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Abstract: We study the realized power variations for the fourth order linearized Kuramoto–Sivashinsky
(LKS) SPDEs and their gradient, driven by the space–time white noise in one-to-three dimensional
spaces, in time, have infinite quadratic variation and dimension-dependent Gaussian asymptotic
distributions. This class was introduced-with Brownian-time-type kernel formulations by Allouba
in a series of articles starting in 2006. He proved the existence, uniqueness, and sharp spatio-
temporal Hölder regularity for the above class of equations in d = 1, 2, 3. We use the relationship
between LKS-SPDEs and the Houdré–Villaa bifractional Brownian motion (BBM), yielding temporal
central limit theorems for LKS-SPDEs and their gradient. We use the underlying explicit kernels and
spectral/harmonic analysis to prove our results. On one hand, this work builds on the recent works
on the delicate analysis of variations of general Gaussian processes and stochastic heat equation
driven by the space–time white noise. On the other hand, it builds on and complements Allouba’s
earlier works on the LKS-SPDEs and their gradient.

Keywords: quadratic variation; power variation; linearized Kuramoto–Sivashinsky SPDEs; space–
time white noise; weak convergence

1. Introduction

The fourth order linearized Kuramoto–Sivashinsky (LKS) SPDEs are related to the
model of pattern formation phenomena accompanying the appearance of turbulence
(see [1–4] for the LKS class and for its connection to many classical and new examples of
deterministic and stochastic pattern formation PDEs, and see [5,6] for classical examples of
deterministic and stochastic pattern formation PDEs).

The fundamental kernel associated with the deterministic version of this class is built
on the Brownian-time process in [3,7,8]. In this article, we give exact dimension-dependent
asymptotic distributions of the realized power variations in time, for the important class of
stochastic equation: ∂U

∂t
= − ε

8
(L+ 2ϑ)2U +

∂d+1W
∂t∂x

, (t, x) ∈ R+ ×Rd;

U(0, x) = u0(x), x ∈ Rd,
(1)

where L is the d-dimensional Laplacian operator, (ε, ϑ) ∈ R+ ×R is a pair of parameters,
the noise term ∂d+1W/∂t∂x is the space–time white noise corresponding to the real-valued
Brownian sheet W on R+ × Rd, d = 1, 2, 3. The initial data u0 here is assumed Borel
measurable, deterministic, and 2-continuously differentiable on Rd whose 2-derivative is
locally Hölder continuous with some exponent 0 < γ ≤ 1.

Of course, Equation (1) is the formal (and nonrigorous) equation. Its rigorous formu-
lation, which we work with in this paper, is given in mild form as kernel stochastic integral
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equation (SIE). This SIE was first introduced and studied by [1–3,7–10]. We give it below in
Section 3, along with some relevant details.

The existence/uniqueness as well as sharp dimension-dependent Lp and Hölder
regularity of the linear and nonlinear noise version of (1) were investigated in [1,2,9,10].
It was studied in [4] that exact uniform and local moduli of continuity for the LKS-SPDE
in the time variable t and space variable x, separately. In fact, it was established in [4]
that exact, dimension-dependent, spatio-temporal, uniform and local moduli of continuity
for the fourth order the LKS-SPDEs and their gradient. It was studied in [11] that the
solution to a stochastic heat equation with the space–time white noise in time has infinite
quadratic variation and is not a semimartingale, and also investigated temporal central
limit theorems for modifications of the quadratic variation of the stochastic heat equation
with space–time white noise in time.

The analysis of the asymptotic behavior of the realized variations is motivated by the
study of the exact rates of convergence of some approximation schemes of scalar stochastic
differential equations driven by a Brownian motion B (see, e.g., [11,12]), besides, of course,
the traditional applications of the realized variations to parameter estimation problems (see,
e.g., [13–19] in which asymptotic distributions for power variations of fractional Brownian
motion (FBM) and related Gaussian processes were investigated).

In this paper we show that the realized power variation of the process U and its
gradient in time, have infinite quadratic variation and dimension-dependent Gaussian
asymptotic distributions. It builds on and complements Allouba and Xiao’s earlier works
on the LKS-SPDEs and builds on the recent works on delicate analysis of variations of
Gaussian processes and stochastic heat equations with space–time white noise. Our proof
is based on the approach method in [11]. We make use of the product-moments of various
orders of the normal correlation surface of two variates in [20] to establish exact convergence
rates of variances of the realized power variation of the process U and its gradient in time.
On one hand, this work builds on the recent works on delicate analysis of variations of
general Gaussian processes and stochastic heat equation driven by the space–time white
noise. Moreover, it builds on and complements Allouba’s earlier works on the LKS-SPDEs
and their gradient.

The rest of the paper is organized as follows. Some notations and main results of
this paper are stated in Section 2. In Section 3, we discuss the rigorous LKS-SPDE kernel
SIE (mild) formulation and estimate the temporal increments of LKS-SPDEs and their
gradient by using the LKS-SPDE kernel SIE formulation and spectral/harmonic analysis.
As a consequence of the result obtained, both LKS-SPDEs and their gradient in time have
infinite quadratic variation. In Section 4, we prove Theorems 1 and 2 by using the product-
moments of various orders of the normal correlation surface of two variates in [20] and
the approach method in [11], respectively. In the final section, the results are summarized
and discussed.

2. Statement of Results
2.1. Exact Convergence Rates of Variances and Temporal CLTs for the Realized Power Variations
of LKS-SPDEs

In order to establish our main results we first introduce some notation. We consider
discrete Riemann sums over a uniformly spaced time partition tj = j∆t, where ∆t = n−1.
Fix x ∈ Rd. Let ∆Ux;j = U(tj, x)−U(tj−1, x) and σx;j = (E[∆U2

x;j])
1/2. For any p ∈ N+

and n ∈ N+, we define

Ξn
p(U(·, x))t =

bntc

∑
j=1

∆Up
x;j.

Here and in the sequel, bac denotes an integer satisfying a− 1 < bac ≤ a for a ∈ R+.
Let µp denote the p-moment of a standard Gaussian random variable following an

N (0, 1) law, that is, µ2p−1 = 0 and µ2p = (2p − 1)!! = (2p)!/(p!2p) for all p ∈ N+.
For j ∈ N+, let φd;j = 2j1−d/4 − (j − 1)1−d/4 − (j + 1)1−d/4. For real number r ≥ 1,
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define Jd,r = ∑∞
j=1 φr

d;j. It follows from (49) below that Jd,r is a positive and finite constant

depending only on r. For any p ∈ N+, we define κd,p = Kp
d λd,p, where

Kd =
1

2d(2− d/2)πd/2Γ(d/2)

(8
ε

)d/4 ∫ ∞

0
yd/2−1e−y2

dy, (2)

and

λd,p =


µ2p − µ2

p +
p!p!
2p−1

bp/2c

∑
u=1

22u Jd,2u

(bp/2c − u)!(bp/2c − u)!(2u)!
, if p is even,

µ2p −
p!p!
2p−2

bp/2c

∑
u=0

22u Jd,2u+1

(bp/2c − u)!(bp/2c − u)!(2u + 1)!
, if p is odd.

(3)

Here Γ(s) =
∫ ∞

0 us−1e−udu, s > 0, is the Gamma function.
We will first show the exact convergence rates of variance for the realized power

variation of processes U.

Theorem 1. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0
and ϑ = 0 in (1). Then for each fixed t > 0 and any p ∈ N+,

n−1+p(1−d/4) Var(Ξn
p(U(·, x))t) → κd,p t (4)

as n tends to infinity.

By (4), we have the following convergence in probability for the realized power
variation of the process U.

Corollary 1. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0
and ϑ = 0 in (1). Then for each fixed t > 0 and any p ∈ N+,

n−1+p(1−d/4)/2Ξn
p(U(·, x))t → Kp/2

d µp t (5)

in L2 and in probability as n tends to infinity.

Remark 1. Since Ξn
2p(U(·, x))t is monotone, (5) implies that n−1+p(1−d/4) Ξn

2p(U(·, x))t →
Kp

d µ2p t uniform convergence in probability in the time interval [0, T] with some T > 0. Moreover,
(5) implies that for a fixed point in space, the process U(·, x) has infinite quadratic variation.

Temporal central limit theorems (CLTs) for the realized power variation of processes
U is as follows.

Theorem 2. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0
and ϑ = 0 in (1). Then for any p ∈ N+,

(
U(t, x),

1√
n

bntc

∑
j=1

(np(1−d/4)/2∆Up
x;j − Kp/2

d µp)
) L→ (U(t, x), κ1/2

d,p B(t)) (6)

as n tends to infinity, where B = {B(t), t ∈ [0, T]} is a Brownian motion independent of the
process U, and the convergence is in the space D([0, T])2 equipped with the Skorohod topology.

Remark 2. By (2) and (3), both Kd and κd,p in (4)–(6) are dependent on spatial dimension but
independent of x.
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2.2. Exact Convergence Rates of Variances and Temporal CLTs for the Realized Power Variations of
LKS-SPDE Gradient

Fix x ∈ R. Let ∂x∆Ux;j = ∂xU(tj, x) − ∂xU(tj−1, x) and ∂xσx;j = (E[∂x∆U2
x;j])

1/2.
For any p ∈ N+ and n ∈ N+, we define

∂xΞn
p(U(·, x))t =

bntc

∑
j=1

∂x∆Up
x;j.

For any p ∈ N+, we define χd,p = Dp
0 λd,p, where λd,p is given in (2) and

D0 = (2π)−1
(8

ε

)3/4 ∫ ∞

0
y−1/4e−ydy. (7)

We will first show the exact convergence rates of variance for the realized power
variation of the gradient processes ∂xU(t, x).

Theorem 3. Fix (ε, ϑ) ∈ R+ ×R and x ∈ R, and assume d = 1. Assume that u0 ≡ 0 and ϑ = 0
in (1). Then for each fixed t > 0 and any p ∈ N+,

n−1+p(1−d/4) Var(∂xΞn
p(U(·, x))t) → χd,p t (8)

as n tends to infinity.

By (8), we have the following convergence in probability for the realized power
variation of the gradient process ∂xU(t, x).

Corollary 2. Fix (ε, ϑ) ∈ R+ × R and x ∈ R, and assume d = 1. Assume that u0 ≡ 0 and
ϑ = 0 in (1). Then for each fixed t > 0 and any p ∈ N+,

n−1+p(1−d/4)/2∂xΞn
p(U(·, x))t → Dp/2

0 µp t (9)

in L2 and in probability as n tends to infinity.

Remark 3. Since ∂xΞn
2p(U(·, x))t is monotone, (9) implies that n−1+p(1−d/4) ∂xΞn

2p(U(·, x))t

→ Dp
0 µ2p t uniform convergence in probability in the time interval [0, T] with some T > 0.

Moreover, (9) implies that for a fixed point in space, the gradient process ∂xU(·, x) has infinite
quadratic variation.

Temperal central limit theorems for the realized power variation of the gradient
processes ∂xU(t, x) is as follows.

Theorem 4. Fix (ε, ϑ) ∈ R+ ×R and x ∈ R, and assume d = 1. Assume that u0 ≡ 0 and ϑ = 0
in (1). Then for any p ∈ N+,

(
∂xU(t, x),

1√
n

bntc

∑
j=1

(np(1−d/4)/2∂x∆Up
x;j − Dp/2

0 µp)
) L→ (∂xU(t, x), χ1/2

d,p B(t)) (10)

as n tends to infinity, where B = {B(t), t ∈ [0, T]} is a Brownian motion independent of the
process U, and the convergence is in the space D([0, T])2 equipped with the Skorohod topology.

Remark 4. It is natural to expect that (6) and (10) hold for x 7→ U(t, x) in d = 1, 2, 3. However,
substantial extra work is needed for proving these statements. In particular, in order to apply the
method in [11], one will have to establish the property of the increments for U(t, ·). Unfortunately
the method in [11] does not seem useful anymore and some new ideas may be needed.
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Remark 5. By using Lemma 3 below, following the same lines as the proof of Theorem 1, we
get Theorem 3. Similarly, following the same lines as the proof of Theorem 2, we get Theorem 4.
Therefore, only Theorems 1 and 2 are proved and Theorems 3 and 4 are omitted.

3. Methodology
3.1. Rigorous Kernel Stochastic Integral Equations Formulations

As in [4], for the LKS-SPDE, we use the LKS kernel to define their rigorous mild SIE
formulation. This LKS kernel, as shown in as in [1–3], is the fundamental solution to the
deterministic version of (12) (a ≡ 0 and b ≡ 0) below, and is given by:

KLKSd
ε,ϑ

t;x,y =
∫ 0

−∞

eiϑse−|x−y|2/(2is)

(2πis)d/2 KBM
εt;s ds +

∫ ∞

0

eiϑse−|x−y|2/(2is)

(2πis)d/2 KBM
εt;s ds

= (2π)−d
∫
Rd

e−
εt
8 (−2ϑ+|ξ|2)2

ei〈ξ,x−y〉dξ

= (2π)−d
∫
Rd

e−
εt
8 (−2ϑ+|ξ|2)2

cos(〈ξ, x− y〉)dξ, (ε, ϑ) ∈ R+ ×R,

(11)

where i =
√
−1 and KBM

t;s = e−s2/(2t)
√

2πt
. Let b : R → R be Borel measurable. The nonlinear

drift-diffusion LKS-SPDE is ∂U
∂t

= − ε

8
(L+ 2ϑ)2U + b(U) + a(U)

∂d+1W
∂t∂x

, (t, x) ∈ R+ ×Rd;

U(0, x) = u0(x), x ∈ Rd.
(12)

Then, the rigorous LKS kernel SIE (mild) formulation is the stochastic integral equation

U(t, x) =
∫
Rd

KLKSd
ε,ϑ

t;x,y u0(y)dy∫
Rd

∫ t

0
KLKSd

ε,ϑ
t−s;x,y[b(U(s, y))dsdy + a(U(s, y))W(ds× dy)]

(13)

(see p. 530 in [5] and Definition 1.1 and Equation (1.11) in [1]). Of course, the mild formulation
of (1.1) is then obtained by setting a ≡ 1 and b ≡ 0 in (13).

Notation 1. Positive and finite constants (independent of x) in Section i are numbered as ci,1 , ci,2 , ....

We conclude this section by citing the following spatial Fourier transform of the (ε, ϑ)
LKS kernels from Lemma 2.1 in [4].

Lemma 1. Let KLKSd
ε,ϑ

t;x be the (ε, ϑ) LKS kernel. The spatial Fourier transform of the (ε, ϑ) LKS
kernel in (11) is given by

K̂LKSd
ε,ϑ

t;ξ = (2π)−d/2e−
εt
8 (−2ϑ+|ξ|2)2

; (ε, ϑ) ∈ R+ ×R. (14)

Here, the following symmetric form of the spatial Fourier transform has been used: f̂ (ξ) =
(2π)−d/2

∫
Rd f (u) e−iξ·udu.

3.2. Estimates on the Temporal Increments of LKS-SPDEs and Their Gradient

Since U(·, x) is a centered Gaussian process, its law is determined by its covariance
function, which is given in the following lemma. We also derive some needed estimates on
the covariance function and the increment of U(·, x).

Lemma 2. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0 and
ϑ = 0 in (1). For all s, t ∈ (0, T], we have

E[U(t, x)U(s, x)] = Kd[(t + s)1−d/4 − |t− s|1−d/4], (15)
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c4,1 |t− s|1−d/4 ≤ E[(U(t, x)−U(s, x))2] ≤ c4,2 |t− s|1−d/4, (16)

and
|E[(U(t, x)−U(s, x))2]− Kd|t− s|1−d/4| ≤

c4,3

sd/4+1 |t− s|2, (17)

where Kd is given in (3).

Proof. To show (15), we use Parseval’s identity to get

E[U(t, x)U(s, x)] =
∫
Rd

∫ s

0
KLKSd

ε,0
t−r;x,y KLKSd

ε,0
s−r;x,ydrdy

=
∫ s

0

∫
Rd

K̂LKSd
ε,0

t−r;x,ξ K̂LKSd
ε,0

s−r;x,ξ dξdr

= (2π)−d
∫ s

0

∫
Rd

e−
ε(t−r)

8 |ξ|4− ε(s−r)
8 |ξ|4 dξdr

= (2π)−d
∫ s

0

∫
Rd

e−
ε(t+s−2r)

8 |ξ|4 dξdr.

(18)

Thus, by using the following integral formula (see Corollary on page 23 in [21]):

∫
Rd

f
( d

∑
i=1

u2
i

)
du1 · · · dud =

πd/2

Γ(d/2)

∫ ∞

0
yd/2−1 f (y)dy, (19)

(15) becomes

E[U(t, x)U(s, x)] = (2π)−d πd/2

Γ(d/2)

∫ ∞

0
yd/2−1

∫ s

0
e−

ε(t+s−2r)
8 y2

drdy. (20)

This yields (15).
To verify (16), by (15), one has, up to a constant, the mean zero Gaussian process

{U(t, x), t ≥ 0} is a BBM with indices H = 1/2 and K = 1− d/4. Thus, by the covariance
function of BBM in [22], (15) holds.

To show (17), we introduce the following auxiliary Gaussian random field {G(t, x), t ∈
R+, x ∈ Rd}:

G(t, x) =
∫
Rd

∫
R

(
KLKSd

ε,0
(t−r)+ ;x,y −KLKSd

ε,0
(−r)+ ;x,y

)
W(dr× dy). (21)

where a+ = max{a, 0} for all a ∈ R. Then the LKS-SPDE solution U may be decomposed
as U(t, x) = G(t, x)−V(t, x), where

V(t, x) =
∫
Rd

∫
R−

(
KLKSd

ε,0
(t−r)+ ;x,y −KLKSd

ε,0
(−r)+ ;x,y

)
W(dr× dy). (22)

This idea of decomposition originated in [23] in the second order SPDEs setting; and
it has been applied in [24,25], also in the second order heat SPDE setting. Fix x ∈ Rd.
By Theorem 3.1 in [4], one has for any 0 < s < t,

E[|G(t, x)− G(s, x)|2] = Kd|t− s|1−d/4. (23)

Fix x ∈ Rd. We apply Parseval’s identity to the integral in y to get that for any
0 < s < t:

E[|V(t, x)−V(s, x)|2] =
∫
Rd

∫
R

∣∣∣KLKSd
ε,0

t−r;x,yI{0>r} −KLKSd
ε,0

s−r;x,yI{0>r}

∣∣∣2drdy

=
∫
R

∫
Rd

∣∣∣K̂LKSd
ε,0

t−r;x,ξI{0>r} − K̂LKSd
ε,0

s−r;x,ξI{0>r}

∣∣∣2dξdr.
(24)

Since
K̂LKSd

ε,0
t−r;x,ξ = (2π)−d/2e−i〈x,ξ〉− ε(t−r)

8 |ξ|4 , (25)
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Equation (24) becomes

E[|V(t, x)−V(s, x)|2]

=
∫
Rd

∫
R

∣∣∣e− ε(t−r)
8 |ξ|4I{0>r} − e−

ε(s−r)
8 |ξ|4I{0>r}

∣∣∣2
(2π)d drdξ.

(26)

Now, we apply Parseval’s identity to the inner integral in r. To this end, let

φ(r, ξ) = e−
ε(t−r)

8 |ξ|4I{0>r} − e−
ε(s−r)

8 |ξ|4I{0>r}

Its Fourier transform in r is

φ̂(τ, ξ) =
1

iτ + ε
8 |ξ|4

(
− e−

εt
8 |ξ|

4
+ e−

εs
8 |ξ|

4
)

.

Hence, by Parseval’s identity, we see that for each 0 < s < t Equation (26) becomes

E[|V(t, x)−V(s, x)|2] = (2π)−d
∫
Rd

∫
R
|φ̂(τ, ξ)|2dτdξ

= (2π)−d
∫
Rd
|e−

εt
8 |ξ|

4 − e−
εs
8 |ξ|

4 |2
∫
R

1

τ2 + ε2

64 |ξ|8
dτdξ

≤ c4,4

∫
Rd
|ξ|−4e−

εs
4 |ξ|

4 |1− e−
ε(t−s)

8 |ξ|4 |2dξ.

(27)

Since |1− e−u| ≤ 2u for all u ≥ 0, one has that for each 0 < s < t Equation (27) becomes

E[|V(t, x)−V(s, x)|2] ≤ c4,5(t− s)2
∫
Rd
|ξ|4e−

εs
4 |ξ|

4
dξ

=
c4,5 πd/2

Γ(d/2)
(t− s)2

∫ ∞

0
yd/2+1e−

εs
4 y2

dy

≤
c4,6

sd/4+1 (t− s)2
∫ ∞

0
yd/2+1e−y2

dy.

(28)

Fix x ∈ Rd. Since U and V are independent, one has

E[|G(t, x)− G(s, x)|2] = E[|U(t, x)−U(s, x)|2] +E[|V(t, x)−V(s, x)|2].

This yields (17). The proof of Lemma 2 is completed.

Since ∂xU(·, x) is a centered Gaussian process, its law is determined by its covariance
function, which is given in the following lemma. We also derive some needed estimates on
the increment of ∂xU(·, x).

Lemma 3. Fix (ε, ϑ) ∈ R+ ×R and x ∈ R, and assume d = 1. Assume that u0 ≡ 0 and ϑ = 0
in (1). For all s, t ∈ (0, T], we have

E[∂xU(t, x)∂xU(s, x)] = D0[(t + s)1/4 − |t− s|1/4], (29)

c4,7 |t− s|1/4 ≤ E[(∂xU(t, x)− ∂xU(s, x))2] ≤ c4,8 |t− s|1/4, (30)

and
|E[(∂xU(t, x)− ∂xU(s, x))2]− D0|t− s|1/4| ≤

c4,9

s7/4 |t− s|2, (31)

where D0 is given in (7).
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Proof. To show (29), we use Parseval’s identity to get

E[∂xU(t, x)∂xU(s, x)] =
∫
R

∫ s

0
∂xK

LKSd
ε,0

t−r;x,y ∂xK
LKSd

ε,0
s−r;x,ydrdy

=
∫ s

0

∫
R

ξ2K̂LKSd
ε,0

t−r;x,ξ K̂LKSd
ε,0

s−r;x,ξ dξdr

= (2π)−1
∫ s

0

∫
R

ξ2e−
ε(t−r)

8 |ξ|4− ε(s−r)
8 |ξ|4 dξdr

= (2π)−1
∫ s

0

∫
R

ξ2e−
ε(t+s−2r)

8 |ξ|4 dξdr.

(32)

Thus, (32) becomes

E[∂xU(t, x)∂xU(s, x)] = (2π)−1
(8

ε

)3/4
((t + s)1/4 − (t− s)1/4)

∫ ∞

0
y−1/4e−ydy. (33)

This yields (29).
To verify (30), by (29), one has, up to a constant, the mean zero Gaussian process

{∂xU(t, x), t ≥ 0} is a BBM with indices H = 1/2 and K = 1/4. Thus, by the estimates on
the increments of BBM in [22], (30) holds.

Fix x ∈ R. We apply Parseval’s identity to the integral in y to get that for any 0 < s < t:

E[|∂xV(t, x)− ∂xV(s, x)|2] =
∫
R

∫
R

∣∣∣∂xK
LKSd

ε,0
t−r;x,yI{0>r} − ∂xK

LKSd
ε,0

s−r;x,yI{0>r}

∣∣∣2drdy

=
∫
R

∫
R

ξ2
∣∣∣K̂LKSd

ε,0
t−r;x,ξI{0>r} − K̂LKSd

ε,0
s−r;x,ξI{0>r}

∣∣∣2dξdr.
(34)

Since
K̂LKSd

ε,0
t−r;x,ξ = (2π)−1/2e−i〈x,ξ〉− ε(t−r)

8 |ξ|4 , (35)

Equation (34) becomes

E[|∂xV(t, x)− ∂xV(s, x)|2]

=
∫
R

∫
R

ξ2
∣∣∣e− ε(t−r)

8 |ξ|4I{0>r} − e−
ε(s−r)

8 |ξ|4I{0>r}

∣∣∣2
(2π)d drdξ.

(36)

Now, we apply Parseval’s identity to the inner integral in r. To this end, let

φ(r, ξ) = e−
ε(t−r)

8 |ξ|4I{0>r} − e−
ε(s−r)

8 |ξ|4I{0>r}

Its Fourier transform in r is

φ̂(τ, ξ) =
1

iτ + ε
8 |ξ|4

(
− e−

εt
8 |ξ|

4
+ e−

εs
8 |ξ|

4
)

.

Hence, by Parseval’s identity, we see that for each 0 < s < t Equation (36) becomes

E[|∂xV(t, x)− ∂xV(s, x)|2] = (2π)−1
∫
R

∫
R

ξ2|φ̂(τ, ξ)|2dτdξ

= (2π)−1
∫
R
|e−

εt
8 |ξ|

4 − e−
εs
8 |ξ|

4 |2
∫
R

ξ2

τ2 + ε2

64 |ξ|8
dτdξ

≤ c4,10

∫
R
|ξ|−2e−

εs
4 |ξ|

4 |1− e−
ε(t−s)

8 |ξ|4 |2dξ.

(37)

Since |1− e−x| ≤ 2x for all x ≥ 0, one has that for each 0 < s < t Equation (37) becomes

E[|∂xV(t, x)− ∂xV(s, x)|2] ≤ c4,11(t− s)2
∫
R
|ξ|6e−

εs
4 |ξ|

4
dξ

≤
c4,12

s7/4 (t− s)2
∫ ∞

0
y7/4e−ydy.

(38)
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Thus, by using similar argument of the proof of (17), (31) holds. The proof of Lemma 3
is completed.

4. Results
4.1. Exact Convergence Rates of Variances for LKS-SPDEs

We need the following product-moment of various orders of the normal correlation
surface of two variate, which are Equations (viii) and (ix) in [20].

Lemma 4. Suppose that (X, Y) ∼ N (0, (σ2
1 ρ

ρ σ2
2
)), where ρ = (σ1σ2)

−1E[XY]. Then,

E[XpYp] =


p!p!
2p σ

p
1 σ

p
2

p/2

∑
j=1

(2ρ)2j

(p/2− j)!(p/2− j)!(2j)!
, if p is even,

ρp!p!
2p−1 σ

p
1 σ

p
2

bp/2c

∑
j=0

(2ρ)2j

(bp/2c − j)!(bp/2c − j)!(2j + 1)!
, if p is odd.

(39)

Proof of Theorem 1. It is sufficient to prove (4) for the even p case since the odd p case can
be proved similarly. For 1 ≤ i < j ≤ bntc, define ρx;ij = (σx;iσx;j)

−1E[∆Ux;i∆Ux;j]. Note
that for a random variable X following an N (0, σ2) law,

E[Xp] = µpσp, ∀p ∈ N+. (40)

By (39) and (40), one has

Var(Ξn
p(U(·, x))t) = E

[∣∣∣ bntc

∑
j=1

(∆Up
x;j − µpσ

p
x;j)
∣∣∣2]

=
bntc

∑
j=1

E[(∆Up
x;j − µpσ

p
x;j)

2] + 2
bntc

∑
i=1

bntc

∑
j=i+1

E[(∆Up
x;i − µpσ

p
x;i)(∆Up

x;j − µpσ
p
x;j)]

=
bntc

∑
j=1

(E[∆U2p
x;j]− µ2

pσ
2p
x;j) + 2

bntc

∑
i=1

bntc

∑
j=i+1

(E[∆Up
x;i∆Up

x;j]− µ2
pσ

p
x;iσ

p
x;j)

= (µ2p − µ2
p)
bntc

∑
j=1

σ
2p
x;j +

p!p!
2p−1

p/2

∑
u=1

22u

(p/2− u)!(p/2− u)!(2u)!

bntc

∑
i=1

bntc

∑
j=i+1

σ
p
x;iσ

p
x;jρ

2u
x;ij.

(41)

It follows from (16) that

c−1
5,1

n−1+d/4 ≤ σ2
x;j ≤ c5,1 n−1+d/4 for all 1 ≤ j ≤ bntc. (42)

By (17), (42) and Lagrange mean value theorem, it holds that for any real number
r > 0 and 1 < j ≤ bntc,

|σr
x;j − (Kdn−1+d/4)r/2| ≤ c5,2(σ

r−2
x;j + (Kdn−1+d/4)(r−2)/2)|σ2

x;j − Kdn−1+d/4|
≤ c5,3 n−2+(−1+d/4)(r−2)/2t−(d/4+1)

j−1 .
(43)

Note that since α + 1 ≤ d < α + 2, one has 1/2 ≤ d/4 < 1. Thus

1
n

bntc

∑
j=2

t−(d/4+1)/2
j−1 →

∫ t

0
u−(d/4+1)/2du =

2
1− d/4

t(1−d/4)/2. (44)

It follows from (43) (with r = 2p) and (44) that

n−1+p(1−d/4)
bntc

∑
j=1
|σ2p

x;j − (Kdn−1+d/4)p| → 0. (45)
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Hence

n−1+p(1−d/4)
bntc

∑
j=1

σ
2p
x;j

= n−1+p(1−d/4)
bntc

∑
j=1

(σ
2p
x;j − (Kdn−1+d/4)p) + n−1+p(1−d/4)(Kdn−1+d/4)pbntc → Kp

d t.

(46)

It follows from (15) that

E[∆Ux;i∆Ux;j]

= Kdn−1+d/4((j + i)1−d/4 − (j− i)1−d/4 − (j + i− 1)1−d/4 + (j− i + 1)1−d/4

−(j + i− 1)1−d/4 + (j− i− 1)1−d/4 + (j + i− 2)1−d/4 − (j− i)1−d/4),

which simplifies to

E[∆Ux;i∆Ux;j] = −Kd(n−1+d/4φd;j+i−1 + n−1+d/4φd;j−i), (47)

where φd;j = 2j1−d/4 − (j− 1)1−d/4 − (j + 1)1−d/4. Thus, by binomial expansion, for every
1 ≤ u ≤ p/2 and 1 ≤ i < j ≤ bntc,

σ
p
x;iσ

p
x;jρ

2u
x;ij = σ

p−2u
x;i σ

p−2u
x;j (E[∆Ux;i∆Ux;j])

2u

= K2u
d σ

p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j+i−1 + n−1+d/4φd;j−i)

2u

= K2u
d

2u

∑
v=0

(
2u
v

)
σ

p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j+i−1)

v(n−1+d/4φd;j−i)
2u−v.

(48)

If we write φd;k = g(k− 1)− g(k), where g(s) = (s + 1)1−d/4 − s1−d/4, then for each
k ≥ 2, the Lagrange mean value theorem gives φd;k = |g′(k− ζ1)| = (d/4)(1− d/4)(k−
ζ1 + ζ2)

−d/4−1 for some ζ1, ζ2 ∈ [0, 1]. This yields that for all k ∈ N+,

0 < φd;k ≤
c5,4

kd/4+1 , (49)

and hence, for any r ≥ 1,
M

∑
k=1

φr
d;k → Jd,r (50)

with some Jd,r > 0 as M→ ∞.
Note that since j + i− 1 ≥ (j + i)/2, one has

n−1+d/4φd;j+i−1 ≤
c5,5

n2
1

(ti + tj)d/4+1 . (51)

Note that (49) gives n−1+d/4φd;j−i ≤ c5,6 n−1+d/4 and n−1+d/4φd;j+i−1 ≤ c5,7 n−1+d/4

for all 1 ≤ i < j ≤ bntc. Thus, by (42) and (51), for every 1 ≤ u ≤ p/2 and 1 ≤ v ≤ 2u,

n−1+p(1−d/4)
bntc

∑
i=1

bntc

∑
j=i+1

σ
p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j+i−1)

v(n−1+d/4φd;j−i)
2u−v

≤ c5,8 n−d/4
bntc

∑
i=1

bntc

∑
j=i+1

(n−1+d/4φd;j+i−1)

≤ c5,9 n−2−d/4
bntc

∑
i=1

bntc

∑
j=i+1

1
(ti + tj)d/4+1 ,

(52)

which tends to zero as n→ ∞ since
∫ t

0

∫ t
0 (u + v)−(d/4+1)dudv < ∞.
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We now consider the term v = 0 in (48). Let BH = {BH(t), t ∈ R+} be a FBM
with index H ∈ (0, 1), which is a centered Gaussian process with E[(BH(t)− BH(s))2] =
|s− t|2H for s, t ∈ R+. Then, for H0 = (1− d/4)/2,

E
[(

BH0
( j + 1

n

)
− BH0

( j
n

))(
BH0

( i + 1
n

)
− BH0

( i
n

))]
= −1

2

[
2
( j− i

n

)1−d/4
−
( j− i− 1

n

)1−d/4
−
( j− i + 1

n

)1−d/4]
= −1

2
n−1+d/4φd;j−i.

(53)

Thus,

n−1+d/4
bntc

∑
i=1

bntc

∑
j=i+1

φd;j−i = n−1+d/4
bntc−1

∑
i=1

bntc

∑
j=i+1

φd;j−i

= −2
bntc−1

∑
i=1

bntc

∑
j=i+1

E
[(

BH0
( j + 1

n

)
− BH0

( j
n

))(
BH0

( i + 1
n

)
− BH0

( i
n

))]
= −2

bntc−1

∑
i=1

E
[(

BH0
( bntc+ 1

n

)
− BH0

( i + 1
n

))(
BH0

( i + 1
n

)
− BH0

( i
n

))]
= −

bntc−1

∑
i=1

[
−
( bntc − i

n

)1−d/4
+
( bntc+ 1− i

n

)1−d/4
−
( 1

n

)1−d/4]
= −

( bntc
n

)1−d/4
+
( 1

n

)1−d/4
+ bntcn−1+d/4.

(54)

This yields

n−d/4
bntc

∑
i=1

bntc

∑
j=i+1

(n−1+d/4φd;j−i)→ t. (55)

By (42) and (49), one has for every 1 ≤ u ≤ p/2 and any M > 0,

n−1+p(1−d/4)
bntc

∑
i=1

bntc

∑
j=i+M+1

σ
p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j−i)

2u

≤ c5,10 M−(d/4+1)(2u−1)n−d/4
bntc

∑
i=1

bntc

∑
j=i+M+1

(n−1+d/4φd;j−i)

≤ c5,11 M−(d/4+1)(2u−1)n−d/4
bntc

∑
i=1

bntc

∑
j=i+1

(n−1+d/4φd;j−i).

(56)

This, together with (50), yields

n−1+p(1−d/4)
bntc

∑
i=1

bntc

∑
j=i+M+1

σ
p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j−i)

2u ≤ c5,12 M−(d/4+1)(2u−1)t, (57)

which tends to zero by letting M→ ∞.
By (43) (with r = p− 2u), (42) and (53), one has for every 1 ≤ u ≤ p/2,
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n−1+p(1−d/4)
bntc

∑
i=2

bntc

∑
j=i+1

|σp−2u
x;i − (Kdn−1+d/4)(p−2u)/2|σp−2u

x;j (n−1+d/4φd;j−i)
2u

≤ c5,13 n−1−d/2
bntc

∑
i=2

1

td/4+1
i−1

bntc

∑
j=i+1

(n−1+d/4φd;j−i)

= −2c5,13 n−1−d/2
bntc

∑
i=2

1

td/4+1
i−1

[
−
( bntc − i

n

)1−d/4
+
( bntc+ 1− i

n

)1−d/4
−
( 1

n

)1−d/4]
≤ c5,14 n−d/4

bntc

∑
i=2

[
−
( bntc − i

n

)1−d/4
+
( bntc+ 1− i

n

)1−d/4]
+ c5,15 n−2−d/4

bntc

∑
i=2

1

td/4+1
i−1

≤ c5,16 n−d/4
[( 1

n

)1−d/4
+
( bntc − 1

n

)1−d/4]
+ c5,17 n−3/2−d/4/2

bntc

∑
i=2

t−(d/4+1)/2
i−1 ,

(58)

which tends to zero as n → ∞ since
∫ t

0 s−(d/4+1)/2ds < ∞. Hence, one has for every
1 ≤ u ≤ p/2,

n−1+p(1−d/4)
bntc

∑
i=2

bntc

∑
j=i+1

(σ
p−2u
x;i − (Kdn−1+d/4)(p−2u)/2)σ

p−2u
x;j (n−1+d/4φd;j−i)

2u → 0. (59)

Similarly, one has for every 1 ≤ u ≤ p/2,

n−1+p(1−d/4)
bntc

∑
i=2

bntc

∑
j=i+1

(Kdn−1+d/4)(p−2u)/2(σ
p−2u
x;j − (Kdn−1+d/4)(p−2u)/2)(n−1+d/4φd;j−i)

2u → 0. (60)

For every 1 ≤ u ≤ p/2 and any M > 0,

n−1+p(1−d/4)
bntc

∑
i=2

i+M

∑
j=i+1

(Kdn−1+d/4)p−2u(n−1+d/4φd;j−i)
2u

= Kp−2u
d

bntc − 1
n

M

∑
j=1

φ2u
d;j → Kp−2u

d Jd,2ut
(61)

as n→ ∞ and M→ ∞.
Note that for every 1 ≤ u ≤ p/2 and 1 ≤ i < j ≤ bntc,

σ
p−2u
x;i σ

p−2u
x;j = (σ

p−2u
x;i − (Kdn−1+d/4)(p−2u)/2)σ

p−2u
x;j

+(Kdn−1+d/4)(p−2u)/2(σ
p−2u
x;j − (Kdn−1+d/4)(p−2u)/2) + (Kdn−1+d/4)p−2u.

(62)

Hence, by (59)–(62), one has for every 1 ≤ u ≤ p/2,

n−1+p(1−d/4)
bntc

∑
i=2

i+M

∑
j=i+1

σ
p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j−i)

2u → Kp−2u
d Jd,2ut (63)

as n→ ∞ and M→ ∞. It follows from (42) that

n−1+p(1−d/4)
1+M

∑
j=2

σ
p−2u
x;i σ

p−2u
x;j (n−1+d/4φd;j−1)

2u → 0. (64)

This, together with (48), (52) and (63), yields for every 1 ≤ u ≤ p/2,

n−1+p(1−d/4)
bntc

∑
i=1

bntc

∑
j=i+1

σ
p
x;iσ

p
x;jρ

2u
x;ij → Kp

d Jd,2ut (65)
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Therefore, by (41), (46) and (65), one has

n−1+p(1−d/4) Var(Ξn
p(U(·, x))t)

→ Kp
d

(
µ2p − µ2

p +
p!p!
2p−1

p/2

∑
u=1

22u Jd,2u

(p/2− u)!(p/2− u)!(2u)!

)
t = κd,p t.

(66)

This proves (4). The proof of Theorem 1 is completed.

Proof of Corollary 1. Write

n−1+p(1−d/4)/2Ξn
p(U(·, x))t − Kp/2

d µpt
= n−1+p(1−d/4)/2(Ξn

p(U(·, x))t −E[Ξn
p(U(·, x))t])

+µpn−1+p(1−d/4)/2
bntc

∑
j=1

(σ
p
x;j − (Kdn−1+d/4)p/2) + Kp/2

d µp

( bntc
n
− t
)

.
(67)

Obviously, the third term of (67) tends to zero as n → ∞. It follows from (43) (with
r = p) and (45) that the second term of (67) tends to zero as n→ ∞. Thus, by (4), one has

E[|n−1+p(1−d/4)/2Ξn
p(U(·, x))t − Kp/2

d µpt|2]→ 0.

This proves (5).

4.2. Temporal CLTs for LKS-SPDEs

The following lemma is needed to prove Theorem 2.

Lemma 5. Let X1, ..., X4 be mean zero, jointly normal random variables, such that E[X2
j ] = 1 and

ρij = E[XiXj]. Put Zj = Xp
j − E[Xp

j ]. Then, for any p ∈ N+,

∣∣∣E[ 4

∏
j=1

Zj

]∣∣∣ ≤ c6,1

(
|ρ12 ρ34|+

1√
1− ρ2

12

max
i≤2<j

|ρij|
)

(68)

whenever |ρ12| < 1. Moreover,

∣∣∣E[ 4

∏
j=1

Zj

]∣∣∣ ≤ c6,2 max
2≤j≤4

|ρ1j|. (69)

Furthermore, there exists ε > 0 such that∣∣∣E[ 4

∏
j=1

Zj

]∣∣∣ ≤ c6,3 max
1≤i 6=j≤4

ρ2
ij (70)

whenever |ρij| < ε for all 1 ≤ i 6= j ≤ 4.

Proof. Following the same lines as the proof of Lemma 3.3 in [11] with hj(Xj) = Zj,
1 ≤ j ≤ 4, we get Lemma 5 immediately.

Proposition 1. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0
and ϑ = 0 in (1). Fix r ∈ N+. Put

Θn
r (U(·, x))t = n−1/2+r(1−d/4)/2

bntc

∑
i=1

(∆Ur
x;i − µrσr

x;i).
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Then, for all 0 ≤ s < t and all n ∈ N+,

E[|Θn
r (U(·, x))t −Θn

r (U(·, x))s|4] ≤ c6,4

( bntc − bnsc
n

)2
. (71)

The sequence {Θn
r (U(·, x))} is therefore relatively compact in the Skorohod space DR[0, ∞).

Proof. We follow the method of Proposition 3.5 in [11] to prove (71). Let S = {j ∈ N4
+ :

bnsc + 1 ≤ j1 ≤ · · · ≤ j4 ≤ bntc}. For j ∈ S and k ∈ {1, 2, 3}, define hk = jk+1 − jk
and let Sk = {j ∈ S : hk = max{h1, h2, h3}}. Define N = bntc − (bnsc + 1) and for
i ∈ {0, 1, ..., N}, let S i

k = {j ∈ Sk : max{h1, h2, h3} = i}. Further define T `
k = T i,`

k = {j ∈
S i

k : min{h1, h2, h3} = `} and Vv
k = V i,`,v

k = {j ∈ T `
k : med{h1, h2, h3} = v}, where “med”

denotes the median function. For j ∈ S , define

Λx;j =
4

∏
k=1

(∆Ur
x;jk − µrσr

x;jk ).

Observe that

E[|Θn
r (U(·, x))t −Θn

r (U(·, x))s|4] = n−2+2r(1−d/4)E
[∣∣∣ bntc

∑
i=bnsc+1

(∆Ur
x;i − µrσr

x;i)
∣∣∣4]

≤ 4!n−2+2r(1−d/4) ∑
j∈S
|E[Λx;j]|

≤ 4!n−2+2r(1−d/4)
3

∑
k=1

∑
j∈Sk

|E[Λx;j]|,

(72)

and that

∑
j∈Sk

|E[Λx;j]| =
N

∑
i=0

∑
j∈S i

k

|E[Λx;j]|

=
N

∑
i=0

bid/4c

∑
`=0

∑
j∈T `

k

|E[Λx;j]|+
N

∑
i=0

i

∑
`=bid/4c+1

∑
j∈T `

k

|E[Λx;j]|

=
N

∑
i=0

bid/4c

∑
`=0

i

∑
v=`

∑
j∈Vv

k

|E[Λx;j]|+
N

∑
i=0

i

∑
`=bid/4c+1

i

∑
v=`

∑
j∈Vv

k

|E[Λx;j]|.

(73)

Let Zx;k = σ−1
x;jk

∆Ux;jk and

ξx;k = Zr
x;k −E[Zr

x;k] = σ−r
x;jk

(∆Ur
x;jk − µrσr

x;jk ).

Then

|E[Λx;j]| =
( 4

∏
k=1

σr
x;jk

)∣∣∣E[ 4

∏
k=1

ξx;k

]∣∣∣. (74)

By (47) and (49), one has for all k 6= l ∈ N+,

|E[∆Ux;k∆Ux;l ]| ≤
c6,5 n−1+d/4

|k− l|d/4+1 . (75)

It follows from (42) and (75) that

|ρx;kl | = |E[Zx;kZx;l | = σ−1
x;jk

σ−1
x;jl
|E[∆Ux;jk ∆Ux;jl ]| ≤

c6,6

|jk − jl |d/4+1 . (76)
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Suppose 0 ≤ ` ≤ bid/4c. Fix v and let j ∈ Vv
k be arbitrary. If k = 1, then i =

max{h1, h2, h3} = h1 = j2 − j1. If k = 3, then i = max{h1, h2, h3} = h3 = j4 − j3. In either
case, by (69), (42), (74) and (76), one has

|E[Λx;j]| ≤
c6,7 n−2r(1−d/4)

id/4+1 ≤ c6,7

( 1
(`v)d/4+1 +

1
id/4+1

)
n−2r(1−d/4).

If k = 2, then i = max{h1, h2, h3} = h2 = j3 − j2 and `v = h3h1 = (j4 − j3)(j2 − j1).
Hence, by (68), (42), (74) and and (76),

|E[Λx;j]| ≤ c6,8

( 1
(`v)d/4+1 +

1
id/4+1

)
n−2r(1−d/4).

Now choose k′ 6= k such that hk′ = `. With k′ given, j is determined by jk. Since there
are two possibilities for k′ and N + 1 possibilities for jk, |Vv

k | ≤ 2(N + 1). Therefore,

bid/4c

∑
`=0

i

∑
v=`

∑
j∈Vv

k

|E[Λx;j]| ≤ c6,9(N + 1)
bid/4c

∑
`=0

i

∑
v=`

( 1
(`v)d/4+1 +

1
id/4+1

)
n−2r(1−d/4)

≤ c6,10(N + 1)
bid/4c

∑
`=0

( 1
`d/4+1 +

1
id/4

)
n−2r(1−d/4)

≤ c6,11(N + 1)n−2r(1−d/4).

(77)

For the second summation, suppose bid/4c+ 1 ≤ ` ≤ i. In this case, if j ∈ T `
k , then

` = min{h1, h2, h3}, so that by (42), (70), (74) and (76),

|E[Λx;j]| ≤
c6,12 n−2r(1−d/4)

`2(d/4+1)
.

Since ∑i
v=` |Vv

k | ≤ 2(N + 1)i and 1/2 ≤ d/4 < 1, one has

i

∑
`=bid/4c+1

i

∑
v=`

∑
j∈Vv

k

|E[Λx;j]| ≤ c6,13(N + 1)i
i

∑
bid/4c+1

n−2r(1−d/4)

`2(d/4+1)

≤ c6,14(N + 1)i
( ∫ ∞

bid/4c

1
u2(d/4+1)

du
)

n−2r(1−d/4)

≤ c6,15(N + 1)n−2r(1−d/4).

(78)

Thus, using (72), (73), (77) and (78), one has

n−2+2r(1−d/4)E
[∣∣∣ bntc

∑
j=bnsc+1

(∆Ur
x;j − µrσr

x;j)
∣∣∣4] ≤ c6,16

N

∑
i=0

(N + 1)n−2 = c6,16

( bntc − bnsc
n

)2
,

which is (71).
To show that a sequence of cadlag processes {Fn} is relatively compact, it suffices to

show that for each T > 1, there exist constants β > 0, C > 0, and q > 1 such that

RFn(t, h) = E[|Fn(t + h)− Fn(t)|β|Fn(t)− Fn(t− h)|β] ≤ Chq

for all n ∈ N, all t ∈ [0, T] and all h ∈ [0, t]. (See, e.g., Theorem 3.8.8 in [26].) Taking β = 2
and using (71) together with Hölder inequality gives

RΘn
r (U(·,x))(t, h) ≤ c6,17

( bnt + nhc − bntc
n

)( bntc − bnt− nhc
n

)
.
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If nh < 1/2, then the right-hand side of this inequality is zero. Assume nh ≥ 1/2.
Then

bnt + nhc − bntc
n

≤ nh + 1
n

≤ 3h.

The other factor is similarly bounded, so that RΘn
r (U(·,x))(t, h) ≤ c6,18 h2.

Proposition 2. Fix (ε, ϑ) ∈ R+ ×R and x ∈ Rd, and assume d ∈ {1, 2, 3}. Assume that u0 ≡ 0
and ϑ = 0 in (1). Then, for any 0 ≤ s < t and r ∈ N+,

Θn
r (U(·, x))t −Θn

r (U(·, x))s
L→ κ1/2

d,r |t− s|1/2N

as n→ ∞, where N is a standard normal random variable.

Proof. Let {n(j)}∞
j=1 be any sequence of natural numbers. We will prove that there exists a

subsequence {n(jm)} such that Θn(jm)
r (U(·, x))t −Θn(jm)

r (U(·, x))s converges in law to the
given random variable.

For each m ∈ N+, choose n(jm) ∈ {n(j)} such that n(jm) > n(jm−1) and n(jm) ≥
m2/d/4(t− s)−1. Let b = b(m) = n(jm)(t− s)/m. For 0 ≤ k ≤ m, define uk = n(jm)s + kb,
so that

Θn(jm)
r (U(·, x))t −Θn(jm)

r (U(·, x))s = n(jm)−1/2+r(1−d/4)/2
bn(jm)tc

∑
i=bn(jm)sc+1

(∆Ur
x;i − µrσr

x;i)

= n(jm)−1/2+r(1−d/4)/2
m

∑
k=1

uk

∑
i=uk−1+1

(∆Ur
x;i − µrσr

x;i).

(79)

Let us now introduce the filtration

Ft = σ{W(A) : A ⊂ [0, t]×Rd, λ(A) < ∞},

where λ denotes Lebesgue measure on Rd+1. Let τk = n(jm)−1uk−1. For each pair (i, k)
such that uk−1 < i ≤ uk, define

ξx;i,k = ∆Ux;i −E[∆Ux;i|Fτk ].

Note that ξx;i,k is Fτk+1 -measurable and independent of Fτk . Recall that

U(t, x) =
∫ t

0

∫
Rd

KLKSd
ε,ϑ

t−s;x,yW(ds× dy). (80)

Moreover, given constants 0 ≤ τ ≤ s ≤ t, one has

E[U(t, x)|Fτ ] =
∫ τ

0

∫
Rd

KLKSd
ε,ϑ

t−s;x,yW(ds× dy). (81)

It follows from (80) and (81) that

U(t + τk, x)−E[U(t + τk, x)|Fτk ] =
∫ t+τk

τk

∫
Rd

KLKSd
ε,ϑ

t+τk−s;x,yW(ds× dy).

This yields that {ξx;i,k} has the same law as {∆Ux;i−uk−1
}.

Now define σ2
x;i,k = E[ξ2

x;i,k] = σ2
x;i−uk−1

and

ζx;m,k =
uk

∑
i=uk−1+1

(ξr
x;i,k − µrσr

x;i,k),
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so that ζx;m,k, 1 ≤ k ≤ m, are independent and

Θn(jm)
r (U(·, x))t −Θn(jm)

r (U(·, x))s = n(jm)
−1/2+r(1−d/4)/2

m

∑
k=1

ζx;m,k + εx;m, (82)

where

εx;m = n(jm)
−1/2+r(1−d/4)/2

m

∑
k=1

uk

∑
i=uk−1+1

((∆Ur
x;i − µrσr

x;i)− (ξr
x;i,k − µrσr

x;i,k))

Since ξx;i,k and ∆Ux;i − ξx;i,k = E[∆Ux;i|Fτk ] are independent, one has

σ2
x;i = E[∆U2

x;i] = E[ξ2
x;i,k] +E[|∆Ux;i − ξx;i,k|2]

= σ2
x;i−uk−1

+E[|∆Ux;i − ξx;i,k|2].
(83)

This, together with (17), gives

E[|∆Ux;i − ξx;i,k|2] = σ2
x;i − σ2

x;i−uk−1
≤

c6,19 n(jm)−1+d/4

(i− uk−1)d/4+1 . (84)

Thus, since ∆Ux;i − ξx;i,k is Gaussian, by (40) and (84), one has

E[|∆Ux;i − ξx;i,k|4] ≤
c6,20 n(jm)−2+d/2

(i− uk−1)d/2+2 . (85)

Note that (40) and (42) give E[|∆Ux;i|4r−4] ≤ c6,21 σ4r−4
x;i ≤ c6,22 n(jm)(−1+d/4)(2r−2) and

E[|ξx;i,k|4r−4] ≤ c6,23 σ4r−4
x;i−uk−1

≤ c6,24 n(jm)(−1+d/4)(2r−2). By Lagrange mean value theorem,

|∆Ur
x;i − ξr

x;i,k| ≤ c6,25(|∆Ux;i|r−1 + |ξx;i,k|r−1)|∆Ux;i − ξx;i,k|.

Thus, by (85) and Hölder inequality,

E[|∆Ur
x;i − ξr

x;i,k|
2] ≤ c6,26(E[|∆Ux;i|4r−4] +E[|ξx;i,k|4r−4])1/2(E[|∆Ux;i − ξx;i,k|4])1/2

≤
c6,27 n(jm)−r(1−d/4)

(i− uk−1)d/4+1 .
(86)

Similarly, by (84) and Lagrange mean value theorem,

|σr
x;i − σr

x;i,k| ≤ c6,28(|σx;i|r−2 + |σx;i,k|r−2)|σ2
x;i − σ2

x;i,k| ≤
c6,29 n(jm)−r(1−d/4)/2

(i− uk−1)d/4+1 . (87)

Therefore, by (86), (87) and Hölder inequality,

E[|εx;m|] ≤ n(jm)−1/2+r(1−d/4)/2
m

∑
k=1

uk

∑
j=uk−1+1

((E[|∆Ur
x;i − ξr

x;i,k|
2])1/2 + µr|σr

x;j − σr
x;j,k|)

≤ c6,30 n(jm)−1/2
m

∑
k=1

uk

∑
i=uk−1+1

(i− uk−1)
−(d/4+1)/2

= c6,31 n(jm)−1/2
m

∑
k=1

uk−uk−1

∑
i=1

i−(d/4+1)/2.

Since uk − uk−1 ≤ b, this gives

E[|εx;m|] ≤ c6,32 n(jm)−1/2mb(1−d/4)/2 = c6,32 m(d/4+1)/2n(jm)−d/4/2(t− s)(1−d/4)/2.
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But since n(jm) was chosen so that n(jm) ≥ m2/d/4(t − s)−1, one has E[|εx;m|] ≤
c6,33 m−(1−d/4)/2 |t− s|1/2 and εx;m → 0 in L1 and in probability. Therefore, by (82), we
need only to show that

n(jm)−1/2+r(1−d/4)/2
m

∑
k=1

ζx;m,k
L→ κ1/2

d,r |t− s|1/2N

in order to complete the proof.
For this, we will use the Lindeberg-Feller theorem (see, e.g., Theorem 2.4.5 in [27]),

which states the following: for each m, let ζx;m,k, 1 ≤ k ≤ m, be independent random
variables with E[ζx;m,k] = 0. Suppose:

(a) n(jm)−1+r(1−d/4) ∑m
k=1 E[ζ2

x;m,k]→ ν2, and
(b) for all δ > 0, limm→∞ n(jm)−1+r(1−d/4) ∑m

k=1 E[|ζx;m,k|2I{n(jm)−1/2+r(1−d/4)/2|ζx;m,k |>δ}]

→ 0.
Then n(jm)−1/2+r(1−d/4)/2 ∑m

k=1 ζx;m,k
L→ νN as n→ ∞.

To verify these conditions, recall that {ξx;i,k} and {∆Ux;i−uk−1
} have the same law, so that

E[|ζx;m,k|4] = n(jm)−2+2r(1−d/4)E
[∣∣∣ uk−uk−1

∑
i=1

(∆Ur
x;i − µrσr

x;i)
∣∣∣4].

Hence, by (71),

n(jm)−2+2r(1−d/4)E[|ζx;m,k|4] ≤ c6,34(uk − uk−1)
2n(jm)−2.

Jensen inequality now gives m−1+r(1−d/4) ∑m
k=1 E[|ζx;m,k|2] ≤ c6,35 mbn(jm)−1 = c6,35

(t− s), so that by passing to a subsequence, we may assume that (a) holds for some ν ≥ 0.
For (b), let δ > 0 be arbitrary. Then

n(jm)−1+r(1−d/4)
m

∑
k=1

E[|ζx;m,k|2I{n(jm)−1/2+r(1−d/4)/2|ζx;m,k |>δ}]

≤ δ−2n(jm)−2+2r(1−d/4)
m

∑
k=1

E[|ζx;m,k|4]

≤ c6,36 δ−2mb2n(jm)−2

= c6,36 δ−2m−1(t− s)2,

which tends to zero as m→ ∞.
It therefore follows that n(jm)−1/2+r(1−d/4)/2 ∑m

k=1 ζx;m,k
L→ νN as n → ∞ and

it remains only to show that ν = κ1/2
d,r |t − s|1/2. For this, observe that the continuous

mapping theorem implies that |Θm
r (U(·, x))t −Θm

r (U(·, x))s|2
L→ ν2N 2. By the Skorohod

representation theorem, we may assume that the convergence is a.s. By Proposition 1,
the family |Θm

r (U(·, x))t −Θm
r (U(·, x))s|2 is uniformly integrable. Hence, |Θm

r (U(·, x))t −
Θm

r (U(·, x))s|2 → ν2N 2 in L1, which implies E[|Θm
r (U(·, x))t −Θm

r (U(·, x))s|2]→ ν2. But
by Theorem 1, E[|Θm

r (U(·, x))t −Θm
r (U(·, x))s|2] → κd,r|t− s|, so ν = κ1/2

d,r |t− s|1/2 and
the proof is complete.

Proof of Theorem 2. It is sufficient to prove (6) for the even p case since the odd p case can
be proved similarly. Let {n(j)}∞

j=1 be any sequence of natural numbers. By Proposition 1,

the sequence {(U(·, x), Θn(j)
p (U(·, x)))} is relatively compact. Therefore, there exists a

subsequence {n(jk)} and a cadlag process Y such that (U(·, x), Θn(jk)
p (U(·, x))) L→ (U, Y).

Fix 0 < s1 < s2 < · · · < s` < s < t. With notation as in Proposition 2, let

ζx;n(jk) = n(jk)
−1/2+p(1−d/4)/2

bn(jk)tc

∑
i=bn(jk)sc+2

(ξ
p
x;i,k − µpσ

p
x;i,k),
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and define
ηx;n(jk) = Θn(jk)

p (U(·, x))t −Θn(jk)
p (U(·, x))s − ζx;n(jk).

As in the proof of Proposition 2, ηx;n(jk) → 0 in probability. It therefore follows that

(Θn(jk)
p (U(·, x))s1 , ..., Θn(jk)

p (U(·, x))s` , ζx;n(jk))
L→ (Y(s1), ..., Y(s`), Y(t)−Y(s)).

Note that F(bn(jk)sc+1)n(jk)−1 and ζx;n(jk) are independent. Hence, (Θn(jk)
p (U(·, x))s1 , ...,

Θn(jk)
p (U(·, x))s`) and ζx;n(jk) are independent, which implies Y(t)− Y(s) and (Y(s1), ...,

Y(s`)) are independent. This yields that the process Y has independent increments.
By Proposition 2, the increment Y(t)−Y(s) is normally distributed with mean zero

and variance κd,p|t− s|. Moreover, U(0, x) = 0 since Θn
p(U(·, x))0 = 0 for all n. Hence, Y is

equal in law to κ1/2
d,p B, where B is a standard Brownian motion. It remains only to show

that U and B are independent.
Fix 0 < s1 < s2 < · · · < s` ≤ T and x ∈ Rd. Let Zx = (U(s1, x), ..., U(s`, x))T and

Σx = E[ZxZT
x ]. It is easy to see that Σx is invertible. Hence, we may define the vectors

vx;j ∈ R` by vx;j = E[Zx∆Ux;j], and wx;j = Σ−1
x vx;j. Let ξx;j = ∆Ux;j − wT

x;jZx, so that ξx;j
and Zx are independent.

Define

Θ̃n
p(U(·, x))t = n−1/2+p(1−d/4)/2

bntc

∑
j=1

(ξ
p
x;j − µpσ

p
x;j).

Then

|Θn
p(U(·, x))t − Θ̃n

p(U(·, x))t| ≤ n−1/2+p(1−d/4)/2
∣∣∣ bntc

∑
j=1

(∆Up
x;j − ξ

p
x;j)
∣∣∣.

By (40), binomial expansion and Hölder inequality,

E
[

sup
0≤t≤T

|Θn
p(U(·, x))t − Θ̃n

p(U(·, x))t|
]

≤ c6,37 n−1/2+p(1−d/4)/2
p

∑
ν=1

bnTc

∑
j=1

(E[∆U2p−2ν
x;j ])1/2(E[(wT

x;jZx)
2ν])1/2

≤ c6,38

p

∑
ν=1

n−1/2+ν(1−d/4)/2
bnTc

∑
j=1

(E[(wT
x;jZx)

2ν])1/2

≤ c6,39 max
1≤i≤`

p

∑
ν=1

n−1/2+ν(1−d/4)/2
bnTc

∑
j=1
|E[U(si, x)∆Ux;j]|ν.

Note that by (42) and Hölder inequality, one has |E[U(si, x)∆Ux;j]| ≤ c6,40 σx;j ≤ c6,41

n−(1−d/4)/2 for all 1 ≤ i ≤ ` and 1 ≤ j ≤ bntc, and that by (15) and Lagrange mean value
theorem, for any 1 ≤ i ≤ ` and 1 ≤ j ≤ bntc,

E[U(si, x)∆Ux;j] = Kd((si + tj)
1−d/4 − (si + tj−1)

1−d/4 − (si − tj)
1−d/4 + (si − tj−1)

1−d/4)

=
Kd(1− d/4)

n
((si + (j− ζ1)/n)−d/4 + (si − (j− ζ2)/n)−d/4)

≤ 2Kd(1− d/4)
n

(si − (j− ζ2)/n)−d/4,
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where ζ1, ζ2 ∈ (0, 1). Then, for any 1 ≤ i ≤ ` and 1 ≤ ν ≤ 2p,

n−1/2+ν(1−d/4)/2
bnTc

∑
j=1
|E[U(si, x)∆Ux;j]|ν

≤ c6,42 n1/2−ν(1+d/4)/2 1
n

bnTc

∑
j=1

(si − (j− ζ2)/n)−d/4,

which tends to zero as n → ∞ since
∫ T

0 (si − u)−d/4du < ∞. Thus, (Zx, Θ̃n
p(U(·, x))s1 , ...,

Θ̃n
p(U (·, x))sd)

L→ (Zx, κ1/2
d,p B(s1), ..., κ1/2

d,p B(s`)). Since Zx and Θ̃n
p(U(·, x)) are independent,

this gives that U and B are independent
We now can complete the proof. Note that by (43) and (44),

max
0≤t≤T

∣∣∣ 1√
n

bntc

∑
j=1

(np(1−d/4)/2∆Up
x;j − Kp/2

d µp)−Θn
p(U(·, x))t

∣∣∣
≤ µpn−1/2+p(1−d/4)/2

bnTc

∑
j=1
|σp

x;j − (Kdn−1+d/4)p/2|

→ 0.

This finish the proof.

5. Conclusions

In this paper, we have presented that the realized power variations for the fourth order
LKS-SPDEs and their gradient, driven by the space–time white noise in one-to-three dimen-
sional spaces, in time, have infinite quadratic variation and dimension-dependent Gaussian
asymptotic distributions. We are concerned with the fluctuation behavior, with delicate
analysis of the realized variations, of the sample paths for the above class of equations and
their gradient, and complement Allouba’s earlier works on the spatio-temporal Hölder
regularity of LKS-SPDEs and their gradient. These asymptotic distributions are expressed
in terms of the parameters of the problem, and may be used to analyze how the fluctuation
behavior depends on those parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

SPDE Stochastic partial differential equation
LKS Linearized Kuramoto–Sivashinsky
SIE Stochastic integral equation
FBM fractional Brownian motion
BBM bifractional Brownian motion
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