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Abstract: In this paper, we analyze various types of critical phenomena in one-dimensional gas
flows described by Euler equations. We give a geometrical interpretation of thermodynamics
with a special emphasis on phase transitions. We use ideas from the geometrical theory of partial
differential equations (PDEs), in particular symmetries and differential constraints, to find solutions
to the Euler system. Solutions obtained are multivalued and have singularities of projection to the
plane of independent variables. We analyze the propagation of the shockwave front along with
phase transitions.
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1. Introduction

Various types of critical phenomena, such as singularities, discontinuities, wave fronts
and phase transitions, have always been of interest from both mathematical [1–3] and
practical [4] viewpoints. In the context of gases, discontinuous solutions to the Euler
system, describing their motion, are usually treated as shockwaves. In the past decades, such
phenomena have widely been studied (see, e.g., [5] for the case of Chaplygin gases [6,7],
where the weak shocks are considered). It is also worth mentioning the works in [8,9],
where the influence of turbulence on shocks and detonations is emphasized.

This paper can be seen as a natural continuation of the work in [10], where have
considered the case of ideal gas flows. Here, we use the van der Waals model of gases,
which is more complicated and at the same time more interesting from the singularity
theory viewpoint. The van der Waals model is known to be one of the most popular in
the description of phase transitions. Thus, singularities of shockwave type that can be
viewed as in some sense singular solutions to the Euler system are analyzed together
with singularities of purely thermodynamic nature, phase transitions. Our approach to
finding and investigating such phenomena is essentially based on the geometric theory of
PDEs [11–15]. Namely, we find a class of multivalued solutions to the Euler system (see
also [16]), and singularities of their projection to the plane of independent variables are
exactly what drives the appearance of the shockwave [17]. Similar ideas are used in a series
of works [18–20], where multivalued solutions to filtration equations are obtained along
with analysis of shocks. To find such solutions, we use the idea of adding a differential
constraint to the original PDE in such a way that the resulting overdetermined system
of PDEs is compatible [21]. The same concepts were also used by Schneider [22], who
found a general solution to the Hunter–Saxton equation; LY1 [23], who considered the
two-dimensional Euler system; and LY2 [24], who applied this approach to the Khokhlov–
Zabolotskaya equation.

The paper is organized as follows. Section 2 presents the preliminary concepts, where
we describe the necessary concepts from thermodynamics. In Section 3, we analyze a
multivalued solution to Euler equations and its singularities, including shockwaves and
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phase transitions. In the last section, we discuss the results. The essential computations for
this paper were made with the DifferentialGeometry package [25] in Maple.

2. Thermodynamics

In this section, we give necessary concepts from thermodynamics. As shown below,
geometrical interpretation of thermodynamic states allows one to use Arnold’s ideas
from the theory of Legendrian and Lagrangian singularities [1–3], which are crucial in
description of phase transitions. The geometrical approach to thermodynamics was already
initiated by Gibbs [26]. It was further developed, for example, by the authors of [27,28]
and, more recently, by Lychagin [29]. For more detailed analysis regarding the geometrical
methods in thermodynamics, we also refer to [30].

2.1. Legendrian and Lagrangian Manifolds

Consider the contact space
(
R5, θ

)
with coordinates (s, e, ρ, p, T) standing for specific

entropy, specific inner energy, density, pressure and temperature. The contact structure θ is
given by

θ = T−1de− ds− pT−1ρ−2dρ. (1)

Then, a thermodynamic state is a Legendrian manifold L̂ ⊂
(
R5, θ

)
, i.e., θ

∣∣
L̂ = 0 and

dim L̂ = 2. From the physical viewpoint, this means that the first law of thermodynamics
holds on L̂. Due to (1), it is natural to choose (e, ρ) as coordinates on L̂. Then, a two-
dimensional manifold L̂ ⊂

(
R5, θ

)
is given by

L̂ =

{
s = S(e, ρ), T =

1
Se

, p = −ρ2 Sρ

Se

}
, (2)

where the function S(e, ρ) specifies the dependence of the specific entropy on e and ρ.
Note that determining a Legendrian manifold L̂ by means of (2) requires the knowl-

edge of S(e, ρ), while in experiments one usually obtains relations among pressure, den-
sity and temperature. Thus, we get rid of the specific entropy s by means of projection
π : R5 → R4, π(s, e, ρ, p, T) = (e, ρ, p, T) and consider an immersed Lagrangian manifold
π
(

L̂
)
= L ⊂

(
R4, Ω

)
in a symplectic space

(
R4, Ω

)
, where the structure symplectic form

Ω is
Ω = dθ = d(T−1) ∧ de− d(pT−1ρ−2) ∧ dρ.

Then, one can treat thermodynamic state manifolds as Lagrangian manifolds L ⊂
(
R4, Ω

)
,

i.e., Ω|L = 0. In coordinates (T, ρ), a thermodynamic Lagrangian manifold L is given by
two functions

L = {p = P(T, ρ), e = E(T, ρ)}. (3)

Since Ω|L = 0, the functions P(T, ρ) and E(T, ρ) are not arbitrary, but are related by

[p− P(T, ρ), e− E(T, ρ)]|L = 0, (4)

where [ f , g] is the Poisson bracket of functions f and g on
(
R4, Ω

)
uniquely defined by

the relation
[ f , g]Ω ∧Ω = d f ∧ dg ∧Ω.

Equation (4) forces the following relation between P(T, ρ) and E(T, ρ): (−ρ−2T−1P)T =
(T−2E)ρ, and therefore the following theorem is valid:

Theorem 1. The Lagrangian manifold L is given by means of the Massieu–Planck potential φ(ρ, T)

p = −ρ2Tφρ, e = T2φT . (5)

Remark 1. Having given the Lagrangian manifold L by means of (3), one can find the entropy
function S(e, ρ) solving the overdetermined system
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T =
1
Se

, p = −ρ2 Sρ

Se

with compatibility condition (4).

2.2. Riemannian Structures, Singularities, Phase Transitions

There is one more important structure arising, as shown in [29], from measurement
approach to thermodynamics. Indeed, if one considers equilibrium thermodynamics as
a theory of measurement of random vectors, whose components are inner energy and
volume v = ρ−1, one drives to the universal quadratic form on (R4, Ω) of signature (2, 2):

κ = d(T−1) · de− ρ−2d(pT−1) · dρ,

where · is the symmetric product of differential forms, and areas on L, where the restriction
κ|L of κ to L is negative, are those where the variance of a random vector (e, v = ρ−1) is
positive [29,31]. Using (5), we get

κ|L = −(2T−1φT + φTT)dT · dT + (2ρ−1φρ + φρρ)dρ · dρ, (6)

and, taking into account (5), we conclude that the condition of positive variance is satisfied
at points on L, where

eT > 0, pρ > 0,

which is known as the condition of the thermodynamic stability.
Let us now explore singularities of Lagrangian manifolds. We are interested in the

singularities of their projection to the plane of intensive variables (p, T), i.e., points where
the form dp ∧ dT degenerates. We assume that extensive variables (e, ρ) may serve as
global coordinates on L, i.e., the form de ∧ dρ is non-degenerate everywhere. The set
where dp ∧ dT = 0 coincides with that where 2ρ−1φρ + φρρ = 0, or, equivalently, where
the from κ|L degenerates. A manifold L turns out to be divided into submanifolds Li,
where both (e, ρ) and (p, T) may serve as coordinates, or, equivalently, the form (6) is
non-degenerate. Such Li are called phases. Additionally, those of Li, where (6) is negative,
are called applicable phases. Thus, we end up with the observation that singularities of
projection of thermodynamic Lagrangian manifolds are related with the theory of phase
transitions. Indeed, by a phase transition of the first order, we mean a jump from one
applicable state to another, governed by the conservation of intensive variables p and T
and specific Gibbs potential

γ = e− Ts + p/ρ,

which in terms of the Massieu–Planck potential is expressed as γ = −T(φ + ρφρ) [30].
Consequently, to find the points of phase transition, one needs to solve the system

p = −ρ2
1Tφρ(T, ρ1), p = −ρ2

2Tφρ(T, ρ2), φ(T, ρ1) + ρ1φρ(T, ρ1) = φ(T, ρ2) + ρ2φρ(T, ρ2), (7)

where p and T are the pressure and temperature of the phase transition and ρ1 and ρ2 are
the densities of gas and liquid phases.

Example 1 (Ideal gas). The simplest example of a gas is an ideal gas model. In this case, the
Legendrian manifold is given by

L̂ =

{
p = RρT, e =

n
2

RT, s = R ln

(
Tn/2

ρ

)}
, (8)

where R is the universal gas constant and n is the degree of freedom. The differential quadratic form
κ|L is

κ|L = −Rn
2

dT2

T2 − Rρ−2dρ2.
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It is negative definite on the entire L̂, and there are neither phase transitions nor singularities
of projection of L̂ to the p− T plane.

Example 2 (van der Waals gas). To define the Legendrian manifold for van der Waals gases, we
use reduced state equations:

L̂ =

{
p =

8Tρ

3− ρ
− 3ρ2, e =

4nT
3
− 3ρ, s = ln

(
T4n/3(3ρ−1 − 1)8/3

)}
. (9)

The differential quadratic form κ|L is

κ|L = − 4n
3T2 dT2 +

6(ρ3 − 6ρ2 − 4T + 9ρ)

ρ2T(ρ− 3)2 dρ2.

In this case, it changes its sign; the manifold L̂ has a singularity of cusp type. The singular set
of L̂, called also caustic, and the curve of phase transition are shown in Figure 1.

(a) (b)

Figure 1. Singularities of the van der Waals Legendrian manifold: caustic (black line) and phase
transition curve (red line) in coordinates (p, T) (a); and the curve of phase transition in (p, ρ, T)
(b). Points of the phase transition curve with the same values of pressure p and temperature T and
different values of density ρ2 > ρ1 correspond to the liquid phase and the gas phase, respectively,
while points between ρ1 and ρ2 correspond to wet steam.

3. Euler Equations

In this paper, we study non-stationary, one-dimensional flows of gases, described by
the following system of differential equations:

• Conservation of momentum:

ρ(ut + uux) = −px (10)

• Conservation of mass:
ρt + (ρu)x = 0 (11)

• Conservation of entropy along the flow:

st + usx = 0 (12)

Here, u(t, x) is the flow velocity, ρ(t, x) is the density of the medium, and s(t, x) is the
specific entropy. System (10)–(12) is incomplete. It becomes complete once extended by
equations of thermodynamic state (2). We are interested in homentropic flows, i.e., those
with s(t, x) = s0. On the one hand, this assumption satisfies (12) identically. On the other
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hand, it allows us to express all the thermodynamic variables in terms of ρ. Indeed, the
entropy s has the following expression in terms of the Massieu–Planck potential φ(T, ρ):
s = φ + TφT [30]. Putting s = s0, we get the equation s0 = φ + TφT , which determines
T(ρ) uniquely, since the derivative of its right-hand side with respect to T is positive due to
the negativity of κ|L. Substituting T(ρ) into (3), one gets p = p(ρ). Thus, we end up with
the following two-component system of PDEs:

ut + uux + A(ρ)ρx = 0, ρt + (ρu)x = 0, (13)

where A(ρ) = p′(ρ)/ρ.
We do not specify the function A(ρ) yet; we do this while solving (13).

3.1. Finding Solutions

To find solutions to system (13), we use the idea of adding a differential constraint to (13),
compatible with the original system. It is worth mentioning that a solution is an integral
manifold of the Cartan distribution on (13) (see [11–13] for details). This geometrical
interpretation of a solution to a PDE allows finding ones in the form of manifolds, which, in
general, may not be globally given by functions. This approach gives rise to investigation
of singularities in a purely geometrical manner, which is shown in this paper.

In general, finding differential constraints is not a trivial problem. However, having
found ones, the problem of finding solutions is reduced to the integration of a completely
integrable Cartan distribution of the resulting compatible overdetermined system. In rgw
case the Cartan distribution has a solvable transversal symmetry algebra, whose dimension
equals the codimension of the Cartan distribution, we are able to get explicit solutions in
quadratures by applying the Lie–Bianchi theorem (for details, see [11–13]).

We look for a differential constraint compatible with (13) in the form of a quasilinear
equation

ux − ρx(α(ρ)u + β(ρ)) = 0, (14)

where functions α(ρ) and β(ρ) are to be determined. We denote system (13) and (14) by E .

Theorem 2. System (13) and (14) is compatible if

α(ρ) = − 1
ρ(C3ρ− 1)

, β(ρ) =
C2

ρ(C3ρ− 1)
, A(ρ) = C1 +

C5

ρ3

(
C3 +

C7

ρ

)C6

, (15)

where Ci are constants.

The proof of Theorem 2 is more technical rather than conceptual. First, we lift system
(13) and (14) to the space of 3-jets J3(R2) by applying total derivatives

Dt = ∂t + ut∂u + ρt∂ρ + utt∂ut + ρtt∂ρt + . . . ,

Dx = ∂x + ux∂u + ρx∂ρ + uxx∂ux + ρxx∂ρx + . . . .

to equations of E the required number of times, consequently. The resulting system
E3 ⊂ J3(R2), consisting of equations only of the third order, contains nine equations for
eight variables of purely third order: uttt, uxxx, utxx, uttx, ρttt, ρxxx, ρtxx and ρttx. Eliminating
them from E3, we get seven relations (six obtained by lifting E to J2(R2) plus one remaining
from eliminations of third-order variables). Again, we eliminate all the variables of the
second order and we get four relations of the first order. Eliminating ux, ut and ρt, we
end up with an expression of the form ρ3

xG(ρ, u) = 0, where G(ρ, u) is a polynomial in
u, whose coefficients are ordinary differential equations (ODEs) on α(ρ), β(ρ) and A(ρ),
solving which we get (15). It is worth stating that these computations are algebraic and
well suited for computer algebra systems.
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Remark 2. Using (8) and (9), one can show that the function A(ρ) = p′(ρ)/ρ given in (15)
corresponds to that of:

• ideal gas in the case of

C1 = C3 = 0, C5 = R
(

1 +
2
n

)
exp

(
2s0

Rn

)
, C6 = −2− 2

n
, C7 = 1;

• van der Waals gas in the case of

C1 = −6, C3 = −1, C5 = 24
(

1 +
2
n

)
exp

(
3s0
4n

)
, C6 = −2− 2

n
, C7 = 3. (16)

The case of ideal gases was thoroughly investigated by LR2 [10]. Here, we are interested in the case
of van der Waals gases.

Summarizing, we have a compatible overdetermined system of PDEs

E = {F1 = ut + uux + A(ρ)ρx = 0, F2 = ρt + (ρu)x = 0, F3 = ux − ρx(α(ρ)u + β(ρ)) = 0} ⊂ J1(R2),

where functions α(ρ), β(ρ) and A(ρ) are specified in (15). This system is a smooth manifold
E in the space of 1-jets J1(R2) of functions on R2. Since dim J1(R2) = 8, and E consists of
three relations on J1(R2), dim E = 5. The dimension of the Cartan distribution CE on E
equals 2, therefore codim CE = 3. Let us choose (t, x, u, ρ, ρx) as internal coordinates on E .
Then, the Cartan distribution CE is generated by differential 1-forms

ω1 = du− uxdx− utdt, (17)

ω2 = dρ− ρxdx− ρtdt, (18)

ω3 = dρx − ρxxdx− ρxtdt, (19)

where ρxx, ρxt, ut, ux, ρt are expressed due to E and its prolongation E2 = {Dt(F1) = 0,
Dt(F2) = 0, Dt(F3) = 0, Dx(F1) = 0, Dx(F2) = 0, Dx(F3) = 0}:

ρxx =
ρ2

x
(
ρ(C3ρ− 1)3 A′ + (C3ρ− 1)2 A + 3C3(C2 − u)2)

(C3ρ− 1)((C2 − u)2 − Aρ(C3ρ− 1)2)
, ρt =

ρx(C3ρu + C2 − 2u)
1− C3ρ

, (20)

ux =
ρx(C2 − u)
ρ(C3ρ− 1)

, ut = −
ρx(Aρ(C3ρ− 1) + u(C2 − u))

ρ(C3ρ− 1)
, (21)

ρxt =
ρ2

x
ρ(C3ρ− 1)2(Aρ(C3ρ− 1)2 − (C2 − u)2)

(
ρ2(C3ρ− 1)3(C3ρu + C2 − 2u)A′ +

+ ρA(C3ρ− 1)2(C3ρu + 3C2 − 4u) + (C2 − u)2(3C2
3ρ2u + 3C3ρ(C2 − 2u)− 2C2 + 2u)

)
,

(22)

where A(ρ) is given by (15). We look for integrals of the distribution (17)–(22), which give
us an (implicit) solution to (13) and (14).

Theorem 3. The distribution (17)–(22) is a completely integrable distribution with a three-
dimensional Lie algebra g of transversal infinitesimal symmetries generated by vector fields

X1 = t∂t + x∂x − ρx∂ρx , X2 = ∂t, X3 = ∂x

with brackets [X1, X3] = −X3, [X1, X2] = −X2, [X2, X3] = 0.
The Lie algebra g is solvable, and its sequence of derived algebras is

g = 〈X1, X2, X3〉 ⊃ 〈X2, X3〉 ⊃ 0.

Thus, the Lie–Bianchi theorem [11–13] can be applied to integrate (17)–(22).
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Let us choose another basis 〈κ1,κ2,κ3〉 in CE by the following way:κ1
κ2
κ3

 =

ω1(X1) ω1(X2) ω1(X3)
ω2(X1) ω2(X2) ω2(X3)
ω3(X1) ω3(X2) ω3(X3)

−1ω1
ω2
ω3

.

Due to the structure of the symmetry Lie algebra g, the form κ1 is closed [11,12], and
therefore locally exact, i.e., κ1 = dQ1, where Q1 ∈ C∞(J1), while restrictions κ2|M1 and
κ3|M1 to the manifold M1 = {Q1 = const} are closed and locally exact too. Integrating the
differential 1-form κ1 we observe that variables u, ρ, t, x can be chosen as local coordinates
on M1 and

M1 =

{
ρx =

α1ρ2(C3ρ− 1)
ρA(C3ρ− 1)2 − (C2 − u)2

}
,

where α1 is a constant. Integrating restrictions κ2|M1 and κ3|M1 , we get two more relations
that give us a solution to (13) and (14) implicitly:

t + α2 +
C2 − u

α1ρ
+

C3u
α1

= 0, (23)

and

0 = x + α3 +
1
α1

(
C1 ln ρ− C1C3ρ +

C3u2

2
+

u(C2 − u)
ρ

− C5

(
C3 +

C7
ρ

)C6+1
·

·
2ρ2C2

3 − C2
7(C6 + 1)(C3ρ(C6 + 3)− C6 − 2) + C3C7ρ(C3ρ(C6 + 3)− 2C6 − 2)

(C6 + 1)(C6 + 2)(C6 + 3)C3
7ρ2

)
,

(24)

where we have already substituted A(ρ) from (15), and α2, α3 are constants. The graph of a
multivalued solution for the density is shown in Figure 2. We used substitution (16), where
C5 = 240, n = 3, together with C2 = 1, α1 = 1, α2 = 2, α3 = 1.

Figure 2. Graph of the density in case of n = 3 for time moments t = 0, t = 30.

3.2. Caustics and Shockwaves

We can see that solution given by (23) and (24) is, in general, multivalued. To figure
out where the two-dimensional manifold N given by (23) and (24) has singularities of
projection to the plane of independent variables, one needs to find zeroes of the two-form
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dt ∧ dx. Condition (dt ∧ dx)|N = 0 gives us a curve in the plane R2(t, x) called caustic.
Choosing ρ as a coordinate on the caustic, we get its equations in a parametric form:

x(ρ) = − 1
2α1

(
2C1 ln ρ + C1(C3

3ρ3 − 4ρ2C2
3 + 3C3ρ− 2) + C3C3

2 + 2α1α3

)
±

± C2(C3ρ− 1)2

α1ρ2

√
C1ρ3 + C5

(
C3 +

C7
ρ

)C6

−
C5

(
C3 +

C7
ρ

)C6

2(C6 + 2)(C6 + 3)C3
7α1(C6 + 1)ρ3

·

·
(

C3
3(−4 + C3

7(C
3
6 + 6C2

6 + 11C6 + 6) + (−2C6 − 6)C7)ρ
3 −

− 2C7((2(C3
6 + 6C2

6 + 11C6 + 6))C2
7 + (−C2

6 − 3C6)C7 − C6)C2
3ρ2+

+ C2
7(C6 + 1)((C6 + 3)(5C6 + 12)C7 − 2C6)C3ρ− 2C3

7(C6 + 4)(C6 + 2)(C6 + 1)
)

,

(25)

t(ρ) = −α2 −
C2C3

α1
± (C3ρ− 1)2

α1ρ2

√
C1ρ3 + C5

(
C3 +

C7

ρ

)C6

. (26)

To construct a discontinuous solution from the multivalued one given by (23) and (24),
we use the mass conservation law. Equation (11) with the velocity u found from (23) in
terms of t and ρ takes the form:

ρt +

(
ρ

α1ρ(t + α2) + C2

1− C3ρ

)
x
= 0,

and therefore the conservation law is

Θ = ρdx− ρ
α1ρ(t + α2) + C2

1− C3ρ
dt.

Its restriction Θ|N to the manifold N given by (23) and (24) is a closed form, locally
Θ|N = dH, and the potential H(ρ, t) equals

H(ρ, t) =
ρ

2α1(C3ρ− 1)2

(
C1C3

3ρ3 − 4C1C2
3ρ2 + ρ

(
C2

2C2
3 + (2C2(t + α2)α1 + 5C1)C3 + α2

1(t + α2)
2
)
− 2C1

)
−

−
C5

(
C3 +

C7
ρ

)C6

(C6 + 2)α1C2
7(C6 + 1)ρ2

(C3ρ + C7)(C3(1 + (C6 + 2)C7)ρ− (C6 + 1)C7).

The discontinuity line, or a shockwave front, is found from the system of equations

H(ρ1, t) = H(ρ2, t), x(ρ1, t) = x(ρ2, t),

where x(ρ, t) is obtained from (23) and (24) by eliminating u. Caustics along with the
shockwave front are shown in Figure 3. Note that the picture is similar to that in the case
of phase transitions.

The final result here is the expression for the time interval, within which the solution (23)
and (24) is smooth.

Theorem 4. The solution given by (23) and (24) is smooth and unique in the time interval
t ∈ [0, t∗), where

t∗ =
1
α1

(
−C2C3 − α1α2 + (C3 − 3)2

√
C1

27
+ C5(C3 + 3C7)C6

)
,

and in the case of (16), where C5 = 240, n = 3, together with C2 = 1, α1 = 1, α2 = 2, α3 = 1
approximately t∗ = 12.53.
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Figure 3. Caustic (black) and shockwave front (red) for n = 3.

3.3. Phase Transitions

Having a solution, one can remove the phase transition curve from the space of ther-
modynamic variables to R2(t, x). Indeed, on the one hand, we have all the thermodynamic
parameters as functions of (t, x). On the other hand, we have conditions on phase transi-
tions (7) in the space of thermodynamic variables. In combination, they give us a curve
of phase transitions in (t, x) plane. Phase transitions together with the shockwave are
presented in Figure 4. We use substitution (16), where C5 = 240, n = 3, together with
C2 = 1, α1 = 1, α2 = 2, α3 = 1.

Figure 4. Phase transition curve (dash line) and shockwave front (red line).

4. Discussion

In the present work, we analyze critical phenomena in gas flows of purely thermo-
dynamic nature, which are phase transitions and shockwaves arising from singularities
of solutions to the Euler system. To obtain such solutions, we use a differential constraint
compatible with the original system. In this work, it is found in a purely computational
way, and how to get it in a more constructive way seems interesting. One possible way
to find such constraints is using differential invariants. Then, constraints can be found
constructively by solving quotient PDEs (see [32] for details), which was successfully
realized by Schneider [22]. We hope to make use of this method in future research. The
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analysis of phase transitions shows that sometimes shockwaves can be accompanied with
phase transitions, which is shown in Figure 4, since the phase transition curve intersects
the shockwave front, and on the one side of the discontinuity curve we observe a pure gas
phase, while on the other side we can see a wet steam.
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