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Abstract: Autonomous vehicles need to localize themselves within the environment in order to effec-
tively perform most tasks. In situations where a Global Navigation Satellite System such as the Global
Positioning System cannot be used for localization, other methods are required. One self-localization
method is to use signals transmitted by beacons at known locations to determine the relative dis-
tance and bearing of the vehicle from the beacons. Estimation performance is influenced by the
beacon–vehicle geometry and the investigation into the optimal placement of beacons is of interest to
maximize the estimation performance. In this article, a new solution to the optimal beacon place-
ment problem for self-localization of a vehicle on a two-dimensional plane using angle-of-arrival
measurements is proposed. The inclusion of heading angle in the estimation problem differentiates
this work from angle-of-arrival target localization, making the optimization problem more difficult
to solve. First, an expression of the determinant of the Fisher information matrix for an arbitrary
number of beacons is provided. Then, a procedure for analytically determining the optimal angu-
lar separations for the case of three beacons is presented. The use of three beacons is motivated
by practical considerations. Numerical simulations are used to demonstrate the optimality of the
proposed method.

Keywords: angle-of-arrival; optimal geometry; self-localization

1. Introduction

Autonomous vehicles usually require accurate estimation of their position and heading
in a global coordinate system to effectively accomplish mission objectives. Global Naviga-
tion Satellite Systems (GNSS) such as the Global Positioning System (GPS) are widely used
for localization. GNSS is not a viable localization solution in situations where line-of-sight
communication with the navigation satellites is interrupted (e.g., indoor operation, or when
the satellite signals are likely to be jammed). GNSS is also unsuitable for use in low-power
systems that lack sufficient hardware capability [1]. When GNSS is impractical, an alternate
localization approach is necessary, such as using signals transmitted by a set of beacons
to determine relative distances and bearings. An example of localization using beacon
measurements is angle-of-arrival (AoA) localization. AoA localization is a technique for
determining the position of an emitter by triangulating bearing measurements received
from multiple sensors. Bearing measurements can be acquired passively and can provide
distance and orientation information [2,3], which makes them useful in applications such
as self-localization. For self-localization, a vehicle uses AoA measurements from multiple
transmitters to estimate its position and heading. The relative placement of the receiver
and transmitters affects AoA estimation accuracy [4]. Investigating geometries that yield
the best estimation accuracy provides useful insight into the optimal path an Unmanned
Aerial Vehicle (UAV) should take in an optimal path-planning application [5].
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For the AoA self-localization problem, the objective is to place the beacons to produce
an optimal estimate of the two-dimensional (2D) position and heading of a vehicle from
the measured beacon bearings (see, e.g., [6,7]). The optimal beacon placement is realized
by positioning beacons at fixed but arbitrary distances from the UAV and selecting the
beacon angular separations that minimize estimation uncertainty. Including the vehicle
heading into the optimization problem greatly increases the difficulty of finding an an-
alytical solution when compared to AoA target location estimation. We propose a new
solution to the optimal placement of three beacons for self-localization using AoA mea-
surements. Three beacons are the minimum sized constellation required for complete 2D
localization [8], and thus the least expensive and the easiest deployed. It is desirable to
limit the number of beacons used in many applications, such as underwater self-location
using an acoustic positioning system.

Acoustic positioning systems such as the Long Baseline system (LBL) are an alterna-
tive to GNSS technology for self-location in underwater environments. GNSS technology
is unsuitable for this application as electromagnetic signals from the satellites’ experi-
ence strong attenuation in water. LBL schemes use acoustic transponders placed on the
seabed that act as beacons to self-locate [9]. These systems have been designed to work
with as few as a single beacon to reduce the logistics associated with deploying more
beacons [9,10]. Minimizing the number of localization beacons allows for energy conserva-
tion in communication and reduces computational complexity [11], motivating the use of
three beacons.

For RF self-localization, the beacons operate at different frequencies. Including more
beacons in the self-localization architecture requires a larger receiver bandwidth, result-
ing in increased hardware cost. The cost of including extra beacons is substantial if
mobile beacons are considered. Providing mobility to beacons requires mounting them
on vehicles with GNSS capability and the power capacity to provide transmission [12].
There are restrictions on the number of vehicles available to operate as a mobile beacon
in resource-constrained applications. In these applications, it is useful to know the opti-
mal configuration that uses the minimum amount of resources. When many beacons are
present, the algorithm can be used to evaluate the subset of beacons that are closest to an
optimal placement or require the lowest cost to configure optimally. In summary, the mo-
tivation for using three beacons is as follows. Using the minimum number of beacons
for self-localization leads to reduced costs, placement logistics, computational complexity,
and energy required for communication.

To the best of our knowledge, no optimal beacon geometry analysis for position and
orientation self-localization using AoA measurements has been hitherto reported in the
open literature.

In this article, we present an analytical solution to the optimal beacon placement problem
for self-localization of a vehicle on a two-dimensional plane using angle-of-arrival measurements.

The key contributions of the study are:

• A simplified expression for the determinant of the FIM for vehicle self-localization
using AoA measurements for an arbitrary number of beacons.

• An analytical method for calculating angular separations between beacons that satisfy
the D-optimality criterion when three beacons are used.

• A mathematical proof that our solution satisfies the sufficient and necessary conditions
for optimality.

• Simulations that confirm the optimality of the proposed approach.

The rest of this article is organized as follows. Related work is discussed in
Section 2. The problem is introduced, and the determinant of the FIM is expressed in
Section 3. Analysis of MSE and the FIM is undertaken in Section 4, including discussion of
the complexity of the optimization problem and the introduction of several different forms
for the objective function. The specific case of three beacons and one vehicle is introduced,
and an analytical solution is formulated in Section 5. The results of numerical simulations
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used to verify the optimality of the proposed approach are presented in Section 6, and a
conclusion is presented in Section 7.

2. Related Work

Placing beacons to minimize self-localization uncertainty is similar to placing sensors
for minimizing target location estimation error. For target location estimation,
multiple sensors are placed rather than beacons, and only position estimation uncertainty
is minimized. In both applications, optimal geometries are realized by placing sensors or
beacons such that some scalar objective function is either maximized or minimized [13].
The same process can be used to determine optimal trajectories for mobile sensors and
beacons [5]. The objective functions are selected such that their optimization results in
estimation error minimization, and they are usually based on the Cramér–Rao lower bound
(CRLB) of the estimator or the Fisher information matrix (FIM). Popular objective functions
include the D-optimality criterion and the A-optimality criterion.

The D-optimality criterion maximizes the determinant of the FIM and thus minimizes
the volume of the confidence ellipsoid for the localization estimates [13].
The D-optimality criterion has been used in stationary bearings-only target
localization [4,5,14], and to develop trajectories for localizing stationary targets [15,16]
and maneuvering targets [17–19]. The A-optimality criterion minimizes the trace of the
inverse FIM, which minimizes the mean squared error (MSE) of the estimates. The A-
optimality criterion has been used to determine optimal flight paths for multiple UAVs
using AoA measurements to localize a stationary target [20,21] or a moving target [22–24],
and for 3D AoA target localization [25,26]. The diversity of the eigenvalues of the FIM
has been used as an alternative criterion for the optimal placement of sensors for target
position estimation [27]. In two dimensions, it produces the same result as using the
D-optimality criterion.

An advantage of the D-optimality criterion over the A-optimality criterion is that it
does not depend on the scale of the variables [28,29]. This advantage is beneficial for
the application presented as the vehicle states are position and heading. The optimal
geometries produced using the A-optimality criterion would be dependent on the units of
measurement, unlike those produced using D-optimality.

3. Problem Definition

Consider the self-localization geometry in Figure 1. The objective is to determine
the relationship between the beacon bearings in the global coordinates φ + θ1, φ + θ2, . . . ,
φ + θN to optimize the estimates of p and φ for given and fixed beacon distances from the
platform di = ‖p− ri‖, i = 1, 2, . . . , N for N ≥ 3. Here, φ is the vehicle heading, p is the
vehicle position, θi is the relative bearing angle between the vehicle heading, and the ith
beacon and ri is the position of the ith beacon.
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Figure 1. Beacon geometry for self-localization.
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The position and heading estimation problem is formulated as an optimization
problem. The optimization criterion adopted for this work is the D-optimality criterion,
chosen because it is invariant under scale changes in the parameters [28]. Assuming that
the beacon bearing measurements are corrupted by i.i.d. zero-mean Gaussian bearing noise
with covariance Σ = diag(σ2

1 , σ2
2 , . . . , σ2

N), the FIM is given by

Φ = J>0 Σ−1 J0, (1)

where J0 is the Jacobian matrix:

J0 =


sin(θ1+φ)
‖p−r1‖

− cos(θ1+φ)
‖p−r1‖

−1
sin(θ2+φ)
‖p−r2‖

− cos(θ2+φ)
‖p−r2‖

−1
...

...
...

sin(θN+φ)
‖p−rN‖

− cos(θN+φ)
‖p−rN‖

−1

. (2)

If all of the beacons and the vehicle are co-linear or co-circular, no unique estimate
exists, making the Cramér–Rao lower bound CRLB (inverse of FIM) tend to infinity and
the determinant of the FIM to zero [7,8,30]. In block matrix form, the FIM can be written as

Φ =

[
A b

b> c

]
, (3)

where

A =


N
∑

i=1

1
γi

sin(ϑi)
2 −

N
∑

i=1

1
γi

sin(ϑi) cos(ϑi)

−
N
∑

i=1

1
γi

sin(ϑi) cos(ϑi)
N
∑

i=1

1
γi

cos(ϑi)
2

,

b =

[
−

N
∑

i=1

di
γi

sin(ϑi)
N
∑

i=1

di
γi

cos(ϑi)

]
, c =

N

∑
i=1

1
σ2

i
, γi = σ2

i d2
i , ϑi = θi + φ. (4)

The D-optimality criterion can be used to place beacons for optimal self-localization.
The D-optimality criterion selects the beacon angular positions that maximize the deter-
minant of the FIM. Maximizing the determinant of the FIM minimizes the volume of the
confidence ellipsoid for the self-localization estimate. The D-optimality criterion is

max
ϑ1,ϑ2,...,ϑN

|Φ|, (5)

where |Φ| denotes the determinant of Φ. Since the FIM is a block matrix, its determinant
can be expressed as [31]

|Φ| = c−1|Ac− bb>|. (6)

This optimization problem is nontrivial because |Φ| has a rather complicated expres-
sion involving the multiplication of sums of sines and cosines. In the following section,
a simplification of the expression for |Φ| for the three-beacon case is presented, followed by
a generalization to any number of beacons. For simplicity, we assume all the bearing
measurements have the same variance, i.e., σ2

i = σ2, i = 1, . . . , N.

4. Analysis of Mean Square Error and Determinant of Fisher Information Matrix

The CRLB is the inverse of the FIM:

1
|Φ|

 A22c− b2
2 −A12c + b2

1 A12b2 − A22b1
−A21c + b2b1 A11c− b2

1 −A11b2 + A21b1
A21b2 − A22b1 −A11b2 + A12b1 A11 A22 − A12 A21

,
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where Aij is the {ij}th entry of A and A21 = A12. The MSE is given by the trace of the
CRLB [5]:

A22c− b2
2 + A11c− b2

1 + A11 A22 − A12 A21

|Φ| =
1
|Φ|σ4

{
N

N

∑
i=1

1
d2

i
−
(

N

∑
i=1

sin(ϑi)

di

)2

−
(

N

∑
i=1

cos(ϑi)

di

)2

+
1
4

(
N

∑
i=1

1
d2

i

)2

− 1
4

(
N

∑
i=1

sin(2ϑi)

d2
i

)2

− 1
4

(
N

∑
i=1

cos(2ϑi)

d2
i

)2}
.

(7)

It is evident from the above expression that the beacon geometry that maximizes |Φ|
does not necessarily minimize the MSE, unlike the case for the bearings-only localization
problem [5]. Therefore, the A-optimality criterion (which minimizes the MSE directly)
and the D-optimality criterion adopted here will produce different optimal geometries.
Turning our attention to the D-optimality criterion, the expression for |Φ| for the case of
N = 3 can be simplified to

|Φ| =
(

sin(ϑ2 − ϑ3)

σ3d2d3
+

sin(ϑ1 − ϑ2)

σ3d1d2
+

sin(ϑ3 − ϑ1)

σ3d1d3

)2

, (8)

the optimization problem becomes

max
ϑ1,ϑ2,ϑ3

(
sin(ϑ2 − ϑ3)

d2d3
+

sin(ϑ1 − ϑ2)

d1d2
+

sin(ϑ3 − ϑ1)

d1d3

)2

. (9)

An analytical solution to this optimization problem will be developed in Section 5.
An expression for the determinant can be found for an arbitrary number of beacons using
the same simplification techniques to derive (8). When N ≥ 3, the determinant has as many
square terms in the form of (8) as the number of unique combinations of three beacons, i.e.,

N!
3!(N−3)! =

N3−3N2+2N
6 terms:

∑
k<l<m

(
sin(ϑl − ϑm)

σ3dldm
+

sin(ϑm − ϑk)

σ3dmdk
+

sin(ϑk − ϑl)

σ3dkdl

)2

, (10)

where k, l, m ∈ {1, . . . , N}, and dk, dl , dm and ϑk, ϑl , ϑm are the beacon distances and angles,
respectively. This expression is only practical for a small number of beacons as the number
of terms grows in the order of N3 with N. Using the block matrix form in (6), and defining
xi =

1
di

cos(ϑi) and yi =
1
di

sin(ϑi), the expression for |Φ| in (10) can be expressed more
compactly as

|Φ| = 1
σ6N

det
([

Σ11 Σ12
Σ12 Σ22

])
, (11)

where

Σ11 = N
N

∑
i=1

y2
i −

(
N

∑
i=1

yi

)2

, Σ12 = −N
N

∑
i=1

yixi +

(
N

∑
i=1

yi

)(
N

∑
i

xi

)
,

Σ22 = N
N

∑
i=1

x2
i −

(
N

∑
i=1

xi

)2

.

The difficulty in finding an analytical solution is mainly due to the presence of terms
consisting of sums of squares and squares of sums. Observing
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N

∑
i=1

x2
i −

1
N

(
N

∑
i=1

xi

)2

=
N

∑
i=1

(xi − x̄)2,

N

∑
i=1

y2
i −

1
N

(
N

∑
i=1

yi

)2

=
N

∑
i=1

(yi − ȳ)2,

where x̄ = 1
N

N
∑

i=1
xi and ȳ = 1

N

N
∑

i=1
yi, (11) can be rewritten as

|Φ| = N
σ6

∣∣∣∣∣∣∣∣
N
∑

i=1
(yi − ȳ)2 −

N
∑

i=1
(yi − ȳ)(xi − x̄)

−
N
∑

i=1
(yi − ȳ)(xi − x̄)

N
∑

i=1
(xi − x̄)2

∣∣∣∣∣∣∣∣ (12)

=
N
σ6

{(
N

∑
i=1

(yi − ȳ)2

)(
N

∑
i=1

(xi − x̄)2

)
−
(

N

∑
i=1

(yi − ȳ)(xi − x̄)

)2}
. (13)

5. Three Beacons and One Vehicle

In this section, we derive an analytical solution for the optimal geometry when N = 3
using (8) and (9). Assuming the beacons are at arbitrary but fixed distances from the
vehicle, we first determine the stationary points of |Φ| by setting its gradient to zero:

∂

∂ϑ
|Φ(ϑ)| = 2P


cos(ϑ1−ϑ3)

d1d3
− cos(ϑ1−ϑ2)

d1d2
cos(ϑ2−ϑ3)

d2d3
− cos(ϑ1−ϑ2)

d1d2
cos(ϑ2−ϑ3)

d2d3
− cos(ϑ1−ϑ3)

d1d3

 = 0, (14)

where ϑ = [ϑ1, ϑ2, ϑ3]
> and P = sin(ϑ2−ϑ3)

d2d3
+ sin(ϑ1−ϑ2)

d2d1
+ sin(ϑ1−ϑ3)

d1d3
. Referring to (8), it is

clear that any angle combination for which P = 0 will make |Φ| = 0 and thus corresponds
to a minimum. This implies the solutions that maximize |Φ|must satisfyd2 cos(ϑ1 − ϑ3)− d3 cos(ϑ1 − ϑ2)

d1 cos(ϑ2 − ϑ3)− d3 cos(ϑ1 − ϑ2)
d1 cos(ϑ2 − ϑ3)− d2 cos(ϑ1 − ϑ3)

 =

0
0
0

. (15)

From (9), it is clear that the maximum value of the determinant depends on the
angular separation of beacons. By defining β1 , ϑ1 − ϑ2, β2 , ϑ2 − ϑ3, and β3 , ϑ3 − ϑ1,
the determinant of the FIM can be parameterized using the two variables β1 and β2 as
β3 = −β2 − β1. A necessary condition for optimality is that the gradient of |Φ(ϑ)| with
respect to β1 and β2 should satisfy[

d3 cos(β1)− d2 cos(β1 + β2)
d1 cos(β2)− d2 cos(β1 + β2)

]
=

[
0
0

]
. (16)

By defining Xi , tan(βi/2), i = 1, 2, 3, and rewriting the equation above in terms of
X1, X2 using the identity tan((β1 + β2)/2) = (X1 + X2)/(1− X1X2), we get

d3 − d2 + X2
1(d2 − d3) + X2

2(d2 + d3)− X2
1X2

2(d3 + d2) + 4X1X2d2 = 0,

d1 − d2 + X2
1(d1 + d2) + X2

2(d2 − d1)− X2
1X2

2(d1 + d2) + 4X1X2d2 = 0,

which can be re-expressed as a system of nonlinear algebraic equations

AiX6
i + BiX4

i + CiX2
i + Di = 0, (17)
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where
Xi , tan(βi/2),

Ai , d2
k(di + dj)

2,

Bi , −6didjd2
k − 4d2

i d2
j − d2

i d2
k − d2

j d2
k ,

Ci , 6didjd2
k − 4d2

i d2
j − d2

i d2
k − d2

j d2
k ,

Di , d2
k(di − dj)

2,

(i, j, k) ∈ {(1, 2, 3), (2, 3, 1)}.

The sixth-order even polynomials in (17) have three pairs of roots each. In the general
case where d1, d2, d3 are different, Ai < 0, Bi < 0, Di > 0, implying there are two sign
changes between consecutive coefficients Ai, Bi, Ci, Di. According to Descartes’ rule of
signs [32], the associated polynomial Aiz3 + Biz2 + Ciz + Di, for some variable z, has two
positive real roots and one negative real root. The negative root must be real because a cubic
polynomial has either one or three real roots. Thus, the sixth-order polynomials in (17)
have two positive roots, two negative roots and two imaginary roots each. Among these
six roots, we only consider the two positive roots because the imaginary roots are not
applicable and the negative roots are simply the negated versions of the positive roots.
Figure 2 shows that, if {β∗1, β∗2, β∗3} satisfies (17), so does {−β∗1,−β∗2,−β∗3}. The optimal
geometries are symmetric with respect to the value of the objective function, reflecting all
the beacons about the vehicle position gives an equivalent optimal geometry.

𝛽𝛽2

𝛽𝛽3𝛽𝛽1

𝒓𝒓2
𝒓𝒓3

𝒓𝒓𝟏𝟏

𝒑𝒑

−𝛽𝛽2

−𝛽𝛽3−𝛽𝛽1

𝒓𝒓2
𝒓𝒓3

𝒓𝒓𝟏𝟏

𝒑𝒑

Figure 2. Two equivalent optimal beacon geometries.

The sufficient condition for a stationary point to be a maximum is that the associated
Hessian matrix should be negative-definite, i.e.,

H ,
[

H11 H12
H21 H22

]
=

 ∂2|Φ|
∂β2

1

∂2|Φ|
∂β1∂β2

∂2|Φ|
∂β1∂β2

∂2|Φ|
∂β2

2


has only negative eigenvalues. If β1, β2 satisfy the necessary condition, the sufficient
condition reduces to two inequalities:

H11 + H22 < 0, (18a)

0 < H11H22 − H2
12 <

(H11 + H22)
2

4
. (18b)

As demonstrated in the supplementary material in Appendix A, the inequalities in (18)
are equivalent to

F[F + d2 sin(−β1 − β2)] > 0, (19a)

d2d3 sin(−β1 − β2) sin β1 + d1d2 sin(−β1 − β2) sin β2 + d1d3 sin β1 sin β2 > 0, (19b)

(d1 sin β2 − d3 sin β1)
2 + 4d2

2 sin2(−β1 − β2) > 0, (19c)
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where F = d1 sin β2 + d2 sin(−β1 − β2) + d3 sin β1. At this point, we conclude that if
β∗1, β∗2, β∗3 satisfy (17) and the inequalities (19), they are the solution to the optimization
problem (9).

Theorem 1. The positive roots of the polynomials in (17) that satisfy

Xi > 1, i = 1, 2 (20)

are the solution to the optimization problem (9).

A proof of Theorem 1 is provided in Appendix A. Theorem 1 is readily applicable
to the case where two or three of the beacon ranges are equal. If di = dj, the polyno-
mial Aiz3 + Biz2 + Ciz + Di has either one positive root or two positive roots. In the
former case, the only positive root is the optimizing solution, while, in the latter case,
the larger positive root is the optimizing solution. If di = dj = dk = d, the polynomial
Aiz3 + Biz2 + Ciz + Di becomes d4z2(z− 3), implying tan(β∗1/2) = tan(β∗2/2) = ±

√
3, or,

equivalently, β∗1 = β∗2 = β∗3 = ±2π/3.

6. Simulation Results

This section presents simulation results confirming the validity of the proposed ana-
lytical method. Two simulation tasks were performed.

In the first simulation task, the optimal angular separations of the beacons, β∗1, β∗2,
were calculated using the proposed analytical method for 1000 sets of beacon distances,
where each distance is uniformly distributed between 0 and 100 units. For comparison,
the optimal angular separations were also computed using (i) the MATLAB function
ga, which implements a genetic algorithm; and (ii) the MATLAB function fminsearch,
which implements a derivative-free method for finding the minimum of an unconstrained
multivariable function. The histograms in Figure 3a,b help us visualize the distributions
of differences |Φ|∗a − |Φ|∗ga and |Φ|∗a − |Φ|∗fmin, where |Φ|∗a , |Φ|∗ga, and |Φ|∗fmin are the
maximum values of |Φ| calculated using the proposed analytical method, the MATLAB
function ga, and the MATLAB function fminsearch, respectively. Our observation that
|Φ|∗a − |Φ|∗ga and |Φ|∗a − |Φ|∗fmin are always positive confirms that the maximum value
calculated analytically is always larger than the maximum value calculated using either of
the other methods.
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Figure 3. Histograms showing the distribution of the errors between analytically maximizing
|Φ| and numerically maximizing |Φ| using (a) the MATLAB function ga or (b) the MATLAB
function fminsearch.

Figure 4 shows a surface plot and a contour plot of the objective function |Φ| as a
function of β1 and β2. The objective function has two maxima associated with two sets of
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angular separations that are negated version of each other (cf. Figure 2). The surface of the
objective function is point-symmetric about the origin.

-3 -2 -1 0 1 2 3

1
 (rad)

-3

-2

-1

0

1

2

3

2 (
ra

d)

Contour plot of | | as a function of angular separations

Figure 4. |Φ| as a function of β1 and β2 where (d1, d2, d3) = (31.9025, 25.7053, 62.9409). The maxima
(β∗1, β∗2) = ±(1.8463, 2.1373) radians are indicated with ‘×’.

The second simulation task was to evaluate the estimation accuracy of maximum
likelihood estimation (MLE) for different beacon geometries.

The maximum likelihood estimates, denoted [p̂ML, φ̂ML]
>, were obtained by maxi-

mizing the log-likelihood function of the noisy bearing measurements ln p(θ̃|p, φ) over the
vehicle states (p, φ), i.e.,

[p̂ML, φ̂ML]
> = arg min

p∈R2,φ∈R
JML(p, φ), (21)

where JML(p, φ) is the maximum likelihood cost function [33]:

JML(p, φ) ,
1
2

e>(p, φ)Σ−1e(p, φ), e(p, φ) , θ̃− θ(p, φ). (22)

The problem of estimating the vehicle states by minimizing the maximum likelihood
cost function in Equation (22) has no closed-form solution, but it can be solved numerically
using algorithms such as the Nelder–Mead simplex algorithm, which the MATLAB function
fminsearch implements. For this simulation task, the beacon distances associated with
Figure 4 were used, and the angular separations of the beacons were varied. As β1 and
β2 were varied from −π to π at a step size of ∆ = π

15 radians, 31× 31 = 961 pairs of
(β1, β2) values were generated. For each (β1, β2) value pair, 1000 MLEs were performed
to estimate the vehicle states (p, φ) using AoA measurements corrupted by a zero-mean
Gaussian noise with standard deviation σ = 1◦. The maximum likelihood estimator was
initialized at the true vehicle state values to ensure convergence. For each (β1, β2) pair,
the determinant of the inverse estimation error covariance matrix |Σ−1

m | was calculated and
used to produce Figure 5.

Observe in Figure 5 that the shape of |Σ−1
m |matches that of |Φ| in Figure 4. It is clear

that, in practice, the objective function is maximized near the analytically determined
optimal beacon placement, as the peaks of the plot in Figure 5 align closely with β∗1 and β∗2.
When the number of MLEs approaches infinity and the grid step size ∆ approaches zero,
the maxima of |Σ−1

m | are expected to overlap exactly with the maxima of |Φ|.
One of the limitations of this study is the assumption that the measurement noise

variance is constant. The constant–variance assumption is common, although in practice
the variance can be range-dependent [23,34,35]. Nevertheless, the proposed method is
readily modifiable to take into account an alternative measurement noise model, which
will depend on the system or application under consideration.
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Figure 5. The determinant of the inverse estimation covariance |Σ−1
m | plotted as a surface function

for a grid of β1 and β2 with resolution ∆ = π/15. (d1, d2, d3) = (31.9025, 25.7053, 62.9409), σ = 1◦.

One of the key differentiators in the optimal geometry for self-localization and lo-
cation estimation is the relationship between optimal geometries for a given set of bea-
con distances. For any given optimal geometry of an AoA location estimation problem,
other geometries that produce the same D-optimality criterion value can be determined by
making a point reflection of any number of beacons about the vehicle position [5]. For the
AoA self-localization problem using three beacons, there are only two optimal geometries.
The two optimal geometries are related by making a point reflection of all the beacons
about the vehicle position. The resulting geometries take the form of two mirror-symmetric
triangles (see Figure 2).

7. Conclusions

We have developed a method for optimally placing three beacons to minimize AoA
self-localization uncertainty. Theorem 1 can be used to determine the optimal angular sepa-
rations among three beacons such that the D-optimality criterion is satisfied. We proved
that the proposed analytical solution satisfies the necessary and sufficient conditions for
optimality. Additionally, our simulation results confirm the optimality of the proposed
approach. Two simulation tasks were described. In the first simulation task, the optimal
beacon angular separations calculated analytically were compared with the beacon angular
separations calculated using two numerical methods. The results show that the value
of the determinant of the FIM associated with the analytically obtained beacon angular
separations is always larger than the value associated with the numerically obtained bea-
con angular separations. In the second simulation task, for one set of beacon distances,
the value of the determinant of the FIM was computed for 961 sets of beacon angular
separations using maximum likelihood estimation. The results show that the value of the
determinant of the FIM is maximized at beacon angular separations that are close to the
analytical solution.

Our future work is related to optimal path planning for self-localization, i.e.,
the determination of a vehicle trajectory that minimizes self-localization uncertainty.
The task can be performed by controlling the vehicle to achieve the best possible self-
localization geometry at discrete time intervals. We will extend the results reported here to
the problem of optimal path planning.

Author Contributions: Conceptualization, K.D. and J.M.; methodology, K.D. and J.M.; software, J.M.;
validation, J.M. and Y.W.L.; formal analysis, J.M. and Y.W.L.; investigation, J.M.; resources, J.C.;
data curation, J.M.; writing—original draft preparation, J.M.; writing—review and editing, Y.W.L.,



Symmetry 2021, 13, 56 11 of 14

K.D., and J.C.; visualization, J.M.; supervision, J.C., Y.W.L., and K.D.; project administration J.C.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: “Not applicable”.

Informed Consent Statement: “Not applicable” .

Acknowledgments: This work was supported by the Australian Government Research Training
Program (RTP).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof for Theorem 1

This supplementary material provides a proof of Theorem 1. For the proof, we need
to use the fact

sign(cos β1) = sign(cos β2) = sign(cos(β1 + β2))

= sign(cos(−(β1 + β2)))

= sign(cos β3),

(A1)

based on (16). We also need the following lemmas.

Lemma A1. The equalities

d1 sin β2 = d3 sin β1, (A2)

sin(−β1 − β2) = 0, (A3)

cannot be both true.

Proof. From (16), we know d1 cos β2 = d3 cos β1. If equality (A2) is true, then

d1d3 sin β2 cos β1 = d1d3 sin β1 cos β2 =⇒ sin(β2 − β1) = sin(β1 − β2) = 0.

If the equality above and the equality (A3) are both valid, then β1, β2 can be deter-
mined irrespective of the values of d1, d2, d3, which is not true. Therefore, equalities (A2)
and (A3) cannot be both true.

Lemma A2. If (A1) is true and

sign(sin β1) = sign(sin β2) = sign(sin β3), (A4)

where β1, β2 have the same sign and β3 = −β1 − β2, then

sign(cos β1) = sign(cos β2) = sign(cos β3) = −1. (A5)

Proof. Consider the following cases for positive β1 and β2.
Case 1: sign(cos β1) = sign(cos β2) = sign(cos β3) = 1 and

sign(sin β1) = sign(sin β2) = sign(sin(β3)) = 1. This implies β1, β2 and β3 are all in
the first quadrant. However, if β1 and β2 are in the first quadrant, then β3 must be in the
fourth quadrant, hence this case is invalid.

Case 2: sign(cos β1) = sign(cos β2) = sign(cos β3) = 1 and
sign(sin β1) = sign(sin β2) = sign(sin(β3)) = −1. This implies that β1, β2 and β3 are
all in the fourth quadrant. However, if β1 and β2 are in the fourth quadrant, then β3 must
be in the first quadrant, hence this case is invalid.



Symmetry 2021, 13, 56 12 of 14

Case 3: sign(cos β1) = sign(cos β2) = sign(cos β3) = −1
and sign(sin β1) = sign(sin β2) = sign(sin(β3)) = 1. This implies β1, β2 and β3 are all
in the second quadrant. Thus, as long as π < β1 + β2 < 3π/2, β3 is in the second quadrant.

Case 4: sign(cos β1) = sign(cos β2) = sign(cos β3) = −1
and sign(sin β1) = sign(sin β2) = sign(sin(β3)) = −1. This implies β1, β2 and β3 are
all in the third quadrant. Thus, as long as 5π/2 < β1 + β2 < 3π, β3 is in the third quadrant.

In conclusion, cases 3 and 4 are valid, but cases 1 and 2 are not, implying (A5). The same
reasoning can be applied to arrive at the same conclusion for negative β1 and β2.

In our article, we showed that (17) captures the necessary condition for β1, β2 to
maximize |Φ|, while the sufficient condition is that the Hessian matrix of Φ, namely

H ,
[

H11 H12
H21 H22

]
=

 ∂2|Φ|
∂β2

1

∂2|Φ|
∂β1∂β2

∂2|Φ|
∂β1∂β2

∂2|Φ|
∂β2

2


has only negative eigenvalues. In other words, the eigenvalues

λ1,2 =
H11 + H22 ±

√
(H11 + H22)2 − 4(H11H22 − H2

12)

2

must be real and negative, implying

H11 + H22 < 0, (A6a)

0 < H11H22 − H2
12 <

(H11 + H22)
2

4
, (A6b)

where

H11 =
2F

d2
1d2

2d2
3
[−d2 sin(−β1 − β2)− d3 sin β1], (A7a)

H12 = H21 =
2F

d2
1d2

2d2
3
[−d2 sin(−β1 − β2)], (A7b)

H22 =
2F

d2
1d2

2d2
3
[−d1 sin β2 − d2 sin(−β1 − β2)], (A7c)

F = d1 sin β2 + d2 sin(−β1 − β2) + d3 sin β1. (A7d)

Substituting (A7a), (A7c) and (A7d) into (A6a) gives us (A8a), while substituting
(A7a)–(A7d) into the left inequality of (A6b) gives us (A8b):

F[F + d2 sin(−β1 − β2)] > 0, (A8a)

d2d3 sin(−β1 − β2) sin β1 + d1d2 sin(−β1 − β2) sin β2 + d1d3 sin β1 sin β2 > 0, (A8b)

(d1 sin β2 − d3 sin β1)
2 + 4d2

2 sin2(−β1 − β2) > 0. (A8c)

Inequality (A8c) is obtained by substituting (A7a)–(A7d) into the right inequality
of (A6b). Inequalities (A8) represent the sufficient condition for β1, β2 to maximize |Φ|.

Suppose that the pair β∗1, β∗2 satisfies the necessary condition represented by (17). If β∗1, β∗2
additionally satisfy (A4), then inequalities (A8a) and (A8b) are also satisfied. Meanwhile,
inequality (A8c) is readily satisfied because of Lemma A1. In other words, if β∗1, β∗2 satisfy (17)
and (A4), then β∗1, β∗2 satisfy the necessary and sufficient conditions for maximizing |Φ|.

We can simplify the condition represented by (A4) by applying Lemma A2 to (A1)
and (A4), which tells us that β∗1, β∗2 satisfy (A5), which further implies for i = 1, 2,

sign(cos βi) = −1 =⇒ sign

(
1− tan2 βi

2

1 + tan2 βi
2

)
= −1 =⇒ tan

βi
2

= Xi > 1.
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The inequality above is exactly (20). At this point, we conclude that (17)–(20) satisfy
the necessary and sufficient conditions for β∗1, β∗2 to maximize |Φ|.
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