy,X1) =B(X2,Xp) =0, (78)
B(Xy, X2) = X3, B(Xp,Xq) = —Xs.

By (6), we obtain
VEY = VY + 419(X1, V)X — A28(X, Y) X1, B(X,Y) = B(X,Y) — A28(X,Y)X3. (79)

specially, let Ay,Ay be constant.
Thus,

@%Xl = (M —M2)Xy, ?Q;Xz =0, @%Xl = MX, (80)

ﬁ%xz = —AXi, B(Xq,X1) =—-MAX3, B(Xy,Xp) = X3,
B(Xp, X1) = —X3, B(Xp, Xp) = —AX3, H=—1X;.
By (13), (38), (39) and (80), we have

~71 ~pl
RP (X1, X)Xy = [AM (A — M) —4]Xo, RP (X1, X2)Xo = [Aa(A — Ap) +4]X;,  (81)

_ 2 _ 2
RP'(Dy) = 4+ (A1 —A2) D (M —22)%
2 2
By (54), we have
V'Y = VRIY + fig(Xy, X)Y + f8(X1, V)X, B(X,Y) = B(X,Y). (82)

where f1,f» are constant.
Thus,
D1 _ D1 _ D1 7 S Dy 7
Vx, X1 = (i+ L)X, VxXo=fiXo, Vx,X1=fXo, VXo=0 (83)
B(X1,X1) =0, B(Xy,Xp) = X3,

B(X3,X1) = —X3, B(Xp,X»)=0,
*Dl *Dl
R (X1, X0)Xy = (=4 — f3)Xy, R~ (X1, X2)Xo = 4X.
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Example 2. Let M = R x S3 and D' = span{Xy, Xp} and TS® = D' @ DV, Let f(t) €
C*®(R) without zero points. Let 71 : R x §* — R; (t,x) — tand mp : R x S® — S3; (t,x) — x.
Let

g = midl? @ f2rgeP @ migP" (84)
D = i} (TR) @ m3DY; ¢P = midt? @fzrc;ng,
where 7t dt?, 7T} ng, T ng'L denote the pullback metrics of dt?, ng, gDM and 7t (TR), 73 D!

denote the pullback bundles of TR, D'. We call (D, gP) the warped product distribution on M and
denote N/ as the Levi-Civita connection on (M, g}w ); then, by the Koszul formula and (84), we get

f f f
Vi =0, V)X = X V0 = X V) X = X (85)
fl
Vo = X V) X3 = Vi o =0, Vi X1 =V X =—ffa,
X, 1
Vi Xo=Xs, Vi Xi=-Xs V4 Xs= ~7 VX = (2~ F)Xz'

1

f2

_ Xy
=

where 3y = & and 3¢(f) = f'.
Let D = span{ds, X1, X2}, by (85), we have

V4, X3 Vi Xa= (5 -2X1, Vi Xs=0.

Da _ D _ fl D = fl D _ Ji/
vat t — 0, Vatxl - f Xl/ VX] t — f Xl/ vatXZ - f XZ/ (86)
!
ngat = ]}Xz, V%Xl = VQZXQ = _ff/at/

VR X2 =0, VR X4 =0

For X,Y € T(D), let Ey, E, E3 are orthonormal bases of (D, gP), and we define the Ricci
tensor of D by RicP (X, Y) = Y2_, ¢P(RP (X, E)Y, Ex). Then,

RicP (9;,0;) = 2jzﬂ,RicD(xl,Xl) =RicP(Xp, X2) = ff" + (f))* — 4, (87)

RicP (9;, X1) = RicP (9, X,) = RicP (X;,9;) = RicP? (Xp,0¢) = 0;
Ric? (X1, Xp) = RicP (X5, X1) = 0.

For X,Y € T(D), if Ric? (X, Y) = cogP (X, Y), we say that (D, g") is Einstein.

Theorem 11. (D, gP) is Einstein with the Einstein constant ¢ if and only if
(1) ¢g=0, f(t)=2t+c; or f(t)=—-2t+cy,

)

(2) >0, f(t)=—=2 e\/?t—i—cze*\/jt,

- C2C0

(3) ¢g <0, f(t)=cycos(y/—2t) + cpsin(y/ —52t), ¢ +c3 = —%.
where c1, ¢y are constant.

Proof. By (87), (D, gP) is Einstein with the Einstein constant cy if and only if

f'=3f=0 (58)
FF7+(f1)? =4 =cof? (89)
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If cg = 0, by (88), then f = cox + c1. Using (89), then ¢; = 2,0r — 2, and so we get
case (1).
If cg > 0, by (88), then f = cle\/gt + Cze_ﬁt- Using (89), then (f')* = 4+ 2f2,

soc] = % and we get case (2).

If cg < 0, by (88), then f = cycos(y/ —52t) + cosin(y/ —2t). Using (f')*> = 4+ 92,

we get C% + c% =— %, and so case (3) holds. O

Let U = 0, then

VRY = VRY 4+ A1(3, Y)X — A2g(X, Y)d:, B(X,Y) = B(X,Y). (90)
where Aq,A; are constant.
By (90), we get
SDA _ <D _Ji <D _Ji SD _]1
Vatat = (Al )\z)at, Vatxl = f X1, VX]E)t = (f +)L1)X1, vatXQ = fXZ, (91)
~ , ~ ~
VR0 = (J; +A1)Xp, VR Xy =VEXo=(—ff —Aaf*)0y,

VR X2 =0, Vg X;=0,
and

Ric” (3, 9;) = 2[f//+fA2f, T A (A — A1), 92)
Ric” (X1, X;) = Ric" (X2, X2),
= 420 ff 4+ 20 A0 2 — Mo f2 + (f))? + Aaff — 4,
Ric” (35, X1) = Ric (3, X2) = 0,

Ric (X,8:) = Ric (X, 3;) = 0;

Ric (X1, X2) = Ric (Xa, X;) = 0.

So (D,gD, %D) is mixed Ricci flat.

By (55) and (86), we have
=D =D f' =D f' =D f'
Vo0t = (fi + f2)0r, Vy,Xq = (7 +f1)X1, Vx,0r= (7 +f)X1, Vg, X2 = (7 + f1)Xa, (93)
V2, = <f; +h)Xe, VX = VX = —ffa,

=D =D
VXle - 0, VX2X1 - 0
. . < . - <D
According to the computation of VP, we can obtain the Ricci tensor of V.

Example 3. Let (H3, gpy,) be the Heisenberg group Hz endowed with the Riemannian metric g;
we choose an orthonormal basis {e1.e;.e3} of (Hz, §H,) which satisfies the commutation relations

le1,e2] =e3, [e1,e3] =0, [ex,e3] =0. (94)
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By the Koszul formula, we can get the Levi—Civita connection V of Hj:

1 1
~ €3/ v@zel = _563/ (95)

nge]‘ :0/ 1 §j§3, Velezz 5

1
v€1e3 = vEg.el = _562/ VEZEB = v€332 = <e1.

2

Let D = span{ey, ez}, by (95), then Vgej =0,1<i,j<2 LetU=e1+ep+es, then

Vder = (A —Ap)er —Aaea, Viea=Mer, VBer =Mex, VEer = (A — Az)ex — Asey, (96)
~ ~ ~ 1 ~ 1
B(ey,e1) = B(ey,e2) = —Azes, Bley,e2) = 56 B(ep,e1) = —56

ﬁD(el,ez)el = (/\% — )\%)el — (M = )\2)262,
RP(e1,e2)er = (A1 — Ag)%er + (AT — Ad)es,

so (D,gP,VP) is flat when Ay = Ay. Similarly, we have
VPei = (fi+ f)er, VDer= frer+ fieo, VDe1 = fier+ foeo, VDer = (fi+ fo)ea, 97)
RP(e1,e0)e1 = RP(e1,e5)en = f2(eq — e3).
Example 4. Let M = R x Hz and D' = span{ey,e;} and TH3 = D' @ D', where Hj is the
Heisenberg group. Let f(t) # 0 € C*(R) forany t € R. Let my : R x H3 — R; (t,x) — t and
7y : R x H3 — Hs; (t,x) — x. Let
g = mjde® @ el @ migP; (98)
D = 7} (TR) ® m;3DY; ¢P = mjdt? @ f2r5¢P

The Levi-Civita connection NV of (M, g}/f ) is given by

/ / /
Vi =0, Ve = Fe, vior = i V] er= £, (99)
f f £
V4o, ’;_62, V)es = V6o =0, Vler=Vie =—ffa,
1 1 e 1
v£132 = 553/ v{;el = —533/ V£133 = —sz/ Vé €1 = ﬁezl
€1 1
V'£2€3 = 2f2/ v{:;ez = ?ell v£383 = 0.

Let D = span{d;, ey, e }; by (99), we have

f f f
V(-,Dtat = 0 Vatel —eq, Vg = =1, VaDt€2 —ey, (100)
f f f
!
VDo, = ]}ez, VDer = Ve =—ff,

Vier =0, VDer =0.
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The results of the Ricci tensor on D are as follows:

RicP (9;,9;) = 2jfm,RicD(e1,el) =RicP(ep,e2) = ff" + (f')% (101)

Ric” (31, e1) = Ric® (31, €2) = Ric” (e1,9¢) = Ric” (e, 9) = 0;
RicD(el,ez) = RicD(ez,el) =0.
Theorem 12. (D, gP) is Einstein with the Einstein constant cq if and only if
(1) co=0, f(t)=cy,
@) >0, f(t)=ceV T or f(1) = e VE,

where c1, ¢y are constant.

Proof. By (101), (D, gD ) is Einstein with the Einstein constant ¢ if and only if

f'=2f =0, (102)
FF"+ ()2 = cof?. (103)
If o = 0, by (102), then f = cyx + ¢1. Using (103), then ¢, = 0, and so we get case (1).

If ¢ > 0, by (102), then f = cle\@t + cze‘\@f. Using (4.28), then (f')> = 22, so
c1 = 0orcy =0, and we get case (2).

If cp < 0, by (102), then f = cycos(y/ 52t) + cpsin(y/ 52t). Using (f')? = L2, we
get c; = cp = 0. However, f # 0; thus, in this case there is no solution. [

Theorem 13. (D, gP)isa distribution with a constant scalar curvature Ag if and only if
(1) A=0, f(t)= (czt—i-cl)
(2) Ap>0, f(t) = cpe \/7t + cpe” 3A0t

(

nt.

(3) Ay <O, f()

clcos(\/—Tt) + czsm( —%t))%,
where ¢y, cp are constant

Proof. By (101), we have

sP = 4J;N + 2(1;2)2 = Ao. (104)

Let f(t) = w(t)% and by (104), we get w” (t) — 3Aow(t) = 0. By the elementary
methods for ordinary differential equations, we prove the above theorem. [

Let U = 9¢, By (100), we get

. ! . !/ . !/
V50 = (M —A)dr, Vher = j}el, VDo = (]}+A1)e1, Vgezzj}ez, (105)
, ~

V00 = (f - der, Vs = Ber = (1 2202,

Vge;_ = VDe1 =0.

Theorem 14. (D, g7, VD) is a distribution with constant scalar curvature Ag for U = 0 if and
only if
A +A A1 +A
1) Ao=& f(t) = (cre= 22 + e~ 721,
—(Ay+Ap) —(A )
@) Ag>E f(t) = (cre T2 ope B2
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M

A+ A —
(3) Ao <& f(t) = (cre” " eos(Vo ) + cpe H P sin(Yy )
where 1, c; are constant and & = —%( A2 =273 —7AAg), 17 = 4A2 — 203 —7AA0 + %/\0.

Proof. By (105), we have

D = 4f; 1 +fA2)f (1}2) 4 (6A1As — 202 — 2A2). (106)

Let f(t) = w(t)% and by (106), we get w” (t) + (A1 + A2)w' (£) + 2 (6A1A2 — 242 —2A2 —
Ao)w(t) = 0. By the elementary methods for ordinary differential equations, we prove the
above theorem. O

By (100), we have

+ fi)e1, v?at = (J;

; + fa)e1, (107)
<D <D
+f2)€2, Velel = VL,ZEZ = *ff,at,

vaDtat = (f1 +f2)at, Vgel = (J},

+f1)€2,v at (L,

vanz = (f f

f
Velez = V 61 =0.

Then, we get

f1o U2 RS
_4f+2f 7 —2f3. (108)

By Theorem 14, we have

Theorem 15. (D, g ,VD) is a distribution with a constant scalar curvature Ao for U = 9y if and
only if
(1) Ao=—8f2, f(t) = (cre™ 2 +cpte™S21)3S3,

@) Ao > -8, F(t) = (e TV 4 e VA ER,
(3) Ay < —%fzz, f(t) = (cle*fztcos(\/ —4f22 — %t) + CZe*thsin(\/—élfz2 — %t))gfzz,
n

where c1, ¢y are constant.

5. Conclusions and Future Research

For a Riemannian manifold with a semi-symmetric non-metric connection, the induced
connection on a submanifold is also a semi-symmetric non-metric connection. The Gauss,
Codazzi, and Ricci equations for distributions are a generalization of the case of submani-
folds. Therefore, in this paper, we give the definition of the first generalized semi-symmetric
non-metric connection and the second generalized semi-symmetric non-metric connec-
tion. The distribution can be viewed as a submanifold, so the corresponding metric of the
Riemannian manifold distribution and orthogonal distribution are obtained. Then, by the

definition of an non-integrable distribution, we define the curvature tensor RP(or FD) on
D with respect to VP (or V). By computation, we obtain the Gauss, Codazzi, and Ricci
equations for non-integrable distributions in a Riemannian manifold with the first general-
ized semi-symmetric non-metric connection and the second generalized semi-symmetric
non-metric connection, respectively. For a two-plane section 11 C D, we define the sectional

curvature KP (IT)(or KD(H) of D with the induced connection V2 (or VD) and the scalar

curvature 72 (or TP )with respect to D and vb (or VD). Then, we obtain the Chen inequal-
ities in both cases and give the equality case. We also give the results of the integrable
distribution. Moreover, some properties of a totally geodesic and umbilical distribution are
discussed in this paper.

In following research, we will focus on the Lorentzian metric of distributions.



Symmetry 2021, 13, 79 19 of 19

Author Contributions: Writing—original draft, T.W.; Writing—review and editing, Y.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China: No.11771070.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The author was supported in part by NSFC No.11771070. The author thanks the
referee for his (or her) careful reading and helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hayden, H.A. Subspaces of a space with torsion. Proc. Lond. Math. Soc. 1932, 34, 27-50. [CrossRef]

2. Yano, K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970, 15, 1579-1586.

3. Imai, T. Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection. Tensor 1972, 23, 300-306.

4. Imai, T. Notes on semi-symmetric metric connections. Tensor 1972, 24, 293-296.

5. Nakao, Z. Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 1976,
54, 261-266. [CrossRef]

6. Gozutok, A.; Esin, E. Tangent bundle of hypersurface with semi symmetric metric connection. Int. J. Contemp. Math. Sci. 2012,
7,279-289.

7. Demirbag, S. On weakly Ricci symmetric manifolds admitting a semi symmetric metric connection. Hace. J. Math. Stat. 2012,
41,507-513.

8.  Agashe, N.S,; Chafle, M.R. A semi-symmetric non-metric connection on a riemannian manifold. Indian J. Pure Appl. Math. 1992,
23, 399-409.

9.  Agashe, N.S,; Chafle, M.R. On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor
1994, 55, 120-130.

10. Synge, J.L. On the Geometry of Dynamics. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1927, 226, 31-106.

11.  Synge, ].L. Geodesics in non-holonomic geometry. Math. Ann. 1928, 99, 738-751. [CrossRef]

12.  Munoz-Lecanda, M. On some aspects of the geometry of non integrable distributions and applications. J. Geom. Mech. 2018,
10, 445-465. [CrossRef]

13.  Chen, B.Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasg. Math. |.
1999, 41, 33-41. [CrossRef]

14. Chen, B.Y. Mean curvature and shape operator of isometric immersions in real space forms. Glasg. Math. ]. 1996, 38, 87-97.
[CrossRef]

15.  Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568-578. [CrossRef]

16. Mihai, A; Ozgl'ir, C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwanese J.
Math. 2010, 14, 1465-1477. [CrossRef]

17.  Ozgiir, C.; Mihai, A. Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection. Canad.
Math. Bull. 2012, 55, 611-622. [CrossRef]

18. Dobarro, E; Unal, B. Curvature of multiply warped products. ]. Geom. Phys. 2005, 55, 75-106. [CrossRef]

19. Sular, S,; Ozgiir, C. Warped products with a semi-symmetric metric connection. Taiwanese J. Math. 2011, 15, 1701-1719. [CrossRef]

20. Wang, Y. Curvature of multiply warped products with an affine connection. Bull. Korean Math. Soc. 2013, 50, 1567-1586. [CrossRef]

21. Wang, Y. Multiply warped products with a semi-symmetric metric connection. Abstr. Appl. Anal. 2014. [CrossRef]

22. Zhang, P; Zhang, L.; Song, W. Chen’s inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a

semi-symmetric metric connection. Taiwanese J. Math. 2014, 18, 1841-1862. [CrossRef]


http://doi.org/10.1112/plms/s2-34.1.27
http://dx.doi.org/10.1090/S0002-9939-1976-0445416-9
http://dx.doi.org/10.1007/BF01459122
http://dx.doi.org/10.3934/jgm.2018017
http://dx.doi.org/10.1017/S0017089599970271
http://dx.doi.org/10.1017/S001708950003130X
http://dx.doi.org/10.1007/BF01236084
http://dx.doi.org/10.11650/twjm/1500405961
http://dx.doi.org/10.4153/CMB-2011-108-1
http://dx.doi.org/10.1016/j.geomphys.2004.12.001
http://dx.doi.org/10.11650/twjm/1500406374
http://dx.doi.org/10.4134/BKMS.2013.50.5.1567
http://dx.doi.org/10.1155/2014/742371
http://dx.doi.org/10.11650/tjm.18.2014.4045

	 Introduction
	Non-Integrable Distributions with the First Generalized Semi-Symmetric Non-Metric Connection
	 Non-Integrable Distributions with the Second Generalized Semi-Symmetric Non-Metric Connection
	Examples
	Conclusions and Future Research
	References

