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1. Introduction

The theory of gyrogroups and gyrovector spaces was initiated by Ungar in the late
1980s. See also [1] for historical aspects, at least for physically relevant dimensions three
and four. The notion of gyrogroups is one of the most natural generalizations of groups,
and they form a subclass of loops or quasigroups. Gyrovector spaces are generalized vector
spaces, with which they share important analogies. In connection with the special theory
of relativity, the ball of Euclidean space R3 endowed with Einstein’s velocity addition was
known as the first example of gyrogroups (cf. [2]). The open unit disc in the complex
plain endowed with the Möbius addition is another significant example of gyrogroups
(cf. [3]). Ungar extended Möbius addition, introduced Möbius scalar multiplication to
the balls of arbitrary real inner product spaces and established the concept of gyrovector
spaces, which have a vector space-like structure (cf. [4,5]). Although gyro-operations are
generally not commutative, associative, or distributive, they enjoy algebraic rules, such as
left and right gyroassociative laws, left and right loop properties, gyrocommutative law,
scalar distributive law, and scalar associative law, so there exist rich symmetrical structures
which we should clarify precisely.

Abe and Hatori [6] introduced the notion of generalized gyrovector spaces (GGVs),
which is a generalization of the notion of real inner product gyrovector spaces by Ungar.
The set of all positive invertible elements of a unital C∗-algebra is one of the most important
examples of GGVs, which is not a real inner product gyrovector space. Hatori [7] showed
that the various substructures of positive invertible elements of unital C∗-algebra are
actually GGVs. Abe [8] introduced the notion of normed gyrolinear spaces, which is a
further generalization of the notion of GGVs. Although we do not deal with them here,
they will provide advanced research subjects.

There are remarkable papers on Möbius gyrogroups using Clifford algebra formal-
ism [9–11]. Ferreira and Suksumran [12] introduced the notion of real inner product
gyrogroups, which is a generalization of well-known gyrogroups in the literature, and
gave a number of interesting results.

One can also consider complex Möbius gyrovector spaces in complex inner product
spaces; however, we do not deal with them here. Some basic results on this subject will be
published in [13].
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In this article, we concentrate on the Möbius gyrovector spaces. There are the notions
of the Einstein gyrovector spaces and the proper velocity (PV) gyrovector spaces by Ungar,
and they are isomorphic to the Möbius gyrovector spaces, so most results on each spaces
can be directly translated to the other two spaces. In the Möbius gyrovector spaces, it seems
easier to consider counterparts to various notions related to Hilbert spaces than in other
spaces. In recent years, we have clarified the structure of Möbius gyrovector spaces to some
extent, such as the structure of finitely generated gyrovector subspaces, orthogonal gyrode-
composition of any element with respect to any closed gyrovector subspace, orthogonal
gyroexpansion of any element with respect to an arbitrary orthogonal basis with weight
sequence, Cauchy–Schwarz-type inequalities, and continuous quasi gyrolinear functionals
induced by any square summable sequence of real numbers (cf. [14–19]). The purpose of
this article is to present a class of continuous maps between Möbius gyrovector spaces
induced by finite matrices, which can be regarded as a certain counterpart to bounded
linear operators on real Hilbert spaces. The main result is Theorem 8, which is novel, and
Theorem 9 as well.

2. Preliminaries

Let us briefly recall some of the most basic definitions and facts of the Möbius gy-
rovector space. For standard definitions and results of gyrocommutative gyrogroups and
gyrovector spaces, see monograph [20] or [21] by Ungar (and references therein).

Let V = (V,+, ·) be a real inner product space with a binary operation + and a
positive definite inner product ·, and let Vs be the open s-ball of V,

Vs = {a ∈ V : ||a|| < s}

for any fixed s > 0, where ||a|| = (a·a) 1
2 .

Definition 1. [21] (Definition 3.40, Definition 6.83) The Möbius addition ⊕M and the Möbius
scalar multiplication ⊗M are given by the equations

a⊕M b =

(
1 + 2

s2 a·b + 1
s2 ||b||2

)
a +

(
1− 1

s2 ||a||2
)

b

1 + 2
s2 a·b + 1

s4 ||a||2||b||2

r⊗Ma = s tanh
(

r tanh−1 ||a||
s

)
a
||a|| (if a 6= 0), r⊗M0 = 0

for any a, b ∈ Vs, r ∈ R. The addition ⊕M and the scalar multiplication ⊗M for real numbers are
defined by the equations

a⊕M b =
a + b

1 + 1
s2 ab

r⊗Ma = s tanh
(

r tanh−1 a
s

)
for any a, b ∈ (−s, s), r ∈ R.

The ball Vs expands to the whole space V as the parameter s→ ∞, and hence, each
result in linear functional analysis can be recaptured from the counterpart in gyrolin-
ear analysis.

Proposition 1. [21] (after Remark 3.41), [5] (p. 1054). The Möbius addition (resp. Möbius scalar
multiplication) reduces to the ordinary addition (resp. scalar multiplication) as s→ ∞, that is,

a⊕M b→ a + b, r⊗Ma→ ra (s→ ∞)
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for any a, b ∈ V and r ∈ R.

Theorem 1. [21] (Theorem 6.84), (see also [11,22].)

(1) (Vs,⊕M) is a gyrocommutative gyrogroup.

(2) (Vs,⊕M,⊗M) is a real inner product gyrovector space.

Definition 2. [21] ((6.286), (6.293)). The Möbius gyrodistance function dM and the Poincaré
distance function hM are defined by the equations

dM(a, b) = ||b	M a||, hM(a, b) = tanh−1 dM(a, b)
s

for any a, b ∈ Vs.

Theorem 2. [21] (6.294) (see also [23,24], [15] (Theorem 26), [25] (Proposition 2).) hM satisfies
the triangle inequality, so that (Vs, hM) is a metric space. In addition, if V is a real Hilbert space,
then (Vs, hM) is complete as a metric space.

We simply denote ⊕M, ⊗M, dM, hM by ⊕,⊗, d, h, respectively. We also use ⊕s,⊗s in
order to indicate the parameter s > 0. For the sake of simplicity, we sometimes state
results only for the case of s = 1. In this paper, one can immediately obtain results for
general s > 0 via Proposition 2 (ii) and (iii) below. If several kinds of operations appear
in a formula simultaneously, we always give priority to the following order: (1) ordinary
scalar multiplication, (2) gyroscalar multiplication ⊗s, and (3) gyroaddition ⊕s, that is,

r1⊗ sw1a1 ⊕s r2⊗ sw2a2 = {r1⊗ s(w1a1)} ⊕s {r2⊗ s(w2a2)},

and the parentheses are omitted in such cases.
The following identities are an easy consequence of the definition, and frequently

used. One can refer to [15] (Lemma 12, Lemma 14 (i)).

Proposition 2. Let s > 0. The following formulae hold:

(i) ||a⊕s b||2 =
||a||2 + 2a·b + ||b||2

1 + 2
s2 a·b + 1

s4 ||a||2||b||2

(ii)
a
s
⊕1

b
s
=

a⊕s b
s

(iii) r⊗1
a
s
=

r⊗ sa
s

for any a, b ∈ Vs and r ∈ R.

The following lemma is just a consequence of formulae [21] ((3.147), (3.148)).

Lemma 1. [15] (Lemma 31). If {u, v, w} is an orthogonal set in Vs, then the associative law holds;
that is,

u⊕ (v⊕w) = (u⊕ v)⊕w.

Definition 3. [15] (Definition 32). Let {an}n be a sequence in Vs. One says that a series((
(a1 ⊕ a2)⊕ a3

)
⊕ · · · ⊕ an

)
⊕ · · ·
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converges if there exists an element x ∈ Vs, such that h(x, xn)→ 0 (n→ ∞), where the sequence
{xn}n is defined recursively by x1 = a1 and xn = xn−1 ⊕ an. In this case, we say the series
converges to x and denotes

x =
((

(a1 ⊕ a2)⊕ a3
)
⊕ · · · ⊕ an

)
⊕ · · · .

The following theorem can be considered as a counterpart to the orthogonal Fourier
expansion in Hilbert spaces and the Parseval identity.

Theorem 3. [15] (Theorem 35, Theorem 36). Let {en}∞
n=1 be a complete orthonormal sequence in

a real Hilbert space V. Let {wn}∞
n=1 be a sequence in R such that 0 < wn < s for all n. Then, for

any x ∈ Vs, we have the orthogonal gyroexpansion

x = r1⊗w1e1 ⊕ r2⊗w2e2 ⊕ · · · ⊕ rn⊗wnen ⊕ · · · ,

where the sequence of gyrocoefficients {rn}∞
n=1 is uniquely determined and can be calculated by an

explicit procedure. Moreover, we have the following identity:

||x||2 =
∞

∑
n=1

⊕ (rn⊗wn)
2

s
.

Now let us see some related preceding research for maps on the Einstein gyrovector
space, which preserve the Einstein addition. Let (Bn,⊕E) be the n-dimensional Einstein
gyrogroup, where Bn = {u ∈ Rn; ||u|| < 1}.

Theorem 4. [26] (Theorem 1). (see also [27].) Let β : B3 → B3 be a continuous map. Then, β is
an algebraic endomorphism with respect to the operation ⊕E, that is, β satisfies

β(u⊕E v) = β(u)⊕E β(v), u, v ∈ B3

if, and only if:

(i) Either there is a 3× 3 orthogonal matrix O such that

β(v) = Ov, v ∈ B3, or

(ii) β is the trivial map,

β(v) = 0, v ∈ B3.

Theorem 5. [28] (Theorem 6). For n ≥ 2, continuous endomorphisms of the Einstein gyrogroup
(Bn,⊕E) are precisely the restrictions to Bn of orthogonal transformations of Rn and the map that
sends everything to 0.

The following theorem shows that a continuous gyrolinear functional on the Möbius
gyrovector space (V1,⊕,⊗) is just the trivial map. The orthogonal gyroexpansion
(Theorem 3) is used for the proof.

Theorem 6. [19] (Theorem 11). Let V be a separable real Hilbert space with dimV ≥ 2. Consider
the Poincaré metric h on the ball V1 and the interval (−1, 1), respectively. If a continuous map
f : V1 → (−1, 1) satisfies

f (x⊕ y) = f (x)⊕ f (y) (1)

for any x, y ∈ V1, then f (x) = 0 for all x ∈ V1.
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Theorems 4–6 suggest that, in a certain sense, the gyroadditivity (1) is too strong for
continuous maps between gyrovector spaces. Therefore, it is natural to introduce a suitable
notion which corresponds to the linearity of maps between inner product spaces.

Definition 4. Let U and V be two normed spaces. For any map f : U1 → V1 and for any positive
number s > 0, we define a family of maps fs : Us → Vs by the equation

fs(x) = s f
( x

s

)
(2)

for any element x ∈ Us.

Now we define the notion of quasi-gyrolinearity for maps between two Möbius gy-
rovector spaces. It seems that [19] (Theorem 15) provides sufficiently reasonable motivation
for making the following definitions.

Definition 5. (cf. [19] (Definition 17)) Let U and V be two real inner product spaces, and let
T : U→ V be a bounded linear operator. A map f : U1 → V1 is said to be quasi-gyrolinear with
respect to T if the family { fs} defined by Formula (2) satisfies the following conditions:

fs(x⊕s y)→ T(x + y)

fs(x)⊕s fs(y)→ Tx + Ty

fs(r⊗ sx)→ T(rx)

r⊗ s fs(x)→ rTx,

as s→ ∞, for any element x, y ∈ V and any real number r ∈ R. Note that x⊕s y, r⊗s x can be
defined in Us for sufficiently large s > 0.

The author presented a class of continuous quasi-gyrolinear functionals on the Möbius
gyrovector spaces.

Theorem 7. [19] (Theorem 27). Let V be a real Hilbert space, let {ej}∞
j=1 be a complete orthonormal

sequence in V, and let {cj}∞
j=1 be a square summable sequence of real numbers. Consider the

Poincaré metric h on both the Möbius gyrovector space V1 and the interval (−1, 1). For an
arbitrary element x in V1, we can apply the orthogonal gyroexpansion (Theorem 3) to get a unique
sequence (r1, r2, · · · ) of real numbers, such that

x =
∞

∑
j=1

⊕ rj⊗
ej

2
.

Then, we can define a map f : V1 → (−1, 1) by the equation

f (x) =

(
∞

∑
j=1

cjrj

)
⊗ 1

2
.

Moreover, f is continuous and quasi-gyrolinear with respect to the bounded linear functional
x 7→ x·c, where c is defined by the equation

c =
∞

∑
j=1

cjej.
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3. Quasi Gyrolinear Maps between the Möbius Gyrovector Spaces Induced from
Finite Matrices

In this section, we assume that real Hilbert spaces are finite-dimensional for simplicity.
We denote by Mm,n(R) the set of all m× n matrices whose entries are real numbers.

Definition 6. Suppose that U and V are two finite dimensional real Hilbert spaces, and that
{ej}n

j=1 (resp. { f i}m
i=1) is an orthonormal basis in U (resp. V). Let A = (aij) ∈ Mm,n(R),

which can be regarded as a bounded linear operator from U to V. Consider the Poincaré metric h on
both the Möbius gyrovector spaces U1 and V1. For an arbitrary element x in U1, we can apply the
orthogonal gyroexpansion to get a unique n-tuple (r1, · · · , rn) of real numbers, such that

x = r1⊗1
e1

2
⊕1 · · · ⊕1 rn⊗1

en

2
.

Then we define a map fA : U1 → V1 by the equation

fA(x) = (a11r1 + · · ·+ a1nrn)⊗1
f 1
2
⊕1 · · · ⊕1 (am1r1 + · · ·+ amnrn)⊗1

f m
2

.

Now we present the main theorem of this paper, which is a new result.

Theorem 8. The map fA : U1 → V1 defined in Definition 6 is continuous and quasi-gyrolinear
with respect to A.

Proof. Take two arbitrary elements

x = x1e1 + · · ·+ xnen, y = y1e1 + · · ·+ ynen

in U, where xj, yj are real numbers for j = 1, · · · , n. Then, for sufficiently large s > 0,
it follows from the definition of ⊕1 that

x
s
⊕1

y
s
=

(1 + 2 x
s ·

y
s + ||

y
s ||2)

x
s + (1− || xs ||2)

y
s

1 + 2 x
s ·

y
s + ||

x
s ||2||

y
s ||2

=
1
s
·
(1 + 2

s2 x·y + 1
s2 ||y||2)x + (1− 1

s2 ||x||2)y
1 + 2

s2 x·y + 1
s4 ||x||2||y||2

and ( x
s
⊕1

y
s

)
·ej =

1
s
·
(1 + 2

s2 x·y + 1
s2 ||y||2)xj + (1− 1

s2 ||x||2)yj

1 + 2
s2 x·y + 1

s4 ||x||2||y||2
.

For each sufficiently large s > 0, there exists a unique n-tuple (r1(s), · · · , rn(s)) of real
numbers, such that

x
s
⊕1

y
s
= r1(s)⊗1

e1

2
⊕1 · · · ⊕1 rn(s)⊗1

en

2
= c1(s)e1 ⊕1 · · · ⊕1 cn(s)en,

where we put cj(s) = tanh
(

rj(s) tanh−1 1
2

)
. Then, we have

∣∣∣∣∣∣∣∣ x⊕s y
s

∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣∣ x

s
⊕1

y
s

∣∣∣∣∣∣2 = ||c1(s)e1 ⊕1 · · · ⊕1 cn(s)en||2 = c1(s)
2 ⊕1 · · · ⊕1 cn(s)

2

≥ cj(s)
2.

It follows from x⊕s y→ x + y that
∣∣∣∣∣∣∣∣ x⊕s y

s

∣∣∣∣∣∣∣∣→ 0, and hence, cj(s)→ 0 as s→ ∞.
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Put z = c2(s)e2 ⊕1 · · · ⊕1 cn(s)en. Note that ||z|| ≤
∣∣∣∣∣∣∣∣ x⊕s y

s

∣∣∣∣∣∣∣∣→ 0 as s→ ∞.

( x
s
⊕1

y
s

)
·e1 = (c1e1 ⊕1 z)·e1 =

(1 + ||z||2)c1e1 + (1− c1
2)z

1 + c1
2||z||2 ·e1 =

(1 + ||z||2)c1

1 + c1
2||z||2

(x⊕s y)·e1 =
(1 + ||z||2)sc1

1 + c1
2||z||2 .

By letting s→ ∞ in the formula above, we have sc1 → (x + y)·e1 = x1 + y1.

Assume that we have shown scj → xj + yj (j = 1, · · · , j0).{
	(c1e1 ⊕1 · · · ⊕1 cj0 ej0)⊕1

( x
s
⊕1

y
s

)}
·ej0+1 = (cj0+1ej0+1 ⊕1 · · · ⊕1 cnen)·ej0+1

=
(1 + ||z′||2)cj0+1ej0+1 + (1− cj0+1

2)z′

1 + cj0+1
2||z′||2 ·ej0+1 =

(1 + ||z′||2)cj0+1

1 + cj0+1
2||z′||2 ,

where we put z′ = cj0+2ej0+2 ⊕1 · · · ⊕1 cnen. By multiplying s to both sides,

{
−(sc1e1 ⊕s · · · ⊕s scj0 ej0)⊕s (x⊕s y)

}
·ej0+1 =

(1 + ||z′||2)scj0+1

1 + cj0+1
2||z′||2

scj0+1 →
{
−((x1 + y1)e1 + · · ·+ (xj0 + yj0)ej0) + (x + y)

}
·ej0+1 = xj0+1 + yj0+1.

For a while, we simply denote fA by f . Now,

f
( x

s
⊕1

y
s

)
= (a11r1 + · · ·+ a1nrn)⊗1

f 1
2
⊕1 · · · ⊕1 (am1r1 + · · ·+ amnrn)⊗1

f m
2

= tanh
(
(a11r1 + · · ·+ a1nrn) tanh−1

∣∣∣∣∣∣∣∣ f 1
2

∣∣∣∣∣∣∣∣) f 1
2∣∣∣∣∣∣ f 1
2

∣∣∣∣∣∣
⊕1 · · · ⊕1 tanh

(
(am1r1 + · · ·+ amnrn) tanh−1

∣∣∣∣∣∣∣∣ f m
2

∣∣∣∣∣∣∣∣) f m
2∣∣∣∣∣∣ f m
2

∣∣∣∣∣∣
= tanh

((
a11

tanh−1 c1

tanh−1 1
2

+ · · ·+ a1n
tanh−1 cn

tanh−1 1
2

)
tanh−1 1

2

)
f 1

⊕1 · · · ⊕1 tanh

((
am1

tanh−1 c1

tanh−1 1
2

+ · · ·+ amn
tanh−1 cn

tanh−1 1
2

)
tanh−1 1

2

)
f m

= tanh
(

a11 tanh−1 c1 + · · ·+ a1n tanh−1 cn

)
f 1

⊕1 · · · ⊕1 tanh
(

am1 tanh−1 c1 + · · ·+ amn tanh−1 cn

)
f m.

It follows from scj → xj + yj and cj → 0 as s → ∞ that s tanh−1 cj → xj + yj. By
applying [19] (Lemma 21), we can obtain

s tanh
(

ai1 tanh−1 c1 + · · ·+ ain tanh−1 cn

)
= s tanh

(
ai1s tanh−1 c1 + · · ·+ ains tanh−1 cn

s

)

→ ai1(x1 + y1) + · · ·+ ain(xn + yn) (s→ ∞)
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for i = 1 · · · , m. Thus, by [19] (Lemma 19), we can conclude that

fs(x⊕s y)→ {a11(x1 + y1) + · · ·+ a1n(xn + yn)} f 1

+ · · ·+ {am1(x1 + y1) + · · ·+ amn(xn + yn)} f m

= A(x + y).

By putting y = 0 in the result just established above, we have fs(x)→ Ax,

fs(x)⊕s fs(y)→ Ax + Ay

and

r⊗ s fs(x) = s tanh
(

r tanh−1 || fs(x)||
s

)
fs(x)
|| fs(x)|| → r||Ax|| · Ax

||Ax|| = rAx

as s→ ∞.

Moreover, for sufficiently large s > 0, it follows from the definition of ⊗1 that

r⊗1
x
s
= tanh

(
r tanh−1

∣∣∣∣∣∣ x
s

∣∣∣∣∣∣) x
s∣∣∣∣ x
s

∣∣∣∣ = tanh
(

r tanh−1 ||x||
s

)
x
||x||(

r⊗1
x
s

)
·ej = tanh

(
r tanh−1 ||x||

s

) xj

||x|| .

We can express as

r⊗1
x
s
= r1⊗1

e1

2
⊕1 · · · ⊕1 rn⊗1

en

2
= c1e1 ⊕1 · · · ⊕1 cnen,

where we put cj = tanh
(

rj tanh−1 1
2

)
. Then, a similar argument to the first part of the

proof shows that scj → rxj, and

fs(r⊗ sx)→ (a11rx1 + · · ·+ a1nrxn) f 1 + · · ·+ (am1rx1 + · · ·+ amnrxn) f m = A(rx)

as s → ∞. Thus, we can conclude that fA is quasi-gyrolinear with respect to A. The
continuity of fA is an easy consequence of [19] (Lemma 26). This completes the proof.

The following theorem shows a fundamental property of the composition of quasi-
gyrolinear mappings of the form fA.

Theorem 9. Suppose that {ej}n
j=1, { f i}m

i=1, {gk}
p
k=1 are orthonormal bases of the respective real

Hilbert spaces U, V, W. Let A = (aij) ∈ Mm,n(R), B = (bij) ∈ Mp,m(R). Then, the composed
map fB ◦ fA is also an induced map from the matrix BA. That is,

fB ◦ fA = fBA.

Proof. Because

fA(x) =

(
n

∑
j=1

a1jrj

)
⊗1

f 1
2
⊕1 · · · ⊕1

(
n

∑
j=1

amjrj

)
⊗1

f m
2

,
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we have

fB( fA(x)) =

{
b11

n

∑
j=1

a1jrj + · · ·+ b1m

n

∑
j=1

amjrj

}
⊗1

g1
2

⊕1 · · · ⊕1

{
bp1

n

∑
j=1

a1jrj + · · ·+ bpm

n

∑
j=1

amjrj

}
⊗1

gp

2
.

Then,

bk1

n

∑
j=1

a1jrj + · · ·+ bkm

n

∑
j=1

amjrj =
n

∑
j=1

(
m

∑
l=1

bklal j

)
rj

and
m

∑
l=1

bklal j is the (k, j) entry of the matrix BA; hence, the composed map fB ◦ fA coincides

with the map fBA induced from the matrix BA.
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