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1. Introduction

In [1], the notion of a semi-symmetric metric connection on a Riemannian manifold
was introduced by H. A. Hayden. Some properties of a Riemannian manifold endowed
with a semi-symmetric metric connection were studied by K. Yano [2]. Later, the properties
of the curvature tensor of a semi-symmetric metric connection in a Sasakian manifold
were also investigated by T. Imai [3,4]. Z. Nakao [5] studied the Gauss curvature equation
and the Codazzi–Mainardi equation with respect to a semi-symmetric metric connection
on a Riemannian manifold and a submanifold. The idea of studying the tangent bundle
of a hypersurface with semi-symmetric metric connections was presented by Gozutok
and Esin [6]. In [7], Demirbag investigated the properties of a weakly Ricci-symmetric
manifold admitting a semi-symmetric metric connection. N. S. Agashe and M. R. Chafle
showed some properties of submanifolds of a Riemannian manifold with a semi-symmetric
non-metric connection in [8,9]. In [10,11], the study of non-integrable distributions, as a
generalized version of distributions, was initiated by Synge. In [12], a regular distribution
was shown in a Riemannian manifold.

Besides this, in [13–15], an important inequality was established by B. Y. Chen, called
Chen inequality. In geometry, by studying different submanifolds in various ambient
spaces, we can obtain similar results. In [16,17], Mihai and Özgü presented the relationships
between the mean curvature associated with the semi-symmetric metric connection, scalar,
and sectional curvatures and the k-Ricci curvature. In this paper, we obtain the Chen
inequalities of non-integrable distributions of real-space forms endowed with the first
generalized semi-symmetric non-metric connection and the second generalized semi-
symmetric non-metric connection.

In the literature, we find several works that were conducted with Einstein manifolds
and manifolds involving a constant scalar curvature. In [18], Dobarro and Unal studied
Ricci-flat and Einstein Lorentzian multiply-warped products and constant scalar curvatures
for this class of warped products. In [19–21], the authors obtained some results with Einstein
warped-product manifolds with a semi-symmetric non-metric connection.
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In Section 2, we obtain the Gauss, Codazzi, and Ricci equations for non-integrable
distributions with the first generalized semi-symmetric non-metric connection by estab-
lishing the Gauss formula and the Weingarten formula. Meanwhile, the result of the Chen
inequality is presented. In Section 3, we obtain the Gauss, Codazzi, and Ricci equations
for non-integrable distributions by establishing the Gauss formula and the Weingarten
formula and the second generalized semi-symmetric non-metric connection. Meanwhile,
we obtain the result of the Chen inequality. Finally, in Section 4, some examples based on
non-integrable distributions in a Riemannian manifold with generalized semi-symmetric
non-metric connections are presented.

2. Non-Integrable Distributions with the First Generalized Semi-Symmetric
Non-Metric Connection

Let (M, g) be a m-dimensional smooth Riemannian manifold, where g is the Rieman-
nian metric and ∇ is the Levi–Civita connection on (M, g). For X, Y ∈ Γ(M), denote ∇XY
the covariant derivative of Y with respect to X and represent by Γ(M) the C∞(M)-module
of vector fields on M.

Definition 1. If there are X, Y ∈ Γ(D) such that [X, Y] is not in Γ(D), we say that D is a
non-integrable distribution, where D is a sub-bundle of the tangent bundle TM with a constant
rank n and Γ(D) is the space of sections of D.

Let gD be a metric tensor field in the distribution D and let gD⊥ be a metric tensor
field in the orthogonal distribution to D, such that g = gD ⊕ gD⊥ .

Definition 2. Let πD : TM→ D, πD⊥ : TM→ D⊥ be the projections associated to the tangent
bundle TM; then, ∇D

XY = πD(∇XY) and [X, Y]D = πD([X, Y]) and [X, Y]D
⊥
= πD⊥([X, Y])

for any X, Y ∈ Γ(D).

By [12], we obtain

∇D
f XY = f∇D

XY, ∇D
X ( f Y) = X( f )Y + f∇D

XY, (1)

where X, Y ∈ Γ(D) and f ∈ C∞(M).

∇D
X gD = 0, T(X, Y) := ∇D

XY−∇D
Y X− [X, Y] = −[X, Y]D

⊥
, (2)

and
∇XY = ∇D

XY + B(X, Y). (3)

where B(X, Y) = πD⊥∇XY and B(X, Y) 6= B(Y, X).

Definition 3. For any V ∈ Γ(TM), let ω be a 1-form satisfying ω(V) = g(U, V), here U ∈
Γ(TM) is a vector field. Let λ1, λ2 ∈ C∞(M), we give the definition of the first generalized
semi-symmetric non-metric connection on M

∇̃XY = ∇XY + λ1ω(Y)X− λ2g(X, Y)U. (4)

Let UD = πDU and UD⊥ = πD⊥U; then, U = UD + UD⊥ .

Definition 4. Let

∇̃XY = ∇̃D
XY + B̃(X, Y), ∇̃D

XY = πD∇̃XY, B̃(X, Y) = πD⊥∇̃XY. (5)
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Then,

∇̃D
XY = ∇D

XY + λ1ω(Y)X− λ2g(X, Y)UD, B̃(X, Y) = B(X, Y)− λ2g(X, Y)UD⊥ , (6)

where B̃(X, Y) is called the second fundamental form with the first generalized semi-symmetric
non-metric connection.

Then, by (2) and (6), we obtain

∇̃D
X (gD)(Y, Z) = (λ2 − λ1)[g(X, Z)ω(Y) + g(X, Y)ω(Z)], (7)

T̃D(X, Y) = −[X, Y]D
⊥
+ λ1[ω(Y)X−ω(X)Y].

If D = TM, we obtain the following results:

Theorem 1. If a linear connection ∇̃D : Γ(D)× Γ(D)→ Γ(D) on D satisfies Equation (7), then
this connection is unique.

We choose {E1, . . . , En} as an orthonormal basis of D and let H̃ = 1
n ∑n

i=1 B̃(Ei, Ei) ∈
Γ(D⊥) be the mean curvature vector associated to ∇̃ on D. Similarly, let H = 1

n ∑n
i=1 B(Ei, Ei);

then, H̃ = H − λ2UD⊥ . If H̃ = 0, we say that D is minimal with the first generalized semi-
symmetric non-metric connection ∇̃. If ∇̃γ̇γ̇ = 0, we say that curve γ is ∇̃-geodesic.
If every ∇̃-geodesic with an initial condition in D is contained in D, we say that D is totally
geodesic with the first generalized semi-symmetric non-metric connection ∇̃.

Let h(X, Y) = 1
2 [B(X, Y) + B(Y, X)] and h̃(X, Y) = 1

2 [B̃(X, Y) + B̃(Y, X)]; then, ac-
cording to [12], we obtain the following:

Proposition 1. (1) If D is totally geodesic with respect to the first generalized semi-symmetric
non-metric connection ∇̃, then B̃(X, Y) is dissymmetrical.
(2) When U ∈ Γ(D), H = H̃,U ∈ Γ(D), and vice versa.
(3) If h = HgD (or h̃ = H̃gD), then D is umbilical with respect to ∇ (resp. ∇̃).

Proposition 2. If D is umbilical with respect to ∇, then D is umbilical with respect to ∇̃,
and vice versa.

Proof. For X, Y ∈ D, by h̃(X, Y) = h(X, Y) − λ2g(X, Y)UD⊥ and H̃ = H − λ2UD⊥ ,
then H̃gD(X, Y) = HgD(X, Y)− λ2UD⊥gD(X, Y). Therefore, we obtain Proposition 1.

Thus, by Definition 4, we obtain

∇̃Xη = ∇Xη + λ1ω(η)X, (8)

where η ∈ Γ(D⊥) and X ∈ Γ(D). We define

gD(AηX, Y) := gD⊥(B(X, Y), η), (9)

where Aη : Γ(D) → Γ(D) is the shape operator with respect to ∇. Let L⊥X η = πD⊥∇Xη;
then, ∇Xη = πD∇Xη + L⊥X η, and so we can get the Weingarten formula with respect to ∇

πD∇Xη = −AηX, ∇Xη = −AηX + L⊥X η, (10)

where L⊥X η : Γ(D)× Γ(D⊥)→ Γ(D⊥) is a metric connection on D⊥ along Γ(D). Let Ãη =

(Aη − λ1ω(η))I; then, by (8) and (10), we have the Weingarten formula with respect to ∇̃

∇̃Xη = −ÃηX + L⊥X η, (11)
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Given X1, X2, X3 ∈ Γ(TM), we define the curvature tensor R̃ with respect to ∇̃

R̃(X1, X2)X3 := ∇̃X1∇̃X2 X3 − ∇̃X2∇̃X1 X3 − ∇̃[X1,X2]
X3. (12)

Given X1, X2, X3 ∈ Γ(D), we define the curvature tensor R̃D on D with respect to ∇̃D

R̃D(X1, X2)X3 := ∇̃D
X1
∇̃D

X2
X3 − ∇̃D

X2
∇̃D

X1
X3 − ∇̃D

[X1,X2]D
X3 − πD[[X1, X2]

D⊥ , X3]. (13)

In (13), R̃D is a tensor field created by adding the extra term −πD[[X1, X2]
D⊥ , X3].

Given X1, X2, X3, X4 ∈ Γ(D), similarly, we define the Riemannian curvature tensor R̃
and R̃D

R̃(X1, X2, X3, X4) = g(R̃(X1, X2)X3, X4), R̃D(X1, X2, X3, X4) = g(R̃D(X1, X2)X3, X4). (14)

Theorem 2. If X1, X2, X3, X4 ∈ Γ(D), we obtain the Gauss equation for D with respect to ∇̃

R̃(X1, X2, X3, X4) = R̃D(X1, X2, X3, X4) + g(B(X2, X4), B(X1, X3))− g(B(X1, X4), B(X2, X3)) (15)

+ g(B(X3, X4), [X1, X2])− λ1ω(B̃(X1, X3))g(X2, X4) + λ1ω(B̃(X2, X3))g(X1, X4)

− λ2g(X1, X3)ω(B(X2, X4)) + λ2g(X2, X3)ω(B(X1, X4)).

Proof. From (5) and (11), for X1, X2, X3 ∈ Γ(D), we have

∇̃X1∇̃X2 X3 = ∇̃D
X1
∇̃D

X2
X3 + B̃(X1, ∇̃D

X2
X3)− AB̃(X2,X3)

X1 (16)

+ λ1ω(B̃(X2, X3))X + L⊥X1
(B̃(X2, X3)),

∇̃X2∇̃X1 X3 = ∇̃D
X2
∇̃D

X1
X3 + B̃(X2, ∇̃D

X1
X3)− AB̃(X1,X3)

X2 (17)

+ λ1ω(B̃(X1, X3))Y + L⊥X2
(B̃(X1, X3)).

For X1, X2 ∈ Γ(TM), we have

∇̃X1 X2 = ∇̃X2 X1 + [X1, X2] + λ1ω(X2)X1 − λ1ω(X1)X2. (18)

Then, by (11) and (18), we have

∇̃
[X1,X2]D

⊥X3 = −A
[X1,X2]D

⊥X3 + L⊥X3
([X1, X2]

D⊥) + λ1ω(X3)[X1, X2]
D⊥ + [[X1, X2]

D⊥ , X3]. (19)

By (19) and (5), we get

∇̃[X1,X2]
X3 = ∇̃[X1,X2]D

X3 + ∇̃[X1,X2]D
⊥X3 (20)

= ∇̃D
[X1,X2]D

X3 + B̃([X1, X2]
D, X3)− A

[X1,X2]D
⊥X3

+ L⊥Z ([X1, X2]
D⊥) + λ1ω(X3)[X1, X2]

D⊥ + [[X1, X2]
D⊥ , X3].

By (12)–(20), we have

R̃(X1, X2)X3 =R̃D(X1, X2)X3 − πD⊥ [[X1, X2]
D⊥ , X3] + B̃(X1, ∇̃D

X2
X3) (21)

− B̃(X2, ∇̃D
X1

X3)− B̃([X1, X2]
D, X3)− AB̃(X2,X3)

X1 + AB̃(X1,X3)
X2

+ L⊥X1
(B̃(X2, X3))− L⊥X2

(B̃(X1, X3)) + λ1ω(B̃(X2, X3))X1 − λ1ω(B̃(X1, X3))X2

+ A
[X1,X2]D

⊥X3 − L⊥Z ([X1, X2]
D⊥)− λ1ω(X3)[X1, X2]

D⊥ .
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By the second equality in (6) and (9), (14), (21), we get Theorem 2.

Corollary 1. If U = 0, then ω = 0 and ∇̃ = ∇, and we have

R(X1, X2, X3, X4) =RD(X1, X2, X3, X4)− g(B(X1, X4), B(X2, X3)) (22)

+ g(B(X2, X4), B(X1, X3)) + g(B(X3, X4), [X1, X2]).

Theorem 3. If X1, X2, X3 ∈ Γ(D), we get the Codazzi equation with respect to ∇̃

(R̃(X1, X2)X3)
D⊥ =(L⊥X1

B̃)(X2, X3)− (L⊥X2
B̃)(X1, X3)− λ1ω(X1)B̃(X2, X3) (23)

+ λ1ω(X2)B̃(X1, X3)− πD⊥ [[X1, X2]
D⊥ , X3]− L⊥Z ([X1, X2]

D⊥)

− λ1ω(X3)[X1, X2]
D⊥ ,

where (L⊥X1
B̃)(X2, X3) = L⊥X1

(B̃(X2, X3))− B̃(∇̃D
X1

X2, X3)− B̃(X2, ∇̃D
X1

X3).

Proof. By (21), we have

(R̃(X1, X2)X3)
D⊥ =− πD⊥ [[X1, X2]

D⊥ , X3] + B̃(X1, ∇̃D
X2

X3) (24)

− B̃(X2, ∇̃D
X1

X3)− B̃([X1, X2]
D, X3) + L⊥X1

(B̃(X2, X3))

− L⊥X2
(B̃(X1, X3))− L⊥Z ([X1, X2]

D⊥)− λ1ω(X3)[X1, X2]
D⊥ .

By (18), (24) and (25), we get

(R̃(X1, X2)X3)
D⊥ =− πD⊥ [[X1, X2]

D⊥ , X3] + B̃(X1, ∇̃D
X2

X3)− B̃(X2, ∇̃D
X1

X3) (25)

− B̃(∇̃D
X1

X2 − ∇̃D
X2

X1 − λ1ω(X2)X1 + λ1ω(X1)X2, X3) + L⊥X (B̃(X2, X3))

− L⊥X2
(B̃(X1, X3))− L⊥Z ([X1, X2]

D⊥)− λ1ω(X3)[X1, X2]
D⊥ .

Thus, (23) holds.

Corollary 2. If U = 0, then we have

(R(X1, X2)X3)
D⊥ =(L⊥X1

B)(X2, X3)− (L⊥X2
B)(X1, X3) (26)

− πD⊥ [[X1, X2]
D⊥ , X3]− L⊥Z ([X1, X2]

D⊥).

Theorem 4. If X1, X2 ∈ Γ(D), η ∈ Γ(D⊥), we get the Ricci equation for D with respect to ∇̃

(R̃(X1, X2)η)
D⊥ = −B̃(X1, ÃηX2) + B̃(X2, ÃηX1) + R̃L⊥(X1, X2)η (27)

where

R̃L⊥(X1, X2)η := L⊥X1
L⊥X2

η − L⊥X2
L⊥X1

η − L⊥[X1,X2]D
η − πD⊥∇̃[X1,X2]⊥

η.

Proof. From (5) and (11), we have

∇̃X1∇̃X2 η = −∇̃D
X1
(ÃηX2)− B̃(X1, ÃηX2)− ÃL⊥X2

ηX1 + L⊥X1
L⊥X2

η, (28)

∇̃X2∇̃X1 η = −∇̃D
X2
(ÃηX1)− B̃(X2, ÃηX1)− ÃL⊥X1

ηX2 + L⊥X2
L⊥X1

η, (29)
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By ∇̃[X1,X2]
η = ∇̃[X1,X2]D

η + ∇̃
[X1,X2]D

⊥ η, we have

∇̃[X1,X2]
η = −Ãη([X1, X2]

D) + L⊥[X1,X2]D
η + πD∇̃

[X1,X2]D
⊥ η + πD⊥∇̃

[X1,X2]D
⊥ η. (30)

So (27) holds.

Corollary 3. If U = 0, then we have

(R(X1, X2)η)
D⊥ = −B(X1, AηX2) + B(X2, AηX1) + RL⊥(X1, X2)η, (31)

where

RL⊥(X1, X2)η := L⊥X1
L⊥X2

η − L⊥X2
L⊥X1

η − L⊥[X1,X2]D
η − πD⊥∇[X1,X2]⊥

η.

Now, we present the proof of the Chen inequality with respect to D and ∇̃. By
(∇Xω)(Y) = X(ω(Y))−ω(∇XY), we let

α(X1, X2) = (∇X1 ω)(X2)− λ1ω(X1)ω(X2) +
λ2

2
g(X1, X2)ω(U),

β(X1, X2) =
ω(U)

2
g(X1, X2) + ω(X1)ω(X2).

where X1, X2 ∈ Γ(TM). In [16], we get

R̃(X1, X2, X3, X4) = R(X1, X2, X3, X4) + λ1α(X1, X3)g(X2, X4)− λ1α(X2, X3)g(X1, X4) (32)

− λ2(λ1 − λ2)g(X2, X3)β(X1, X4) + λ2(λ1 − λ2)g(X1, X3)β(X2, X4)

+ λ2g(X1, X3)α(X2, X4)− λ2g(X2, X3)α(X1, X4).

Let {E1, . . . , En, En+1, . . . , Em} be a local orthonormal frame in M and
D = span{E1, . . . , En}. And let λ = ∑n

i=1 α(Ei, Ei),µ = ∑n
i=1 β(Ei, Ei). Let M be an m-

dimensional real space form of constant sectional curvature c endowed with the first
generalized semi-symmetric non-metric connection ∇̃. The curvature tensor R with respect
to the Levi–Civita connection on M is expressed by

R(X1, X2, X3, X4) = c{g(X1, X4)g(X2, X3)− g(X1, X3)g(X2, X4)}. (33)

By (33) and (35), we get

R̃(X1, X2, X3, X4) = c{g(X1, X4)g(X2, X3)− g(X1, X3)g(X2, X4)− λ2g(X2, X4)α(X1, X4) (34)

+ λ2(λ1 − λ2)g(X1, X3)β(X2, X4)− λ2(λ1 − λ2)g(X2, X3)β(X1, X4)

− λ1α(X2, X3)g(X1, X4) + λ2g(X1, X3)α(X2, X4).

Let Π ⊂ D, be a two-plane section. Denote by K̃D(Π) the sectional curvature of D
with the induced connection ∇̃D defined by

K̃D(Π) =
1
2
[R̃D(E1, E2, E2, E1)− R̃D(E1, E2, E1, E2)], (35)

where E1, E2 are orthonormal bases of Π and K̃D(Π) is independent of the choice of E1, E2.
For any orthonormal basis {E1, . . . , En} of D, the scalar curvature τ̃D with respect to D and
∇̃D is defined by

τ̃D =
1
2 ∑

1≤i,j≤n
R̃D(Ei, Ej, Ej, Ei). (36)
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Let E1, E2 be the orthonormal bases of Π ⊂ D such that the following definitions are
independent of the choice of the orthonormal bases:

AD =
1
2 ∑

1≤i,j≤n
g(B(Ej, Ei), [Ej, Ei]), (37)

ΩΠ =
λ1 + λ2

2
[α(E1, E1) + α(E2, E2)]−

1
2

g(B(E1, E2)− B(E2, E1), [E1, E2]) (38)

+
λ2

2
(λ1 − λ2)[β(E1, E1) + β(E2, E2)] +

λ2

2
[ω(B(E1, E1)) + ω(B(E2, E2))]

+
λ1

2
[ω(B̃(E1, E1)) + ω(B̃(E2, E2))].

Theorem 5. Let TM = D ⊕ D⊥, dimD = n ≥ 3, and let M be a manifold with constant
sectional curvature c endowed with a connection ∇̃; then, we get the Chen inequality:

τ̃D − K̃D(Π) ≤ (n + 1)(n− 2)
2

c− λ1 + λ2

2
(n− 1)λ− λ2

2
(λ1 − λ2)(n− 1)µ

− λ2

2
(n− 1)nω(B)− λ2

2
(n− 1)nω(B̃) + AD + ΩΠ +

n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
||B||2. (39)

where ||B||2 = ∑n
i,j=1 g(B(Ei, Ej), B(Ei, Ej)) is the squared length of B and ||B̃||2 =

∑n
i,j=1 g(B̃(Ei, Ej), B̃(Ei, Ej)) is the squared length of B̃.

Proof. We choose the orthonormal bases {E1, . . . , En} and {En+1, . . . , Em} of D and D⊥,
respectively, such that Π ⊂ D = span{E1, E2}. By Theorem 2, (34) and (35), we obtain

K̃D(Π) =c−ΩΠ +
m

∑
r=n+1

[hr
11hr

22 − hr
12hr

21]. (40)

Then, we get

τ̃D =
1
2 ∑

1≤i 6=j≤n
R̃D(Ei, Ej, Ej, Ei) (41)

=
n(n− 1)

2
c− λ1 + λ2

2
(n− 1)λ− λ2

2
(λ1 − λ2)(n− 1)µ− λ2

2
(n− 1)nω(B)

− λ1

2
(n− 1)nω(B̃) + AD +

m

∑
r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − hr

ijh
r
ji].

Thus,

τ̃D − K̃D(Π) =
(n + 1)(n− 2)

2
c− λ1 + λ2

2
(n− 1)λ− λ2

2
(λ1 − λ2)(n− 1)µ

− λ2

2
(n− 1)nω(B)− λ1

2
(n− 1)ω(B̃) + AD + ΩΠ

+
m

∑
r=n+1

[(hr
11 + hr

22) ∑
3≤j≤n

hr
jj + ∑

3≤i<j≤n
hr

iih
r
jj − ∑

1≤i<j≤n
hr

ijh
r
ji + hr

12hr
21].

By Lemma 2.4 in [22], we get

m

∑
r=n+1

[(hr
11 + hr

22) ∑
3≤j≤n

hr
jj + ∑

3≤i<j≤n
hr

iih
r
jj] ≤

n2(n− 2)
2(n− 1)

‖H‖2. (42)
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We note that

m

∑
r=n+1

[− ∑
1≤i<j≤n

hr
ijh

r
ji + hr

12hr
21] (43)

=
m

∑
r=n+1

[− ∑
3≤j≤n

hr
1jh

r
j1 − ∑

2≤i<j≤n
hr

ijh
r
ji]

≤
m

∑
r=n+1

[ ∑
3≤j≤n

(hr
1j)

2 + (hr
j1)

2

2
+ ∑

2≤i<j≤n

(hr
ij)

2 + (hr
ji)

2

2
]

≤
m

∑
r=n+1

[ ∑
3≤j≤n

(hr
1j)

2 + (hr
j1)

2

2
+ ∑

2≤i<j≤n

(hr
ij)

2 + (hr
ji)

2

2
+

n

∑
i=1

(hr
ii)

2

2
+

(hr
12)

2 + (hr
21)

2

2
]

=
‖B‖2

2
.

Thus, (39) holds.

Remark 1. When U ∈ Γ(D), that is B = B̃, we get the following inequality

τ̃D − K̃D(Π) ≤ (n + 1)(n− 2)
2

c− λ1 + λ2

2
(n− 1)λ− λ2

2
(λ1 − λ2)(n− 1)µ

− λ1 + λ2

2
(n− 1)nω(B) + AD + ΩΠ +

n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
||B||2. (44)

Corollary 4. If D is totally geodesic with respect to ∇̃ and hr
12 = hr

21 = 0, then the equality case
of (39) holds, and vice versa.

Proof. From the equality case of (42) and the equality case of (43), Corollary 3 holds.

Corollary 5. If D is an integrable distribution—that is if X, Y ∈ Γ(D)—then [X, Y] is in Γ(D).
Then,

τ̃D − K̃D(Π) ≤ (n + 1)(n− 2)
2

c− λ1 + λ2

2
(n− 1)λ− λ2

2
(λ1 − λ2)(n− 1)µ

− λ2

2
(n− 1)nω(B)− λ2

2
(n− 1)nω(B̃) + ΩΠ +

n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
||B||2. (45)

where

ΩΠ =
λ1 + λ2

2
[α(E1, E1) + α(E2, E2)] +

λ2

2
(λ1 − λ2)[β(E1, E1) + β(E2, E2)] (46)

+
λ2

2
[ω(B(E1, E1)) + ω(B(E2, E2))] +

λ1

2
[ω(B̃(E1, E1)) + ω(B̃(E2, E2))].

We choose the orthonormal basis {E1, . . . , En} of D and let X = E1. We define

R̃ic
D
(X) =

n

∑
i=2

R̃D(X, Ei, Ei, X); AD(X) =
n

∑
i=2

g(B(Ei, X), [Ei, X]); (47)

‖BX‖2 =
n

∑
i=2

[g(B(X, Ei), B(X, Ei)) + g(B(Ei, X), B(Ei, X))].
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Theorem 6. Let TM = D ⊕ D⊥, dimD = n ≥ 2, and let M be a manifold with constant
sectional curvature c endowed with a connection ∇̃, then

R̃ic
D
(X) ≤ (n− 1)c− λ1λ + λ1α(X, X) + λ2(1− n)α(X, X) (48)

+ λ2(λ1 − λ2)(n− 1)β(X, X)− λ2(n− 1)ω(B(X, X))

− λ1nω(B̃) + λ1ω(B(X, X)) +
n2

4
‖H‖2 +

‖BX‖2

2
+ AD(X).

Proof. By (34)–(36), we have

R̃ic
D
(X) = (n− 1)c− λ1λ + λ1α(X, X) + λ2(1− n)α(X, X) (49)

− λ2(λ1 − λ2)(n− 1)β(X, X)− λ2(n− 1)ω(B(X, X))− λ1nω(B̃)

+ λ1ω(B(X, X)) +
m

∑
r=n+1

n

∑
j=2

[hr
11hr

jj − hr
1jh

r
j1] + AD(X).

From [22], we get

n+p

∑
r=n+1

n

∑
j=2

hr
11hr

jj ≤
n2

4
‖H‖2. (50)

We note that

−
m

∑
r=n+1

n

∑
j=2

hr
1jh

r
j1 ≤

m

∑
r=n+1

n

∑
j=2

(hr
1j)

2 + (hr
j1)

2

2
=
‖BX‖2

2
. (51)

Thus, (48) holds.

Corollary 6. If hr
1j = −hr

j1 for 2 ≤ j ≤ n and hr
11 − hr

22 − · · · − hr
nn = 0, then the equality case

of (48) holds, and vice versa.

Corollary 7. If D is an integrable distribution—that is if X, Y ∈ Γ(D)—then [X, Y] is in Γ(D).
Then,

R̃ic
D
(X) ≤ (n− 1)c− λ1λ + λ1α(X, X) + λ2(1− n)α(X, X) + λ2(λ1 − λ2)(n− 1)β(X, X) (52)

− λ2(n− 1)ω(B(X, X))− λ1nω(B̃) + λ1ω(B(X, X)) +
n2

4
‖H‖2 +

‖BX‖2

2
.

3. Non-Integrable Distributions with the Second Generalized Semi-Symmetric
Non-Metric Connection

Definition 5. For any V ∈ Γ(TM), let ω be a one-form satisfying ω(V) = g(U, V); here,
U ∈ Γ(TM) is a vector field. Let f1, f2 ∈ C∞(M); we give the definition of the second generalized
semi-symmetric non-metric connection on M as follows:

∇XY = ∇XY + f1ω(X) + f2ω(Y)X. (53)

Similarly to (2.5), for X, Y ∈ Γ(D)

∇XY = ∇D
XY + B(X, Y), ∇D

XY = πD∇XY, (54)

where B(X, Y) = πD⊥∇XY, and we call it the second fundamental form with respect to
the second generalized semi-symmetric non-metric connection. Therefore, we have

∇D
XY = ∇D

XY + f1ω(X)Y + f2ω(Y)X, B(X, Y) = B(X, Y), (55)
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where f1, f2 ∈ C∞(M).
By (3.3), we have

∇D
X (gD)(Y, Z) = −2 f1ω(X)gD(Y, Z)− f2ω(Y)gD(X, Z)− f2ω(Z)gD(X, Y), (56)

TD
(X, Y) = −[X, Y]D

⊥
+ ( f2 − f1)[ω(Y)X−ω(X)Y].

If D = TM, we have the following results:

Theorem 7. If a linear connection ∇D
: Γ(D)× Γ(D)→ Γ(D) on D satisfies the Equation (56),

then this connection is the uniqueness.

Proposition 3. D is minimal (or umbilical) with respect to ∇ if and only if D is minimal (or
umbilical) with respect to ∇.

Let

∇Xη = −AηX + L⊥X η, (57)

where Aη = (Aη − f2ω(η))I. Then, by the definition of R and RD, we get

Theorem 8. If X1, X2, X3, X4 ∈ Γ(D) and η ∈ Γ(D), we have

R(X1, X2, X3, X4) = RD
(X1, X2, X3, X4)− πD⊥ [[X1, X2]

D⊥ , X3]− g(B(X1, X3), B(X2, X4)) (58)

+ g(B(X3, X4), [X1, X2])− f1ω([X1, X2]
D⊥)g(X3, X4)− f2g(X2, X4)ω(B(X1, X3))

+ g(B(X2, X4), B(X1, X3)) + f2g(X1, X4)ω(B(X2, X3)).

(R(X1, X2)X3)
D⊥ =(L⊥X1

B)(X2, X3)− (L⊥X2
B)(X1, X3) (59)

+ ( f1 − f2)ω(X1)B(V) + ( f2 − f1)ω(X2)B(X1, X3)− πD⊥ [[X1, X2]
D⊥ , X3]

− L⊥X3
([X1, X2]

D⊥) + ( f1 − f2)ω(Z)[X1, X2]
D⊥ ,

where (L⊥X1
B)(X2, X3) = L⊥X1

(B(X2, X3))− B(∇D
X1

X2, X3)− B(X2,∇D
X1

X3).

(R(X1, X2)η)
D⊥ = −B(X1, AηX2) + B(X2, AηX1) + RL⊥

(X1, X2)η, (60)

where

RL⊥
(X1, X2)η := L⊥X1

L⊥X2
η − L⊥X2

L⊥X1
η − L⊥[X1,X2]D η − πD⊥∇[X1,X2]⊥

η.

Remark 2. We use the equality∇XY = ∇D
XY + B(X, Y) to prove Theorem 7. We use the equality

∇̃XY = ∇̃D
XY + B̃(X, Y) to prove Theorems 1–3. This is the difference between the two cases.

We may define KD
(Π), τD, and for X, Y ∈ Γ(TM), we obtain

α1(X, Y) = (∇Xω)(Y).

Similarly, let λ1 = ∑n
i=1 α1(Ei, Ei). In [17], for X1, X2, X3, X4 ∈ Γ(D), we have

R(X1, X2, X3, X4) = R(X1, X2, X3, X4)− f1α1(, X2, X1)g(Z, W) + f1α1(X1, X2)g(X3, X4) (61)

− f2α1(X2, X3)g(X1, X4) + f2α1(X1, X3)g(X2, X4) + f 2
2 ω(X2)ω(X4)g(X1, X4)

− f 2
2 ω(X1)ω(X4)g(X2, X3).
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Let M be an m-dimensional real space form of the constant sectional curvature c endowed with
the second generalized semi-symmetric non-metric connection ∇. By (33) and (61), we get

R(X1, X2, X3, X4) = c{g(X1, X4)g(X2, X3)− g(X1, X3)g(X2, X4)} − f1α1(X2, X1)g(X3, X4) (62)

+ f1α1(X1, X2)g(X3, X4)− f2α1(X2, X3)g(X1, X4) + f2α1(X1, X3)g(X2, X4)

+ f 2
2 ω(X2)ω(Z)g(X1, X4)− f 2

2 ω(X1)ω(X3)g(X2, X4).

Let

tr(α1|Π) = α1(E1, E1) + α1(E2, E2), tr(B|Π) = B(E1, E1) + B(E2, E2), (63)

ΩΠ∗ = −1
2

g(B(E1, E2)− B(E2, E1), [E1, E2]),

tr(ω2|Π) = ω(E2
1) + ω(E2

2).

Theorem 9. Let TM = D ⊕ D⊥, dimD = n ≥ 3, and let M be a manifold with constant
sectional curvature c endowed with a connection ∇, then

τD − KD
(Π) ≤ (n + 1)(n− 2)

2
c− f2

2
(n− 1)λ1 −

f2

2
n(n− 1)ω(H) +

f 2
2
2
(n− 1)n (64)

+
f2

2
tr(α1|Π) +

f2

2
ω(tr(B|Π)) + AD + ΩΠ∗ +

f 2
2
2
(n− 1)γ

− f2

2
tr(ω |2Π) +

n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
||B||2.

Proof. We choose orthonormal bases {E1, · · · , En} and {En+1, · · · , Em} of D and D⊥,
respectively. Let E1, E2 be the orthonormal bases of Π ⊂ D. By (62), we obtain

R(E1, E2, E1, E2) = −c + f2α1(E1, E1)− f 2
2 ω(E1)

2. (65)

By (58), we have

RD
(E1, E2, E1, E2) =− c + f2α1(E1, E1)− f 2

2 ω(E1)
2 + g(B(E1, E2), B(E2, E1)) (66)

− g(B(E1, E1), B(E2, E2)) + f2ω(B(E1, E1))− g(B(E1, E2), [E1, E2]).

Similarly, we have

RD
(E1, E2, E2, E1) =c− f2α1(E2, E2) + f 2

2 ω(E2)
2 − g(B(E1, E2), B(E2, E1)) (67)

+ g(B(E1, E1), B(E2, E2))− f2ω(B(E2, E2))− g(B(E2, E1), [E1, E2]).

Thus, we obtain

KD
(Π) =c− f2

2
tr(α1|Π)− f2

2
g(tr(B|Π), U) (68)

−ΩΠ∗ +
f2

2
tr(ω |2Π) +

m

∑
r=n+1

[hr
11hr

22 − hr
12hr

21].

Similarly to (67), we have

RD
(Ei, Ej, Ej, Ei) =c− f2α1(Ej, Ej) + f 2

2 ω(Ej)
2 − g(B(Ei, Ej), B(Ej, Ei)) (69)

+ g(B(Ei, Ei), B(Ej, Ej))− f2ω(B(Ej, Ej))− g(B(Ej, Ei), [Ei, Ej]).
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Then,

τD =
1
2 ∑

1≤i 6=j≤n
RD

(Ei, Ej, Ej, Ei) (70)

=
n(n− 1)

2
c− f2

2
(n− 1)λ1 −

f2

2
n(n− 1)ω(H) + AD

+
f 2
2
2
(n− 1)γ +

m

∑
r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − hr

ijh
r
ji].

where γ=∑n
j=1 ω(Ej)

2. Thus,

τD − KD
(Π) =

(n + 1)(n− 2)
2

c− f2

2
(n− 1)λ− f2

2
n(n− 1)ω(H) (71)

+
f2

2
tr(α1|Π) +

f2

2
g(tr(B|Π), U) + AD + ΩΠ∗ +

f 2
2
2
(n− 1)γ

+
m

∑
r=n+1

[ ∑
1≤i<j≤n

hr
iih

r
jj − hr

11hr
22 − ∑

1≤i<j≤n
hr

ijh
r
ji + hr

12hr
21].

Thus, (64) holds.

Corollary 8. If D is totally geodesic with respect to ∇ and hr
12 = hr

21 = 0, then the equality case
of (3.12) holds, and vice versa.

Corollary 9. If D is an integrable distribution—that is, if X, Y ∈ Γ(D)—then [X, Y] is in Γ(D).
Then,

τD − KD
(Π) ≤ (n + 1)(n− 2)

2
c− f2

2
(n− 1)λ1 −

f2

2
n(n− 1)ω(H) +

f 2
2
2
(n− 1)n (72)

+
f2

2
tr(α1|Π) +

f2

2
ω(tr(B|Π)) +

f 2
2
2
(n− 1)γ

− f2

2
tr(ω |2Π) +

n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
||B||2.

Theorem 10. Let TM = D ⊕ D⊥, dimD = n ≥ 2, and let M be a manifold with constant
sectional curvature c endowed with a connection ∇; then,

RicD
(X) ≤ (n− 1)c− f2λ1 + f2α1(X, X)− f2nω(H) (73)

+ f2ω(B(X, X)) + f 2
2 γ + f 2

2 ω(X)2 +
n2

4
‖H‖2 +

‖BX‖2

2
+ AD(X).

Proof. By (69), we have

RicD
(X) = (n− 1)c− f2λ1 + f2α1(X, X)− f2nω(H) (74)

+ f2ω(B(X, X)) + f 2
2 γ + f 2

2 ω(X)2 + AD(X) +
‖BX‖2

2
+

m

∑
r=n+1

n

∑
j=2

[hr
11hr

jj − hr
1jh

r
j1].

Thus, (73) holds.

Corollary 10. If hr
1j = −hr

j1 for 2 ≤ j ≤ n and hr
11 − hr

22 − · · · − hr
nn = 0, then the equality case

of (73) holds, and vice versa.
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Corollary 11. If D is an integrable distribution—that is, if X, Y ∈ Γ(D)—then [X, Y] is in Γ(D).
Then,

RicD
(X) ≤ (n− 1)c− f2λ1 + f2α1(X, X)− f2nω(H) (75)

+ f2ω(B(X, X)) + f 2
2 γ + f 2

2 ω(X)2 +
n2

4
‖H‖2 +

‖BX‖2

2
.

4. Examples

Example 1. Let S3 be a unit sphere and dimS3 = 3, which we consider as a Riemannian manifold
endowed with the metric induced from R4. Denote by TS3 = 3 the tangent space of S3; we choose
an orthonormal basis X1, X2, X3 of TS3 at each point, which satisfies

[X1, X2] = 2X3, [X1, X3] = −2X2, [X2, X3] = 2X1. (76)

Let ∇ be the Levi–Civita connection on S3. By (76) and the Koszul formula, we have

∇X1 X2 = X3, ∇X2 X1 = −X3, , ∇X1 X1 = ∇X2 X2 = ∇X3 X3 = 0, (77)

∇X1 X3 = −X2, ∇X3 X1 = X2, ∇X2 X3 = −∇X3 X2 = X1.

Consider a non-integrable distribution D1 = span{X1, X2}; then, we can get a metric of D1.
Let U = X1 + X3. By (77), we have

∇D1
Xi

Xj = 0, ∀i, j = 1, 2, B(X1, X1) = B(X2, X2) = 0, (78)

B(X1, X2) = X3, B(X2, X1) = −X3.

By (6), we obtain

∇̃D1
X Y = ∇D1

X Y + λ1g(X1, Y)X− λ2g(X, Y)X1, B̃(X, Y) = B(X, Y)− λ2g(X, Y)X3. (79)

specially, let λ1,λ2 be constant.
Thus,

∇̃D1
X1

X1 = (λ1 − λ2)X1, ∇̃D1
X1

X2 = 0, ∇̃D1
X2

X1 = λ1X2, (80)

∇̃D1
X2

X2 = −λ2X1, B̃(X1, X1) = −λ2X3, B̃(X1, X2) = X3,

B̃(X2, X1) = −X3, B̃(X2, X2) = −λ2X3, H̃ = −λ2X3.

By (13), (38), (39) and (80), we have

R̃D1
(X1, X2)X1 = [λ1(λ1 − λ2)− 4]X2, R̃D1

(X1, X2)X2 = [λ2(λ1 − λ2) + 4]X1, (81)

K̃D1
(D1) = 4 +

(λ1 − λ2)
2

2
, τ̃D1 = 4 +

(λ1 − λ2)
2

2
.

By (54), we have

∇D1
X Y = ∇D1

X Y + f1g(X1, X)Y + f2g(X1, Y)X, B(X, Y) = B(X, Y). (82)

where f1, f2 are constant.
Thus,

∇D1
X1

X1 = ( f1 + f2)X1, ∇D1
X1

X2 = f1X2, ∇D1
X2

X1 = f2X2, ∇̂D1
X2

X2 = 0 (83)

B(X1, X1) = 0, B(X1, X2) = X3,

B(X2, X1) = −X3, B(X2, X2) = 0,

RD1
(X1, X2)X1 = (−4− f 2

2 )X2, RD1
(X1, X2)X2 = 4X1.
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Example 2. Let M = R× S3 and D1 = span{X1, X2} and TS3 = D1 ⊕ D1,⊥. Let f (t) ∈
C∞(R) without zero points. Let π1 : R× S3 → R; (t, x)→ t and π2 : R× S3 → S3; (t, x)→ x.
Let

gM
f = π∗1 dt2 ⊕ f 2π∗2 gD1 ⊕ π∗2 gD1,⊥

; (84)

D = π∗1 (TR)⊕ π∗2 D1; gD = π∗1 dt2 ⊕ f 2π∗2 gD1
,

where π∗1 dt2, π∗2 gD1
, π∗2 gD1,⊥

denote the pullback metrics of dt2, gD1
, gD1,⊥

and π∗1 (TR), π∗2 D1

denote the pullback bundles of TR, D1. We call (D, gD) the warped product distribution on M and
denote ∇ f as the Levi–Civita connection on (M, gM

f ); then, by the Koszul formula and (84), we get

∇ f
∂t

∂t = 0, ∇ f
∂t

X1 =
f ′

f
X1, ∇ f

X1
∂t =

f ′

f
X1, ∇ f

∂t
X2 =

f ′

f
X2, (85)

∇ f
X2

∂t =
f ′

f
X2, ∇ f

∂t
X3 = ∇ f

X3
∂t = 0, ∇ f

X1
X1 = ∇ f

X2
X2 = − f f ′∂t,

∇ f
X1

X2 = X3, ∇ f
X2

X1 = −X3, ∇ f
X1

X3 = −X2

f 2 , ∇ f
X3

X1 = (2− 1
f 2 )X2,

∇ f
X2

X3 =
X1

f 2 , ∇ f
X3

X2 = (
1
f 2 − 2)X1, ∇ f

X3
X3 = 0.

where ∂t =
∂
∂t and ∂t( f ) = f ′.

Let D = span{∂t, X1, X2}; by (85), we have

∇D
∂t

∂t = 0, ∇D
∂t

X1 =
f ′

f
X1, ∇D

X1
∂t =

f ′

f
X1, ∇D

∂t
X2 =

f ′

f
X2, (86)

∇D
X2

∂t =
f ′

f
X2, ∇D

X1
X1 = ∇D

X2
X2 = − f f ′∂t,

∇D
X1

X2 = 0, ∇D
X2

X1 = 0.

For X, Y ∈ Γ(D), let E1, E2, E3 are orthonormal bases of (D, gD), and we define the Ricci
tensor of D by RicD(X, Y) = ∑3

k=1 gD(RD(X, Ek)Y, Ek). Then,

RicD(∂t, ∂t) =
2 f ′′

f
, RicD(X1, X1) = RicD(X2, X2) = f f ′′ + ( f ′)2 − 4, (87)

RicD(∂t, X1) = RicD(∂t, X2) = RicD(X1, ∂t) = RicD(X2, ∂t) = 0;

RicD(X1, X2) = RicD(X2, X1) = 0.

For X, Y ∈ Γ(D), if RicD(X, Y) = c0gD(X, Y), we say that (D, gD) is Einstein.

Theorem 11. (D, gD) is Einstein with the Einstein constant c0 if and only if
(1) c0 = 0, f (t) = 2t + c1 or f (t) = −2t + c1,

(2) c0 > 0, f (t) = − 2
c2c0

e
√

c0
2 t

+ c2e−
√

c0
2 t,

(3) c0 < 0, f (t) = c1cos(
√
−c0

2 t) + c2sin(
√
−c0

2 t), c2
1 + c2

2 = − 8
c0

.
where c1, c2 are constant.

Proof. By (87), (D, gD) is Einstein with the Einstein constant c0 if and only if

f ′′ − c0

2
f = 0, (88)

f f ′′ + ( f ′)2 − 4 = c0 f 2. (89)
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If c0 = 0, by (88), then f = c2x + c1. Using (89), then c2 = 2, or− 2, and so we get
case (1).

If c0 > 0, by (88), then f = c1e
√

c0
2 t

+ c2e−
√

c0
2 t. Using (89), then ( f ′)2 = 4 + c0

2 f 2,
so c1 = −2

c2c0
and we get case (2).

If c0 < 0, by (88), then f = c1cos(
√
−c0

2 t) + c2sin(
√
−c0

2 t). Using ( f ′)2 = 4 + c0
2 f 2,

we get c2
1 + c2

2 = − 8
c0

, and so case (3) holds.

Let U = ∂t, then

∇̃D
XY = ∇D

XY + λ1g(∂t, Y)X− λ2g(X, Y)∂t, B̃(X, Y) = B(X, Y). (90)

where λ1,λ2 are constant.
By (90), we get

∇̃D
∂t

∂t = (λ1 − λ2)∂t, ∇̃D
∂t

X1 =
f ′

f
X1, ∇̃D

X1
∂t = (

f ′

f
+ λ1)X1, ∇̃D

∂t
X2 =

f ′

f
X2, (91)

∇̃D
X2

∂t = (
f ′

f
+ λ1)X2, ∇̃D

X1
X1 = ∇̃D

X2
X2 = (− f f ′ − λ2 f 2)∂t,

∇̃D
X1

X2 = 0, ∇̃D
X2

X1 = 0,

and

R̃ic
D
(∂t, ∂t) = 2[

f ′′ + λ2 f ′

f
+ λ1(λ2 − λ1)], (92)

R̃ic
D
(X1, X1) = R̃ic

D
(X2, X2),

= f f ′′ + 2λ1 f f ′ + 2λ1λ2 f 2 − λ2 f 2 + ( f ′)2 + λ2 f f ′ − 4,

R̃ic
D
(∂t, X1) = R̃ic

D
(∂t, X2) = 0,

R̃ic
D
(X1, ∂t) = R̃ic

D
(X2, ∂t) = 0;

R̃ic
D
(X1, X2) = R̃ic

D
(X2, X1) = 0.

So (D, gD, ∇̃D) is mixed Ricci flat.
By (55) and (86), we have

∇D
∂t ∂t = ( f1 + f2)∂t, ∇

D
∂t X1 = (

f ′

f
+ f1)X1, ∇D

X1
∂t = (

f ′

f
+ f2)X1, ∇D

∂t X2 = (
f ′

f
+ f1)X2, (93)

∇D
X2

∂t = (
f ′

f
+ f2)X2, ∇D

X1
X1 = ∇D

X2
X2 = − f f ′∂t,

∇D
X1

X2 = 0, ∇D
X2

X1 = 0.

According to the computation of ∇̃D, we can obtain the Ricci tensor of ∇D
.

Example 3. Let (H3, gH3) be the Heisenberg group H3 endowed with the Riemannian metric g;
we choose an orthonormal basis {e1.e2.e3} of (H3, gH3) which satisfies the commutation relations

[e1, e2] = e3, [e1, e3] = 0, [e2, e3] = 0. (94)
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By the Koszul formula, we can get the Levi–Civita connection ∇ of H3:

∇ej ej = 0, 1 ≤ j ≤ 3, ∇e1 e2 =
1
2

e3, ∇e2 e1 = −1
2

e3, (95)

∇e1 e3 = ∇e3 e1 = −1
2

e2, ∇e2 e3 = ∇e3 e2 =
1
2

e1.

Let D = span{e1, e2}, by (95), then ∇D
ei

ej = 0, 1 ≤ i, j ≤ 2. Let U = e1 + e2 + e3, then

∇̃D
e1

e1 = (λ1 − λ2)e1 − λ2e2, ∇̃D
e1

e2 = λ1e1, ∇̃D
e2

e1 = λ1e2, ∇̃D
e2

e2 = (λ1 − λ2)e2 − λ2e1, (96)

B̃(e1, e1) = B̃(e2, e2) = −λ2e3, B̃(e1, e2) =
1
2

e3, B̃(e2, e1) = −
1
2

e3.

R̃D(e1, e2)e1 = (λ2
1 − λ2

2)e1 − (λ1 − λ2)
2e2,

R̃D(e1, e2)e2 = (λ1 − λ2)
2e1 + (λ2

1 − λ2
2)e2,

so (D, gD, ∇̃D) is flat when λ1 = λ2. Similarly, we have

∇̂D
e1

e1 = ( f1 + f2)e1, ∇̂D
e1

e2 = f2e1 + f1e2, ∇̂D
e2

e1 = f1e1 + f2e2, ∇̂D
e2

e2 = ( f1 + f2)e2, (97)

R̂D(e1, e2)e1 = R̂D(e1, e2)e2 = f 2
2 (e1 − e2).

Example 4. Let M = R× H3 and D1 = span{e1, e2} and TH3 = D1 ⊕ D1,⊥, where H3 is the
Heisenberg group. Let f (t) 6= 0 ∈ C∞(R) for any t ∈ R. Let π1 : R× H3 → R; (t, x)→ t and
π2 : R× H3 → H3; (t, x)→ x. Let

gM
f = π∗1 dt2 ⊕ f 2π∗2 gD1 ⊕ π∗2 gD1,⊥

; (98)

D = π∗1 (TR)⊕ π∗2 D1; gD = π∗1 dt2 ⊕ f 2π∗2 gD1
.

The Levi–Civita connection ∇ f of (M, gM
f ) is given by

∇ f
∂t

∂t = 0, ∇ f
∂t

e1 =
f ′

f
e1, ∇ f

e1 ∂t =
f ′

f
e1, ∇ f

∂t
e2 =

f ′

f
e2, (99)

∇ f
e2 ∂t =

f ′

f
e2, ∇ f

∂t
e3 = ∇ f

e3 ∂t = 0, ∇ f
e1 e1 = ∇ f

e2 e2 = − f f ′∂t,

∇ f
e1 e2 =

1
2

e3, ∇ f
e2 e1 = −1

2
e3, ∇ f

e1 e3 = − e2

2 f 2 , ∇ f
e3 e1 = − 1

2 f 2 e2,

∇ f
e2 e3 =

e1

2 f 2 , ∇ f
e3 e2 =

1
2 f 2 e1, ∇ f

e3 e3 = 0.

Let D = span{∂t, e1, e2}; by (99), we have

∇D
∂t

∂t = 0, ∇D
∂t

e1 =
f ′

f
e1, ∇D

e1
∂t =

f ′

f
e1, ∇D

∂t
e2 =

f ′

f
e2, (100)

∇D
e2

∂t =
f ′

f
e2, ∇D

e1
e1 = ∇D

e2
e2 = − f f ′∂t,

∇D
e1

e2 = 0, ∇D
e2

e1 = 0.
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The results of the Ricci tensor on D are as follows:

RicD(∂t, ∂t) =
2 f ′′

f
, RicD(e1, e1) = RicD(e2, e2) = f f ′′ + ( f ′)2, (101)

RicD(∂t, e1) = RicD(∂t, e2) = RicD(e1, ∂t) = RicD(e2, ∂t) = 0;

RicD(e1, e2) = RicD(e2, e1) = 0.

Theorem 12. (D, gD) is Einstein with the Einstein constant c0 if and only if
(1) c0 = 0, f (t) = c1,

(2) c0 > 0, f (t) = c1e
√

c0
2 t or f (t) = c2e−

√
c0
2 t,

where c1, c2 are constant.

Proof. By (101), (D, gD) is Einstein with the Einstein constant c0 if and only if

f ′′ − c0

2
f = 0, (102)

f f ′′ + ( f ′)2 = c0 f 2. (103)

If c0 = 0, by (102), then f = c2x + c1. Using (103), then c2 = 0, and so we get case (1).

If c0 > 0, by (102), then f = c1e
√

c0
2 t

+ c2e−
√

c0
2 t. Using (4.28), then ( f ′)2 = c0

2 f 2, so
c1 = 0 or c2 = 0, and we get case (2).

If c0 < 0, by (102), then f = c1cos(
√
−c0

2 t) + c2sin(
√
−c0

2 t). Using ( f ′)2 = c0
2 f 2, we

get c1 = c2 = 0. However, f 6= 0; thus, in this case there is no solution.

Theorem 13. (D, gD) is a distribution with a constant scalar curvature λ0 if and only if
(1) λ0 = 0, f (t) = (c2t + c1)

2
3 ,

(2) λ0 > 0, f (t) = (c1e
√

3λ0
8 t + c2e−

√
3λ0

8 t)
2
3 ,

(3) λ0 < 0, f (t) = (c1cos(
√
− 3λ0

8 t) + c2sin(
√
− 3λ0

8 t))
2
3 ,

where c1, c2 are constant.

Proof. By (101), we have

sD = 4
f ′′

f
+ 2

( f ′)2

f 2 = λ0. (104)

Let f (t) = w(t)
2
3 and by (104), we get w′′(t) − 3

8 λ0w(t) = 0. By the elementary
methods for ordinary differential equations, we prove the above theorem.

Let U = ∂t, By (100), we get

∇̃D
∂t

∂t = (λ1 − λ2)∂t, ∇̃D
∂t

e1 =
f ′

f
e1, ∇̃D

e1
∂t = (

f ′

f
+ λ1)e1, ∇̃D

∂t
e2 =

f ′

f
e2, (105)

∇̃D
e2

∂t = (
f ′

f
+ λ1)e2, ∇̃D

e1
e1 = ∇̃D

e2
e2 = (− f f ′ − λ2 f 2)∂t,

∇̃D
e1

e2 = ∇̃D
e2

e1 = 0.

Theorem 14. (D, gD, ∇̃D) is a distribution with constant scalar curvature λ0 for U = ∂t if and
only if

(1) λ0 = ξ, f (t) = (c1e−
λ1+λ2

2 t + c2te−
λ1+λ2

2 t)−ξ ,

(2) λ0 > ξ, f (t) = (c1e
−(λ1+λ2)+

√
η

2 t + c2e
−(λ1+λ2)−

√
η

2 t)−ξ ,
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(3) λ0 < ξ, f (t) = (c1e−
λ1+λ2

2 tcos(
√−η

2 t) + c2e−
λ1+λ2

2 tsin(
√−η

2 t))−ξ ,
where c1, c2 are constant and ξ = − 2

3 (4λ2
1 − 2λ2

2 − 7λ1λ2), η = 4λ2
1 − 2λ2

2 − 7λ1λ2 +
3
2 λ0.

Proof. By (105), we have

s̃D = 4
f ′′

f
+ 4

(λ1 + λ2) f ′

f
+ 2

( f ′)2

f 2 + (6λ1λ2 − 2λ2
1 − 2λ2

2). (106)

Let f (t) = w(t)
2
3 and by (106), we get w′′(t)+ (λ1 +λ2)w′(t)+ 3

8 (6λ1λ2− 2λ2
1− 2λ2

2−
λ0)w(t) = 0. By the elementary methods for ordinary differential equations, we prove the
above theorem.

By (100), we have

∇D
∂t ∂t = ( f1 + f2)∂t, ∇

D
∂t e1 = (

f ′

f
+ f1)e1, ∇D

e1
∂t = (

f ′

f
+ f2)e1, (107)

∇D
∂t e2 = (

f ′

f
+ f1)e2,∇D

e2
∂t = (

f ′

f
+ f2)e2, ∇D

e1
e1 = ∇D

e2
e2 = − f f ′∂t,

∇D
e1

e2 = ∇D
e2

e1 = 0.

Then, we get

sD = 4
f ′′

f
+ 2

( f ′)2

f 2 +
f2 f ′

f
− 2 f 2

2 . (108)

By Theorem 14, we have

Theorem 15. (D, gD,∇D
) is a distribution with a constant scalar curvature λ0 for U = ∂t if and

only if
(1) λ0 = − 8

3 f 2
2 , f (t) = (c1e− f2t + c2te− f2t)

8
3 f 2

2 ,

(2) λ0 > − 8
3 f 2

2 , f (t) = (c1e− f2+
√

4 f 2
2 +

3λ0
2 t + c2e− f2−

√
4 f 2

2 +
3λ0

2 t)
8
3 f 2

2 ,

(3) λ0 < − 8
3 f 2

2 , f (t) = (c1e− f2tcos(
√
−4 f 2

2 −
3λ0

2 t) + c2e− f2tsin(
√
−4 f 2

2 −
3λ0

2 t))
8
3 f 2

2 ,
where c1, c2 are constant.

5. Conclusions and Future Research

For a Riemannian manifold with a semi-symmetric non-metric connection, the induced
connection on a submanifold is also a semi-symmetric non-metric connection. The Gauss,
Codazzi, and Ricci equations for distributions are a generalization of the case of submani-
folds. Therefore, in this paper, we give the definition of the first generalized semi-symmetric
non-metric connection and the second generalized semi-symmetric non-metric connec-
tion. The distribution can be viewed as a submanifold, so the corresponding metric of the
Riemannian manifold distribution and orthogonal distribution are obtained. Then, by the
definition of an non-integrable distribution, we define the curvature tensor R̃D(or RD) on
D with respect to ∇̃D(or ∇). By computation, we obtain the Gauss, Codazzi, and Ricci
equations for non-integrable distributions in a Riemannian manifold with the first general-
ized semi-symmetric non-metric connection and the second generalized semi-symmetric
non-metric connection, respectively. For a two-plane section Π ⊂ D, we define the sectional
curvature K̃D(Π)(or KD

(Π) of D with the induced connection ∇̃D(or ∇D
) and the scalar

curvature τ̃D(or τD)with respect to D and ∇̃D(or ∇D
). Then, we obtain the Chen inequal-

ities in both cases and give the equality case. We also give the results of the integrable
distribution. Moreover, some properties of a totally geodesic and umbilical distribution are
discussed in this paper.

In following research, we will focus on the Lorentzian metric of distributions.
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