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Abstract: This paper aims to mark out new concepts of r-single valued neutrosophic sets, called
r-single valued neutrosophic £-closed and £-open sets. The definition of £-single valued neutrosophic
irresolute mapping is provided and its characteristic properties are discussed. Moreover, the concepts
of £-single valued neutrosophic extremally disconnected and £-single valued neutrosophic normal
spaces are established. As a result, a useful implication diagram between the r-single valued
neutrosophic ideal open sets is obtained. Finally, some kinds of separation axioms, namely r-single
valued neutrosophic ideal-Ri (r-SVNIRi, for short), where i = {0, 1, 2, 3}, and r-single valued
neutrosophic ideal-Tj (r-SVNITj, for short), where j = {1, 2, 2 1

2 , 3, 4}, are introduced. Some of their
characterizations, fundamental properties, and the relations between these notions have been studied.

Keywords: r-single valued neutrosophic £-closed; £-single valued neutrosophic irresolute map-
ping; £-single valued neutrosophic extremally disconnected; £-single valued neutrosophic normal;
r-SVNIRi; r-SVNITj

1. Introduction

In 1999, Smarandache introduced the concept of a neutrosophy [1]. It has been used
at various axes of mathematical theories and applications. In recent decades, the theory
made an outstanding advancement in the field of topological spaces. Salama et al. and Hur
et al. [2–6], for example, among many others, wrote their works in fuzzy neutrosophic
topological spaces (FNTS), following Chang [7]’s discoveries in the way of fuzzy topological
spaces (FTS).

Šostak, in 1985 [8], marked out a new definition of fuzzy topology as a crisp subfamily
of family of fuzzy sets, which seems to be a drawback in the process of fuzzification of
the concept of topological spaces. Yan, Wang, Nanjing, Liang, and Yan [9,10] developed a
parallel theory in the context of intuitionistic I-fuzzy topological spaces.

The idea of “single-valued neutrosophic set” [11] was set out by Wang in 2010. Gay-
yar [12], in his 2016 paper, foregrounded the concept of a “smooth neutrosophic topological
spaces”. The ordinary single-valued neutrosophic topology was presented by Kim [13].
Recently, Saber et al. [14,15] familiarized the concepts of single-valued neutrosophic ideal
open local function, single-valued neutrosophic topological space, and the connectedness
and stratification of single-valued neutrosophic topological spaces.

Neutrosophy, and especially neutrosophic sets, are powerful, general, and formal
frameworks that generalize the concept of the ordinary sets, fuzzy sets, and intiuitionistic
fuzzy sets from philosophical point of view. This paper sets out to introduce and examine
a new class of sets called r-single valued £-closed in the single valued neutrosophic topo-
logical spaces in Šostak’s sense. More precisely, different attributes, like £-single valued
neutrosophic irresolute mapping, £-single valued neutrosophic extremally disconnected,
£-single valued neutrosophic normal spaces, and some kinds of separation axioms, were
developed. It can be fairly claimed that we have achieved expressive definitions, distin-
guished theorems, important lemmas, and counterexamples to investigate, in-depth, our
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consequences and to find out the best results. It is notable to say that different crucial
notions in single valued neutrosophic topology were generalized in this article. Different
attributes, like extremally disconnected and some kinds of separation axioms, which have
a significant impact on the overall topology’s notions, were also studied.

It is notable to say that the application aspects to this area of research can be further
pointed to. There are many applications of neutrosophic theories in many branches of
sciences. Possible applications are to control engineering and to Geographical Information
Systems, and so forth, and could be secured, as mentioned by many authors, such as
Reference [16–20].

In this study, X̃ is assumed to be a nonempty set, ξ = [0, 1] and ξ0 = (0, 1]. For α ∈ ξ,
α̃(ν) = α for all ν ∈ X̃. The family of all single-valued neutrosophic sets on X̃ is denoted
by ξ X̃ .

2. Preliminaries

This section is devoted to provide a complete survey and trace previous studies related
to the idea of this research article.

Definition 1 ([21]). Let X̃ be a non-empty set. A neutrosophic set (briefly, NS) in X̃ is an object
having the form

σn = {〈ν, ρ̃σn(ν), $̃σn(ν), η̃σn(ν)〉 : ν ∈ X̃},

where
ρ̃ : X̃ →c−0, 1+b, $̃ : X̃ →c−0, 1+b, η̃ : X̃ →c−0, 1+b

and
−0 ≤ ρ̃σn(ν) + $̃σn(ν) + η̃σn(ν) ≤ 3+

represent the degree of membership (namely ρ̃σn(ν)), the degree of indeterminacy (namely $̃σn(ν)),
and the degree of non-membership (namely η̃σn(ν)), respectively, of any ν ∈ X̃ to the set σn.

Definition 2 ([11]). Let X̃ be a space of points (objects), with a generic element in X̃ denoted
by ν. Then, σn is called a single valued neutrosophic set (briefly, SVNS) in X̃, if σn has the
form σn = 〈ρ̃σn , $̃σn , η̃σn〉, where ρ̃σn , $̃σn , η̃σn : X̃ → [0, 1]. In this case, ρ̃σn , $̃σn , η̃σn are
called truth membership function, indeterminancy membership function, and falsity membership
function, respectively.

Let X̃ be a nonempty set and ξ = [0, 1] and ξ0 = (0, 1]. A single-valued neutrosophic set
σn on X̃ is a mapping defined as σn = 〈ρ̃σn , $̃σn , η̃σn〉 : X̃ → ξ such that 0 ≤ ρ̃σn(ν) + $̃σn(ν) +
η̃σn(ν) ≤ 3.

We denote the single-valued neutrosophic sets 〈 0, 1, 1〉 and 〈1, 0, 0〉 by 0̃ and 1̃, respectively.

Definition 3 ([11]). Let σn = 〈ρ̃σn , $̃σn , η̃σn〉 be an SVNS on X̃. The complement of the set σn
(briefly σc

n) is defined as follows:

ρ̃σc
n(ν) = η̃σn(ν), $̃σc

n(ν) = [$̃σn ]
c(ν), η̃σc

n(ν) = ρ̃σn(ν).

Definition 4 ([22,23]). Let X̃ be a non-empty set and let σn, γn ∈ ξ X̃ be given by
σn = 〈ρ̃σn , $̃σn , η̃σn〉 and γn = 〈ρ̃γn , $̃γn , η̃γn〉. Then:

(1) We say that σn ⊆ γn if ρ̃σn ≤ ρ̃γn , $̃σn ≥ $̃γn , η̃σn ≥ η̃γn .
(2) The intersection of σn and γn denoted by σn ∩ γn is an SVNS and is given by

σn ∩ γn = 〈ρ̃σn ∩ ρ̃γn , $̃σn ∪ $̃γn , η̃σn ∪ η̃γn〉.

(3) The union of σn and γn denoted by σn ∪ γn is an SVNS and is given by

σn ∪ γn = 〈ρ̃σn ∪ ρ̃γn , $̃σn ∩ $̃γn , η̃σn ∩ η̃γn〉.
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For any arbitrary family {σn}i∈j ⊆ ξ X̃ of SVNS, the union and intersection are given by
(4)

⋂
i∈j[σn]i = 〈∩i∈jρ̃[σn ]i

, ∪i∈j$̃[σn ]i
, ∪i∈jη̃[σn ]i

〉,
(5)

⋃
i∈j[σn]i = 〈∪i∈jρ̃[σn ]i

, ∩i∈j$̃[σn ]i
, ∩i∈jη̃[σn ]i

〉.

Definition 5 ([12]). A single-valued neutrosophic topological space is an ordered quadruple
(X̃, τ̃ρ̃, τ̃$̃, τ̃η̃) where τ̃ρ̃, τ̃$̃, τ̃η̃ : ξ X̃ → ξ are mappings satisfying the following axioms:

(SVNT1) τ̃ρ̃(0̃) = τ̃ρ̃(1̃) = 1 and τ̃ρ̃(0̃) = τ̃ρ̃(1̃) = τ̃η̃(0̃) = τ̃η̃(1̃) = 0,
(SVNT2) τ̃ρ̃(σn ∩ γn) ≥ τ̃ρ̃(σn) ∩ τ̃ρ̃(γn), τ̃$̃(σn ∩ γn) ≤ τ$̃(σn) ∪ τ̃$̃(γn),

τ̃η̃(σn ∩ γn) ≤ τ̃η̃(σn) ∪ τ̃η̃(γn), for all σn, γn ∈ ζ X̃ ,
(SVNT3) τ̃ρ̃(∪j∈Γ[σn]j) ≥ ∩j∈Γτ̃ρ̃([σn]j), τ̃$̃(∪i∈Γ[σn]j) ≤ ∪j∈Γτ̃$̃([σn]j),

τ̃η̃(∪j∈Γ[σn]j) ≤ ∪j∈Γτ̃η̃([σn]j) for all {[σn]j, j ∈ Γ} ∈ ζ X̃ .
The quadruple (X̃, τ̃ρ̃, τ̃$̃, τ̃η̃) is called a single-valued neutrosophic topological space (SVNTS,

for short). We will occasionally write τρ̃$̃η̃ for (τρ̃, τ$̃, τη̃) and it will cause no ambiguity

Definition 6 ([14]). Let (X̃, τ̃ρ̃, τ̃$̃, τ̃η̃) be an SVNTS. Then, for every σn ∈ ξ X̃ and r ∈ ξ0,
the single valued neutrosophic closure and the single valued neutrosophic interior of σn are
defined by:

Cτ̃ρ̃$̃η̃ (σn, s) =
⋂
{γn ∈ ξX̃ : σn ≤ γn, τρ̃([γn]

c) ≥ r, τ$̃([γn]
c) ≤ 1− r, τη̃([γn]

c) ≤ 1− r},

intτ̃ρ̃$̃η̃ (σn, s) =
⋃
{γn ∈ ξ X̃ : σn ≥ γn, τρ̃(γn) ≥ r, τ$̃(γn) ≤ 1− r, τη̃(γn) ≤ 1− r}.

Definition 7 ([24]). Let (X̃, τρ̃$̃η̃) be an SVNTS and r ∈ ξ0, σn ∈ ξ X̃ . Then,

(1) σn is r-single valued neutrosophic semiopen (r-SVNSO, for short) iff σn ≤ Cτ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃

(σn, r), r),
(2) σn is r-single valued neutrosophic β-open (r-SVNβO, for short) iff σn ≤ Cτ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (Cτ̃ρ̃$̃η̃

(σn, r), r), r).

The complement of r − SVNSO (resp. r-SVNβO) is said to be an r − SVNSC (resp. r-
SVNβC), respectively.

Definition 8 ([14]). Let X̃ be a nonempty set and ν ∈ X̃. If s ∈ (0, 1], t ∈ [0, 1) and p ∈ [0, 1).
Then, the single-valued neutrosophic point xs,t,p in X̃ is given by

xs,t,p(κ) =

{
(s, t, p), if x = ν,
(0, 1, 1), otherwise.

We say xs,t,p ∈ σn iff s < ρ̃σn(ν), t ≥ $̃σn(ν) and p ≥ η̃σn(ν). To avoid the ambiguity, we
denote the set of all neutrosophic points by pt(ξ X̃).

A single-valued neutrosophic set σn is said to be quasi-coincident with another single-valued
neutrosophic set γn, denoted by σnqγn, if there exists an element ν ∈ X̃ such that

ρ̃σn(ν) + ρ̃γn(ν) > 1, $̃σn(ν) + $̃γn(ν) ≤ 1, η̃σn(ν) + η̃γn(ν) ≤ 1.

Definition 9 ([14]). A mapping I ˜ρ$η = I ρ̃, I $̃, I η̃ : ξ X̃ → ξ is called single-valued neutrosophic
ideal (SVNI) on X̃ if it satisfies the following conditions:

(I1) I ρ̃(0̃) = 1 and I $̃(0̃) = I η̃(0̃) = 0.
(I2) If σn ≤ γn,, then I ρ̃(γn) ≤ I ρ̃(σn), I $̃(γn) ≥ I $̃(σn), and I η̃(γn) ≥ I η̃(σn), for

γn, σn ∈ ξ X̃ .
(I3) I ρ̃(σn ∪ γn) ≥ I ρ̃(σn) ∩ I ρ̃(γn), I $̃(σn ∪ γn) ≤ I $̃(σn) ∪ I $̃(γn) and

I η̃(σn ∪ γn) ≤ I η̃(σn) ∪ I η̃(γn), for each σn, γn ∈ ξ X̃ .

The triple (X̃, τρ̃$̃η̃ , I ρ̃$̃η̃) is called a single valued neutrosophic ideal topological space in
Šostak’s sense (SVNITS, for short).
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Definition 10 ([14]). Let (X̃, τρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS for each σn ∈ ξ X̃ . Then, the single valued
neutrosophic ideal open local function [σn]£r (τ

ρ̃$̃η̃ , I ρ̃$̃η̃) of σn is the union of all single-valued
neutrosophic points xs,t,k such that, if γn ∈ Qτρ̃$̃η̃ (xs,t,k, r) and I ρ̃(ςn) ≥ r, I $̃(ςn) ≤ 1− r,
I η̃(ςn) ≤ 1 − r, then there is at least one ν ∈ X̃ for which ρ̃σn(ν) + ρ̃γn(ν) − 1 > ρ̃ςn(ν),
$̃σn(ν) + $̃γn(ν)− 1 ≤ $̃ςn(ν), and η̃σn(ν) + η̃γn(ν)− 1 ≤ η̃ςn(ν).

Occasionally, we will write [σn]£r for [σn]£r (τ
ρ̃$̃η̃ , I ρ̃$̃η̃), and it will cause no ambiguity.

Remark 1 ([14]). Let (X̃, τρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and σn ∈ ξ X̃ . Then,

CI£
τρ̃$̃η̃ (σn, r) = σn ∪ [σn]

£
r , int£

τρ̃$̃η̃ (σn, r) = σn ∩ [(σc
n)

£
r ]

c.

It is clear that CI£
τρ̃$̃η̃ is a single-valued neutrosophic closure operator and (τρ̃£(Iρ, τ$̃£(I$, τη̃£

(Iη) is the single-valued neutrosophic topology generated by CI£
τρ̃$̃η̃ , i.e.,

τ£(I)(σn) =
⋃
{r| CI£

τρ̃$̃η̃ (σ
c
n, r) = σc}.

Theorem 1 ([14]). Let {[σn]i}i∈J ⊂ ξ X̃ be a family of single-valued neutrosophic sets on X̃ and
(X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an r-SVNITS. Then,

(1) (
⋃
([σn]i)

£
r : i ∈ J) ≤ (

⋃
[σn]i : i ∈ j)£

r ,
(2) (

⋂
([σn]i) : i ∈ j)£

r ≥ (
⋂
([σn]i)

£
r : i ∈ J).

Theorem 2 ([14]). Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and σn, γn ∈ ξ X̃ , r ∈ ξ0. Then,

(1) int£
τ̃ρ̃$̃η̃ (σn ∨ γn, r) ≤ int£

τ̃ρ̃$̃η̃ (σn, r) ∨ int£
τ̃ρ̃$̃η̃ (γn, r),

(2) intτ̃ρ̃$̃η̃ (σn, r) ≤ int£
τ̃ρ̃$̃η̃ (σn, r) ≤ σn ≤ CI£

τ̃ρ̃$̃η̃ (σn, r) ≤ Cτ̃ρ̃$̃η̃ (σn, r),
(3) CI£

τ̃ρ̃$̃η̃ ([σn]c, r) = [int£
τ̃ρ̃$̃η̃ (σn, r)]c, and [CI£

τ̃ρ̃$̃η̃ (σn, r)]c = int£
τ̃ρ̃$̃η̃ ([σn]c, r),

(4) int£
τ̃ρ̃$̃η̃ (σn ∧ γn, r) = int£

τ̃ρ̃$̃η̃ (σn, r) ∧ int£
τ̃ρ̃$̃η̃ (γn, r).

3. £-Single Valued Neutrosophic Ideal Irresolute Mapping

This section provides the definitions of the r-single-valued neutrosophic £-open set
(SVN£O, for short), the r-single-valued neutrosophic £-closed set (SVN£C, for short) and
the £-single valued neutrosophic ideal irresolute mapping (£-SVNI-irresolute, for short), in
the sense of Šostak. To understand the aim of this section, it is essential to clarify its content
and elucidate the context in which the definitions, theorems, and examples are performed.
Some results follow.

Definition 11. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an r-SVNITS for every σn ∈ ξ X̃ and r ∈ ξ0. Then, σn is
called r-SVN£C iff CI£

τρ̃$̃η̃ (σn, r) = σn. The complement of the r-SVN£C is called r-SVN£O.

Proposition 1. Let (X̃, τρ̃$̃η̃ , I ρ̃$̃η̃) be an r-SVNITS and σn ∈ ξ X̃ . Then,

(1) σn is r-SVN£C iff [σn]£r ≤ σn,
(2) σn is r-SVN£O iff ([σn]£r )

c ≥ [σn]c,
(3) If τρ̃([σn]c) ≥ r, τ$([σn]c) ≤ 1− r, τη([σn]c) ≤ 1− r, then σn is r-SVN£C,
(4) If τρ̃(σn) ≥ r, τ$(σn) ≤ 1− r, τη(σn) ≤ 1− r, then σn is r-SVN£O,
(5) If σn is r-SVNSC (resp. r-SVNβC), then intτρ̃$̃η̃ ([σn]£r , r) ≤ σn (resp.intτρ̃$̃η̃ ([intτρ̃$̃η̃ (σn, r)]

£
r , r) ≤ σn).

Proof. The proof of (1) and (2) are straightforward from Definition 11.
(3) Let τρ̃([σn]c) ≥ r, τ$([σn]c) ≤ 1− r, τη([σn]c) ≤ 1− r. Then,

σn = Cτ̃ρ̃$̃η̃ (σn, r) ≥ CI£
τρ̃$̃η̃ (σn, r) = σn ∪ [σn]

£
r ≥ [σn]

£
r .
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Hence, σn is an r-SVN£C.
(4) The proof is direct consequence of (1).
(5) Let σn be an r-SVNSC. Then,

σn ≥ intτ̃ρ̃$̃η̃ (Cτ̃ρ̃$̃η̃ (σn, r), r) ≥ intτ̃ρ̃$̃η̃ (CI£
τρ̃$̃η̃ (σn, r), r) = intτ̃ρ̃$̃η̃ ([σn ∪ [σn]

£
r ], r)

≥ intτ̃ρ̃$̃η̃ ([σn]
£
r , r).

The another case is similarly proved.

Example 1. Suppose that X̃ = {a, b}. Define εn, γn, ςn ∈ ξ X̃ as follows:

γn = 〈(0.3, 0.3), (0.3, 0.3), (0.3, 0.3)〉; εn = 〈(0.7, 0.7), (0.7, 0.7), (0.7, 0.7)〉;

ςn = 〈(0.2, 0.2), (0.2, 0.2), (0.2, 0.2)〉.

Define τ̃ρ̃$̃η̃ , I ρ̃$̃η̃ : ξ X̃ → ξ as follows:

τ̃ρ̃(σn) =


1, if σn = 0̃,
1, if σn = 1̃,
1
3 , if σn = γn;
1
3 , if σn = εn;
0, if otherwise;

I ρ̃(σn) =


1, if σn = (0, 1, 1),
1
3 , if σn = ςn,
2
3 , if 0̃ < σn < ςn;
0, if otherwise;

τ̃$̃(σn) =


0, if σn = 0̃,
0, if σn = 1̃,
2
3 , if σn = γn;
2
3 , if σn = εn;
1, if otherwise;

I $̃(σn) =


0, if σn = (0, 1, 1),
2
3 , if σn = ςn,
1
3 , if 0̃ < σn < ςn;
1, if otherwise;

τ̃η̃(σn) =


0, if σn = 0̃,
0, if σn = 1̃,
2
3 , if σn = γn;
2
3 , if σn = εn;
1, if otherwise;

I η̃(σn) =


0, if σn = (0, 1, 1),
2
3 , if σn = ςn,
1
3 , if 0̃ < σn < ςn;
1, if otherwise.

(1) Gn = 〈(0.6, 0.6), (0.6, 0.6), (0.6, 0.6)〉 is 1
3 -SVN£C but τ̃ρ̃([Gn]c) 6≥ 1

3 , τ̃$([Gn]c) 6≤ 2
3 , and

τ̃η([Gn]c) 6≤ 2
3 ,

(2) Gn = 〈(0.6, 0.6), (0.6, 0.6), (0.6, 0.6)〉 ≥ intτ̃ρ̃$̃η̃ ([Gn]£1
3
, 1

3 ) = 0̃ but Gn is not is 1
3 -SVNSC.

Lemma 1. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS. Then, we have the following.

(1) Every intersection of r-SVN£C’s is r-SVN£C.
(2) Every union of r-SVN£O’s is r-SVN£O.

Proof. (1) Let {[σn]i}i∈j be a family of r-SVN£C’s. Then, for every i ∈ j, we obtain
[σn]i = CI£

τρ̃$̃η̃ ([σn]i, r), and, by Theorem 1(2), we have

⋂
i∈j[σn]i =

⋂
i∈j

CI£
τρ̃$̃η̃ ([σn]i, r), r) =

⋂
i∈j
([σn]i ∪ ([σn]i)

£
r ) ≥

⋂
i∈j
[σn]i ∪

⋂
i∈j
([σn]i)

£
r

≥
⋂
i∈j
[σn]i ∪ (

⋂
i∈j
[σn]i)

£
r = CI£

τρ̃$̃η̃ (
⋂
i∈j
[σn]i, r).

Therefore,
⋂

i∈Γ[σn]i is r-SVN£C.
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(2) From Theorem 1(1).

Lemma 2. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS for each r ∈ ξ0. Then,

(1) For each r-SVN£O σn ∈ ξ X̃ , σnqγn iff σnqCI£
τ̃ρ̃$̃η̃ (γn, r),

(2) xs,t,kqCI£
τ̃ρ̃$̃η̃ (γn, r) iff σnqγn for every r-SVN£O σn ∈ ξ X̃ with xs,t,k ∈ σn.

Proof. (1) Let σn be an r-SVN£O and σnqγn. Then, for any ν ∈ X̃, we obtain

ρ̃σn(ν) + ρ̃γn(ν) > 1, $̃σn(ν) + $̃γn(ν) ≤ 1, η̃σn(ν) + η̃γn(ν) ≤ 1.

This implies that ρ̃γn ≤ ρ̃[σn ]c , $̃γn ≥ $̃[σn ]c and η̃γn ≥ η̃[σn ]c ; hence, γn ≤ [σn]c. Since
σn is r-SVN£O, CI£

τ̃ρ̃$̃η̃ (γn, r) ≤ CI£
τ̃ρ̃$̃η̃ ([σn]c, r) = [σn]c, it follows that σnqCI£

τ̃ρ̃$̃η̃ (γn, r).

(2) Let xs,t,kqCI£
τ̃ρ̃$̃η̃ (γn, r). Then, σnqCI£

τ̃ρ̃$̃η̃ (γn, r) with xs,t,k ∈ σn. By (1), we have
γnqσn for each r-SVN£O σn ∈ ξ X̃ . On the other hand, let σnqγn. Then, γn ≤ [σn]c. Since σn
is r-SVN£O,

CI£
τ̃ρ̃$̃η̃ (γn, r) ≤ CI£

τ̃ρ̃$̃η̃ ([σn]
c, r) = [σn]

c and σnqCI£
τ̃ρ̃$̃η̃ (γn, r).

Since xs,t,k ∈ σn, we obtain xs,t,kqCI£
τ̃ρ̃$̃η̃ (γn, r)

Definition 12. Suppose that f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 )→ (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) is a mapping. Then,

(1) f is called £-SVNI-irresolute iff f−1(σn) is r-SVN£O in X̃ for any r-SVN£O σn in Ỹ,
(2) f is called £-SVNI-irresolute open iff f (σn) is r-SVN£O in Ỹ for any r-SVN£O σn in X̃,
(3) f is called £-SVNI-irresolute closed iff f (σn) is r-SVN£C in Ỹ for any r-SVN£C σn in X̃.

Theorem 3. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) → (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute,
(2) f−1(σn) is r-SVN£C, for each r-SVN£C σn ∈ Ỹ,
(3) f (CI£

τ̃
ρ̃$̃η̃
1

(σn, r)) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r) for each σn ∈ ξ X̃ , r ∈ ξ0,

(4) CI£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r) ≤ f−1(CI£
τ̃

ρ̃$̃η̃
2

(γn, r)) for each γn ∈ ξỸ, r ∈ ξ0.

Proof. (1)⇒(2): Let σn be an r-SVN£C in Ỹ. Then, [σn]c is r-SVN£O in Ỹ by (1), we obtain
f−1([σn]c) is r-SVN£O. But, f−1([σn]c) = [ f−1(σn)]c. Then, f−1(σn) is r-SVN£C in X̃.

(2)⇒(3): For each σn ∈ ξ X̃ and r ∈ ξ0, since CI£
τ̃

ρ̃$̃η̃
2

(CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r) = CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r).

From Definition 11, CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r) is r-SVN£C in Ỹ. By (2), f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r)) is r-

SVN£C in X̃. Since
σn ≤ f−1( f (σn)) ≤ f−1(CI£

τ̃
ρ̃$̃η̃
2

( f (σn), r)),

by Definition 11, we get,

CI£
τ̃

ρ̃$̃η̃
1

(σn, r) ≤ CI£
τ̃

ρ̃$̃η̃
1

( f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r)), r) = f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r)).

Hence,

f (CI£
τ̃

ρ̃$̃η̃
1

(σn, r)) ≤ f ( f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r))) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f (σn), r).

(3)⇒(4): For each γn ∈ ξỸ and r ∈ ξ0, put σn = f−1(γn). By (3),

f (CI£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r)) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f ( f−1(γn)), r) ≤ CI£
τ̃

ρ̃$̃η̃
2

(γn, r).
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It implies that CI£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r) ≤ f−1(CI£
τ̃

ρ̃$̃η̃
2

(γn, r)).

(4)⇒(1): Let γn be an r-SVN£O in Ỹ. Then, [γn]c is an r-SVN£C in Ỹ. Hence,
CI£

τ̃
ρ̃$̃η̃
2

([γn]c, r) = [γn]c, and, by (4), we have,

f−1([γn]
c) = f−1(CI£

τ̃
ρ̃$̃η̃
2

([γn]
c, r)) ≥ CI£

τ̃
ρ̃$̃η̃
1

( f−1([γn]
c), r).

On the other hand, f−1([γn]c) ≤ CI£
τ̃

ρ̃$̃η̃
1

( f−1([γn]c), r). Thus, f−1([γn]c) = CI£
τ̃

ρ̃$̃η̃
1

( f−1

([γn]c), r), that is f−1([γn]c) is an r-SVN£C set in X̃. Hence, f−1(γn) is an r-SVN£O set in
X̃.

Theorem 4. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) → (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute open,
(2) f (int£

τ̃
ρ̃$̃η̃
1

(σn, r)) ≤ int£
τ̃

ρ̃$̃η̃
2

( f (σn), r) for each σn ∈ ξ X̃ , r ∈ ξ0,

(3) int£
τ̃

ρ̃$̃η̃
1

(( f−1(γn), r) ≤ f−1(int£
τ̃

ρ̃$̃η̃
2

(γn, r)) for each γn ∈ ξỸ, r ∈ ξ0,

(4) For any γn ∈ ξỸ and any r-SVN£C σn ∈ ξ X̃ with f−1(γn) ≤ σn, there exists an r-SVN£C
ςn ∈ ξỸ with γn ≤ ςn such that f−1(ςn) ≤ σn.

Proof. (1)⇒(2): For every σn ∈ ξ X̃, r ∈ ξ0 and int£
τ̃

ρ̃$̃η̃
1

(σn, r) ≤ σn from Theorem 2(2),

we have f (int£
τ̃

ρ̃$̃η̃
1

(σn, r)) ≤ f (σn). By (1), f (int£
τ̃

ρ̃$̃η̃
1

(σn, r)) is r-SVN£O in Ỹ. Hence,

f (int£
τ̃

ρ̃$̃η̃
1

(σn, r)) = int£
τ̃

ρ̃$̃η̃
2

( f (int£
τ̃

ρ̃$̃η̃
1

(σn, r))) ≤ int£
τ̃

ρ̃$̃η̃
2

( f (σn), r).

(2)⇒(3): For each γn ∈ ξỸ and r ∈ ξ0, put σn = f−1(γn) from (2),

f (int£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r)) ≤ int£
τ̃

ρ̃$̃η̃
2

( f ( f−1(γn)), r) ≤ int£
τ̃

ρ̃$̃η̃
2

(γn, r).

It implies that

int£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r) ≤ f−1( f (int£
τ̃

ρ̃$̃η̃
1

( f−1(γn), r))) ≤ f−1(int£
τ̃

ρ̃$̃η̃
2

(γn, r)).

(3)⇒(4): Obvious.
(4)⇒(1): Let εn be an r-SVN£O in X̃. Put γn = [ f (εn)]c and σn = [εn]c such that σn is

r-SVN£C in X̃. We obtain

f−1(γn) = f−1([ f (εn)]
c) = [ f−1( f (εn))]

c ≤ [εn]
c = σn.

From (4), there exists r-SVN£O ςn ∈ ξỸ with γn ≤ ςn such that f−1(ςn) ≤ σn = [εn]c.
It implies εn ≤ [ f−1(ς)]c = f−1([ςn]c). Thus, f (εn) ≤ f ( f−1([ς]c)) ≤ [ςn]c. On the
other hand, since γn ≤ ςn, we have

f (εn) = [γ]c ≥ [ςn]
c.

Hence, f (εn) = [ςn]c, that is, f (εn) is r-SVN£O in Ỹ.

Theorem 5. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) → (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute closed.
(2) f (CI£

τ̃
ρ̃$̃η̃
1

(γn, r)) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f (γn), r) for each γn ∈ ξ X̃ , r ∈ ξ0.
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Proof. Obvious.

Theorem 6. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 )→ (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be a bijective mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute closed,
(2) CI£

τ̃
ρ̃$̃η̃
1

( f−1(σn), r) ≤ f−1(CI£
τ̃

ρ̃$̃η̃
2

(σn, r)) for each σn ∈ ξỸ, r ∈ ξ0.

Proof. (1) ⇒ (2) : Suppose that f is an £-SVNI-irresolute closed. From Theorem 5(2),
we claim that, for each γn ∈ ξ X̃ and r ∈ ξ0,

f (CI£
τ̃

ρ̃$̃η̃
1

(γn, r)) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f (γn), r).

Now, for all σn ∈ ξỸ, r ∈ ξ0, put γn = f−1(σn), since f is onto, it implies that
f ( f−1(σn)) = σn. Thus,

f (CI£
τ̃

ρ̃$̃η̃
1

( f−1(σn), r)) ≤ CI£
τ̃

ρ̃$̃η̃
2

( f ( f−1(σn)), r) = CI£
τ̃

ρ̃$̃η̃
2

(σn, r).

Again, since f is onto, it follows:

CI£
τ̃

ρ̃$̃η̃
1

( f−1(σn), r) = f−1( f (CI£
τ̃

ρ̃$̃η̃
1

( f−1(σn), r))) ≤ f−1(CI£
τ̃

ρ̃$̃η̃
2

(σn, r)).

(2)⇒ (1) : Put σn = f (γn). By the injection of f , we get

CI£
τ̃

ρ̃$̃η̃
1

(γn, r) = CI£
τ̃

ρ̃$̃η̃
1

( f−1( f (γn)), r) ≤ f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (γn), r)),

for the reason that f is onto, which implies that

f (CI£
τ̃

ρ̃$̃η̃
1

(γn, r)) ≤ f ( f−1(CI£
τ̃

ρ̃$̃η̃
2

( f (γn), r))) = CI£
τ̃

ρ̃$̃η̃
2

( f (γn), r).

4. £-Single Valued Neutrosophic Extremally Disconnected and £-Single Valued
Neutrosophic Normal

This section is devoted to introducing £-single valued neutrosophic extremally dis-
connected (£-SVNE-disconnected, for short) and £-single valued neutrosophic normal
(£-SVN-normal, for short), in the sense of Šostak. These definitions and their components,
together with a set of criteria for identifying the spaces, are provided to illustrate how the
ideas are applied.

Definition 13. An SVNITS (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is called £-SVNE-disconnected if τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥

r, τ̃$̃(CI£
τ̃$̃(σn, r)) ≤ 1 − r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1 − r for each τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1 − r,
τ̃η̃(σn) ≤ 1− r.

Definition 14. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, σn ∈ ξ X̃ is said to be:

(1) r-single valued neutrosophic semi-ideal open set (r-SVNSIO) iff σn ≤ CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (σn, r), r),

(2) r-single valued neutrosophic pre-ideal open set (r-SVNPIO) iff σn ≤ intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r),

(3) r-single valued neutrosophic α-ideal open set (r-SVNαIO) iff σn ≤ intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ σn, r),

r), r),
(4) r-single valued neutrosophic β-ideal open set (r-SVNβIO) iff σn ≤ Cτ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃

(σn,r), r), r),
(5) r-single valued neutrosophic β-ideal open (r-SVNSβIO) iff σn ≤ CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃

(σn, r), r), r),
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(6) r-single valued neutrosophic regular ideal open set (r-SVNRIO) iff σn = intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃

(σn, r), r).

The complement of r-SVNSIO (resp. r-SVNPIO, r-SVNαIO, r-SVNβIO, r-SVNSβIO, r-
SVNRIO) are called r-SVNSIC (resp. r-SVNPIC, r-SVNαIC, r-SVNβIC, r-SVNSβIC, r-SVNRIC).

Remark 2. The following diagram can be easily obtained from the above definition:

r− SVNαIO ⇒ r− SVNSIO ⇒ r− SVNSO

⇓ ⇓ ⇓
r− SVNRIO ⇒ r− SVNPIO ⇒ r− SVNβIO ⇒ r− SVNβO

⇓
r− SVNSIO ⇒ r− SVNSβIO ⇒ r− SVNβIO.

Theorem 7. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, the following properties
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected,
(2) τ̃ρ̃([int£

τ̃ρ̃(σn, r)]c) ≥ r, τ̃$̃([int£
τ̃$̃(σn, r)]c) ≤ 1− r, τ̃η̃([int£

τ̃η̃ (σn, r)]c) ≤ 1− r for each
τ̃ρ̃([σn]c) ≥ r, τ̃$̃([σn]c) ≤ 1− r, τ̃η̃([σn]c) ≤ 1− r,

(3) CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (σn.r), r) ≤ intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r), for each σn ∈ ξ X̃ ,
(4) Every r-SVNSIO set is r-SVNPIO,
(5) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£
τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r for each r-SVNSβIO
σn ∈ ξ X̃ ,

(6) Every r-SVNSβIO set is r-SVNPIO,
(7) For each σn ∈ ξ X̃ , σn is r-SVNαIO set iff it is r-SVNSIO.

Proof. (1)⇒ (2):The proof is direct consequence of Definition 14.
(2)⇒(3): For each σn ∈ ξ X̃, τ̃ρ̃(intτ̃ρ̃(σn, r)) ≥ r, τ̃$̃(intτ̃$̃(σn, r))

≤ 1− r, τ̃η̃(intτ̃η̃ (σn, r)) ≤ 1− r, and, by (2), we have

τ̃ρ̃([int£
τ̃ρ̃([intτ̃ρ̃(σn, r)]c, r)]c) ≥ r, τ̃$̃([int£

τ̃$̃([intτ̃$̃(σn, r)]c, r)]c) ≤ 1− r,

τ̃η̃([int£
τ̃η̃ ([intτ̃η̃ (σn, r)]c, r)]c) ≤ 1− r.

Thus,

τ̃ρ̃(CI£
τ̃ρ̃ (intτ̃ρ̃ (σn, r), r)) ≥ r, τ̃$̃([CI£

τ̃$̃ (intτ̃$̃ (σn, r), r)) ≤ 1− r, τ̃η̃([CI£
τ̃η̃ (intτ̃η̃ (σn, r), r)) ≤ 1− r;

hence,

CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (σn.r), r) = intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (σn, r), r), r) ≤ intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r).

(3)⇒(4): Let σn be an r-SVNSIO set. Then, by (4), we have

σn ≤ CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (σn, r), r) ≤ intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r).

Thus, σn is an r-SVNPIO set.
(4)⇒(5): Since σn is an r-SVNSβIO set, σn ≤ CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r), r). Then,

CI£
τ̃ρ̃$̃η̃ (σn, r) is r-SVNSIO, and, by (4), CI£

τ̃ρ̃$̃η̃ (σn, r) ≤ intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r); hence,

τ̃ρ̃CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(5)⇒(6): Let σn be an r-SVNβIO set, then, by (5), CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ intτ̃ρ̃$̃η̃ (Cl?(σn, r), r).

Thus,
σn ≤ CI£

τ̃ρ̃$̃η̃ (σn, r) ≤ intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r).
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Therefore, σn is an r-SVNPIO set.
(6)⇒(7): Let σn be an r-SVNSIO. Then, σn is r-SVNSβIO, by (6), σn is an r-SVNPIO set.

Since σn is r-SVNSIO and r-SVNPIO, σn is r-SVNαIO.
(7)⇒ (1): Suppose that τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r, then CI£

τ̃ρ̃$̃η̃ (σn, r)
is r-SVNSIO, and, by (7), CI£

τ̃ρ̃$̃η̃ (σn, r) is r-SVNαIO. Hence,

CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (Cl?(σn, r), r), r), r) = intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r) ≤ CI£

τ̃ρ̃$̃η̃ (σn, r).

Hence,

τ̃ρ̃(CI£
τ̃ρ̃$̃η̃ (σn, r)) ≥ r, τ̃$̃(CI£

τ̃ρ̃$̃η̃ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃ρ̃$̃η̃ (σn, r)) ≤ 1− r.

Thus, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected.

Theorem 8. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS r ∈ ξ0 and σn ∈ ξ X̃. Then, the following
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected,
(2) CI£

τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ (γn, r), for every τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and
every r-SVN£O γn ∈ ξ X̃ with σnqγn,

(3) CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r), r)qCτ̃ρ̃$̃η̃ (γn, r), for every σn ∈ ξ X̃ and r-SVN£O γn ∈ ξ X̃

with σnqγn.

Proof. (1)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. Then, by (1),

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Since [CI£
τ̃ρ̃$̃η̃ (σn, r)]c is an r-SVN£O and CI£

τ̃ρ̃$̃η̃ (σn, r)q[CI£
τ̃ρ̃$̃η̃ (σn, r)]c, it implies that

CI£
τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ ([CI£

τ̃ρ̃$̃η̃ (σn, r)]c, r).

(2)⇒(1): Let τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. Since [CI£
τ̃ρ̃$̃η̃ (σn, r)]c is an

r-SVN£O, then, by (2),

CI£
τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ ([CI£

τ̃ρ̃$̃η̃ (σn, r)]c, r).

This implies that CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r) ≤ CI£
τ̃ρ̃$̃η̃ (σn, r), so

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(2)⇒(3): Suppose that σn ∈ ξ X̃ and γn is an r-SVN£O with σnqγn. Since

τ̃ρ̃(intτ̃ρ̃ (CI£
τ̃ρ̃ (σn, r), r)) ≥ r, τ̃$̃(intτ̃$̃ (CI£

τ̃$̃ (σn, r), r)) ≤ 1− r, τ̃η̃(intτ̃η̃ (CI£
τ̃η̃ (σn, r), r)) ≤ 1− r.

By (2), we have CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r), r)qCτ̃ρ̃$̃η̃ (γn, r).

(3)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and γn be an r-SVN£O with
σnqγn. Then, by (3), we obtain CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r), r)qCτ̃ρ̃$̃η̃ (γn, r). Since

CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ CI£

τ̃ρ̃$̃η̃ (inyτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r), r),

then, we have CI£
τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ (γn, r).

Definition 15. An SVNITS (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is called £-SVN-normal if, for every [σn]1q[σn]2
with τ̃ρ̃([σn]1) ≥ r, τ̃$̃([σn]1) ≤ 1− r, τ̃η̃([σn]1) ≤ 1− r and [σn]2 is r-SVN£O, there exists
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[γn]j ∈ ξ X̃, for j = {1, 2} with τ̃ρ̃([γn]c1) ≥ r, τ̃$̃([γn]c1) ≤ 1− r, τ̃η̃([γn]c1) ≤ 1− r, [γn]2 is
r-SVN£C such that [σn]2 ≤ [γn]1, [σn]1 ≤ [γn]2 and [γn]1q[γn]2.

Theorem 9. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS; then, the following are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVN-normal.
(2) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVNE-disconnected.

Proof. (1)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and [CI£
τ̃ρ̃$̃η̃ (σn, r)]c be an

r-SVN£O. Then, σnq[CI£
τ̃ρ̃$̃η̃ (σn, r)]c. By the £-SVN-normality of (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃), there exist

[γn]i ∈ ξ X̃ , for i = {1, 2} with

τ̃ρ̃([γn]
c
1) ≥ r, τ̃$̃([γn]

c
1) ≤ 1− r, τ̃η̃([γn]

c
1) ≤ 1− r,

and [γn]c2 r-SVN£C such that [CI£
τ̃ρ̃$̃η̃ (σn, r)]c ≤ [γn]1, σn ≤ [γn]2 and [γn]1q[γn]2. Since

CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ CI£

τ̃ρ̃$̃η̃ ([γn]2, r) = [γn]2 ≤ [γn]
c
1 ≤ CI£

τ̃ρ̃$̃η̃ (σn, r),

we have CI£
τ̃ρ̃$̃η̃ (σn, r) = [γn]2. Since [CI£

τ̃ρ̃$̃η̃ (σn, r)]c ≤ [γn]1 ≤ [γn]c2 = [CI£
τ̃ρ̃$̃η̃ (σn, r)]c, so

[CI£
τ̃ρ̃$̃η̃ (σn, r)]c = [γn]1. Hence, CI£

τ̃ρ̃$̃η̃ (σn, r) = [γn]c1 and

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Thus, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVNE-disconnected.
(2)⇒(1): Suppose that τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1 − r, τ̃η̃(σn) ≤ 1 − r and γn is an

r-SVN£O with σnqγn. By the £-SVNE-disconnected of (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃), we have

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r,

and [CI£
τ̃ρ̃$̃η̃ (σn, r)]c is r-SVN£O. Since σnqγn, σn ≤ CI£

τ̃ρ̃$̃η̃ (σn, r) and γn ≤ [CI£
τ̃ρ̃$̃η̃ (σn, r)]c.

Thus, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVN-normal.

Theorem 10. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS, σn, σnξ X̃ and r ∈ ξ0. Then, the following
properties are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected.
(2) If σn is r-SVNRIO, then σn is r-SVN£C.
(3) If σn is r-SVNRIC, then σn is r-SVN£O.

Proof. (1)⇒(2): Let σn be an r-SVNRIO. Then, σn = intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r) and τ̃ρ̃(σn) ≥ r,

τ̃$̃(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. By (1),

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Hence σn = intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r) = CI£

τ̃ρ̃$̃η̃ (σn, r).
(2)⇒(1): Suppose that σn = intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r), then τ̃ρ̃(σn) ≥ r, τ̃$̃(σn) ≤ 1− r,
τ̃η̃(σn) ≤ 1− r, by (2), σn is r-SVN£C. This implies that

CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r), r) = intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r) ≤ CI£
τ̃ρ̃$̃η̃ (σn, r).

Thus,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r,

then (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVNE-disconnected.
(2)⇔ (3): Obvious.
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Remark 3. The union of two r-SVNRIO sets need not to be an r-SVNRIO.

Theorem 11. If (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected and σn, γn ∈ ξ X̃, r ∈ ξ0. Then, the
following properties hold:

(1) If σn and γn are r-SVNRIC, then σn ∧ γn is r-SVNRIC.
(2) If σn and γn are r-SVNRIO, then σn ∨ γn is r-SVNRIO.

Proof. Let σn and γn be r-SVNRIC. Then, τ̃ρ̃([σn]c) ≥ r, τ̃$̃([σn]c) ≤ 1− r, τ̃η̃([σn]c) ≤ 1− r
and τ̃ρ̃([γn]c) ≥ r, τ̃$̃([γn]c) ≤ 1− r, τ̃η̃([γn]c) ≤ 1− r, by Theorem 7, we have

τ̃ρ̃([int£
τ̃ρ̃(σn, r)]c) ≥ r, τ̃$̃([int£

τ̃$̃(σn, r)]c) ≤ 1− r, τ̃η̃([int£
τ̃η̃ (σn, r)]c) ≤ 1− r,

and

τ̃ρ̃([int£
τ̃ρ̃(γn, r)]c) ≥ r, τ̃$̃([int£

τ̃$̃(γn, r)]c) ≤ 1− r, τ̃η̃([int£
τ̃η̃ (γn, r)]c) ≤ 1− r.

This implies that

σn ∧ γn = Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn, r), r) ∧Cτ̃ρ̃$̃η̃ (int£

τ̃ρ̃$̃η̃ (γn, r), r)

= int£
τ̃ρ̃$̃η̃ (σn, r) ∧ int£

τ̃ρ̃$̃η̃ (γn, r) = int£
τ̃ρ̃$̃η̃ (σn ∧ γn, r)

≤ Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn ∧ γn, r), r).

On the other hand,

Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn ∧ γn, r), r) = Cτ̃ρ̃$̃η̃ (int£

τ̃ρ̃$̃η̃ (σn, r) ∧ int£
τ̃ρ̃$̃η̃ (γn, r), r)

≤ Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn, r), r) ∧Cτ̃ρ̃$̃η̃ (int£

τ̃ρ̃$̃η̃ (γn, r), r)

= σn ∧ γn.

Thus, Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn ∧ γn, r), r) = σn ∧ γn. Therefore, σn ∧ γn is an r-SVNRIC.

(2) The proof is similar to that of (1).

Theorem 12. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, the following properties
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected,
(2) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£
τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNSIO
σn ∈ ξ X̃ ,

(3) τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNPIO

σn ∈ ξ X̃ ,
(4) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£
τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNRIO
σn ∈ ξ X̃ .

Proof. (1) ⇒ (2) and (1) ⇒ (3). Let σn be an r-SVNSIO (r-SVNPIO). Then, σn is r-
SVNSβIO, and, by Theorem 7, we have,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(2)⇒(4) and (3)⇒(4). Let σn be an r-SVNRIO. Then, σn is r-SVNPIO and r-SVNSIO. Thus,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(4)⇒(1). Suppose that

τ̃ρ̃(intτ̃ρ̃(CI£
τ̃ρ̃(σn, r), r)) ≥ r, τ̃$̃(intτ̃$̃(CI£

τ̃$̃(σn, r), r)) ≥ r, τ̃η̃(intτ̃η̃ (CI£
τ̃η̃ (σn, r), r)) ≥ r.
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Then, by (4), we have

τ̃ρ̃(CI£
τ̃ρ̃(intτ̃ρ̃(CI£

τ̃ρ̃(σn, r), r), r)) ≥ r, τ̃$̃(CI£
τ̃$̃(intτ̃$̃(CI£

τ̃$̃(σn, r), r), r)) ≥ r,

τ̃η̃(CI£
τ̃η̃ (intτ̃η̃ (CI£

τ̃η̃ (σn, r), r), r)) ≥ r.

Hence,

CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ CI£

τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r), r)

= intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r), r), r), r)

= intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r) ≤ CI£

τ̃ρ̃$̃η̃ (σn, r).

Thus, τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1 − r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1 − r; hence,

(X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an £-SVNE-disconnected.

Definition 16. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS. Then, σn is said to be an r-SVN£SO if σn ≤
Cτ̃ρ̃$̃η̃ (int£

τ̃ρ̃$̃η̃ (σn, r), r).

Definition 17. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS for each r ∈ ξ0, σn ∈ ξ X̃ and xs,t,p ∈ Pt(ξ X̃).
Then, xs,t,p is called an r-SVNδI-cluster point of σn if, for every γn ∈ Qτ̃ρ̃$̃η̃ (xs,t,p, r), we have
σnqintτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (γn, r), r).

Definition 18. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS for each r ∈ ξ0, σn ∈ ξ X̃ and xs,t,p ∈ Pt(ξ X̃).
Then, the single-valued neutrosophic δI-closure operator is a mapping CδIτ̃ρ̃$̃η̃ : ξ X̃ × ξ0 → ξ X̃

that is defined as: CδIτ̃ρ̃$̃η̃ (σn, r) =
∨{xs,t,p ∈ Pt(ξ X̃) is r-SVNδI-cluster point of σn}.

Lemma 3. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS. Then, σn is r-SVN£SO iff Cτ̃ρ̃$̃η̃ (σn, r) = Cτ̃ρ̃$̃η̃

(int£
τ̃ρ̃$̃η̃ (σn, r), r).

Proof. Obvious.

Lemma 4. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS for each σn ∈ ξ x̃ and r ∈ ξ0. Then, Cτ̃ρ̃$̃η̃ (σn, r) ≤
CδIτ̃ρ̃$̃η̃ (σn, r).

Proof. Obvious.

Lemma 5. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and σn be an r-SVN£SO. Then, Cτ̃ρ̃$̃η̃ (σn, r) =
CδIτ̃ρ̃$̃η̃ (σn, r).

Proof. We show that Cτ̃ρ̃$̃η̃ (σn, r) ≤ CδIτ̃ρ̃$̃η̃ (σn, r). Suppose that Cτ̃ρ̃$̃η̃ (σn, r) 6≥ CδIτ̃ρ̃$̃η̃ (σn, r),;
then, there exist ν ∈ X̃ and s, t, p ∈ ξ0 such that

ρ̃C
τ̃ρ̃ (σn ,r)(ν) < s ≤ ρ̃C

δIτ̃ρ̃ (σn ,r)(ν), $̃C
τ̃$̃ (σn ,r)(ν) ≥ t > $̃C

δIτ̃$̃ (σn ,r)(ν), (1)

η̃C
τ̃η̃ (σn ,r)(ν) ≥ p > η̃C

δIτ̃η̃ (σn ,r)(ν).

By the definition of Cτ̃ρ̃$̃η̃ , there exists τ̃ρ̃([γn]c) ≥ r, τ̃$̃([γn]c) ≤ 1− r, τ̃η̃([γn]c) ≤
1− r with σn ≤ γn such that

ρ̃C
τ̃ρ̃ (σn ,r)(ν) ≤ ρ̃γn(ν) < s < ρ̃C

δIτ̃ρ̃ (σn ,r)(ν), $̃C
τ̃$̃ (σn ,r)(ν) ≥ $̃γn(ν) > t > $̃C

δIτ̃ρ̃ (σn ,r)(ν),

η̃C
τ̃η̃ (σn ,r)(ν) ≥ ρ̃γn(ν) > p > η̃C

δIτ̃η̃ (σn ,r)(ν).
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Then, [γn]c ∈ Qτ̃ρ̃$̃η̃ (xs,t,p, r) and

[σn]c ≥ [γn]c ⇒ CI£
τ̃ρ̃$̃η̃ ([σn]

c, r) ≥ CI£
τ̃ρ̃$̃η̃ ([γn]

c, r)

⇒ CI£
τ̃ρ̃$̃η̃ ([σn]

c, r) ≥ intτ̃ρ̃$̃η̃ ([γn]
c, r)

⇒ [int£
τ̃ρ̃$̃η̃ (σn, r)]c ≥ [γn]

c.

Thus, int£
τ̃ρ̃$̃η̃ (σn, r)q[γn]c. Hence, intτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ ([γn]c, r), r)qCτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (σn, r), r), r).

Since σn is an r-SVN£SO, we have intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (γn, r), r)qσn. So, xs,t,p is not an r-SVNδI-

cluster point of σn. It is a contradiction for equation 3. Thus, Cτ̃ρ̃$̃η̃ (σn, r) ≥ CδIτ̃ρ̃$̃η̃ (σn, r).
By Lemma 4, we have Cτ̃ρ̃$̃η̃ (σn, r) = CδIτ̃ρ̃$̃η̃ (σn, r).

Theorem 13. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS. Then, the following properties are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected,
(2) If σn is r-SVNSβIO and γn is r-SVN£SO, then CI£

τ̃ρ̃$̃η̃ (σn, r) ∧ Cτ̃ρ̃$̃η̃ (γn, r) ≤ Cτ̃ρ̃$̃η̃

(σn ∧ γn),
(3) If σn is r-SVNSIO and γn is r-SVN£SO, then CI£

τ̃ρ̃$̃η̃ (σn, r) ∧ Cτ̃ρ̃$̃η̃ (γn, r) ≤ Cτ̃ρ̃$̃η̃

(σn ∧ γn),
(4) CI£

τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ (γn, r), for every r-SVNSIO set σn ∈ ξ X̃ and every r-SVN£SO γn ∈ ξ X̃

with σnqγn,
(5) If σn is an r-SVNPIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃$̃η̃ (σn, r) ∧Cτ̃ρ̃$̃η̃ (γn, r) ≤ Cτ̃ρ̃$̃η̃

(σn ∧ γn).

Proof. (1)⇒(2): Let σn be an r-SVNSβIO and γn be an r-SVN£SO, by Theorem 7, τ̃ρ̃

(CI£
τ̃ρ̃(σn, r))

≥ r, τ̃$̃(CI£
τ̃$̃(σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r. Then,

CI£
τ̃ρ̃$̃η̃ (σn, r)∧ Cτ̃ρ̃$̃η̃ (γn, r) ≤ Cτ̃ρ̃$̃η̃ (int£

τ̃ρ̃$̃η̃ (γn, r), r) ≤ Cτ̃ρ̃$̃η̃ [CI£
τ̃ρ̃$̃η̃ (γn, r) ∧ int£

τ̃ρ̃$̃η̃ (γn, r), r]

≤ Cτ̃ρ̃$̃η̃ [CI£
τ̃ρ̃$̃η̃ [γn ∧ int£

τ̃ρ̃$̃η̃ (γn, r), r], r] ≤ Cτ̃ρ̃$̃η̃ [Cτ̃ρ̃$̃η̃ [γn ∧ int£
τ̃ρ̃$̃η̃ (γn, r), r], r]

≤ Cτ̃ρ̃$̃η̃ [γn ∧ int£
τ̃ρ̃$̃η̃ (γn, r), r] ≤ Cτ̃ρ̃$̃η̃ [γn ∧ γn, r].

Hence, CI£
τ̃ρ̃$̃η̃ (σn, r) ∧Cτ̃ρ̃$̃η̃ (γn, r) ≤ Cτ̃ρ̃$̃η̃ (σn ∧ γn).

(2)⇒(3): It follows from the fact that every r-SVNSIO set is an r-SVNSβIO.
(3)⇒(4): Clear.
(4)⇒(1): Let σn be an r-SVNSIO. Since [CI£

τ̃ρ̃$̃η̃ (σn, r)]c ≤ Cτ̃ρ̃$̃η̃ (int£
τ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ ([σn]c,
r), r), r) we have, [CI£

τ̃ρ̃$̃η̃ (σn, r)]c is an r-SVN£SO. Then, by (4), CI£
τ̃ρ̃$̃η̃ (σn, r)qCτ̃ρ̃$̃η̃ ([CI£

τ̃ρ̃$̃η̃

(σn, r)]c, r). Thus, CI£
τ̃ρ̃$̃η̃ (σn, r) ≤ [Cτ̃ρ̃$̃η̃ (CI£

τ̃ρ̃$̃η̃ (σn, r)]c, r)]c = intτ̃ρ̃$̃η̃ (CI£
τ̃ρ̃$̃η̃ (σn, r), r).

Therefore, τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃$̃(CI£

τ̃$̃(σn, r)) ≤ 1 − r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1 − r. Thus,

by Theorem 12, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected.
(2)⇒(5): It follows from the fact that every r-SVNPIO is an r-SVNSβIO.

Corollary 1. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS. Then, the following properties are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is £-SVNE-disconnected.
(2) If σn is an r-SVNSβIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃$̃η̃ (σn, r) ∧ CδIτ̃ρ̃$̃η̃ (γn, r) ≤
Cτ̃ρ̃$̃η̃ (σn ∧ γn).

(3) If σn is an r-SVNSIO and γn is an r-SVN£SO, then CI£
τ̃ρ̃$̃η̃ (σn, r) ∧ CδIτ̃ρ̃$̃η̃ (γn, r) ≤

Cτ̃ρ̃$̃η̃ (σn ∧ γn).
(4) If σn is an r-SVNPIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃$̃η̃ (σn, r) ∧ CδIτ̃ρ̃$̃η̃ (γn, r) ≤
Cτ̃ρ̃$̃η̃ (σn ∧ γn).

Proof. It follows directly from Lemma 3 and 5.
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5. Some Types of Separation Axioms

In this section, some kinds of separation axioms, namely r-single valued neutrosophic
ideal-Ri (r-SVNIRi, for short), where i = {0, 1, 2, 3}, and r-single valued neutrosophic
ideal-Tj (r-SVNITj, for short), where j = {1, 2, 2 1

2 , 3, 4}, in the sense of Šostak are defined.
Some of their characterizations, fundamental properties, and the relations between these
notions have been studied.

Definition 19. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, X̃ is called:

(1) r-SVNIR0 iff xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r) implies ys1,t1,p1 qCI£

τρ̃$̃η̃ (xs,t,p, r) for any xs,t,p 6= ys1,
t1, p1.

(2) r-SVNIR1 iff xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r) implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃

such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn.
(3) r-SVNIR2 iff xs,t.pqςn = CI£

τρ̃$̃η̃ (ςn, r) implies there exist r-SVN£O sets σn, γn ∈ ξ X̃ such
that xs,t,p ∈ σn, ςn ≤ γn and σnqγn.

(4) r-SVNIR3 iff [ςn]1 = CI£
τρ̃$̃η̃ ([ςn]1, r)q[ςn]2 = CI£

τρ̃$̃η̃ ([ςn]2, r) implies that there exist
r-SVN£O sets σn, γn ∈ ξ X̃ such that [ςn]1 ≤ σn, [ςn]2 ≤ γn and σnqγn.

(5) r-SVNIT1 iff xs,t,pqys1,t1,p1 implies that there exists r-SVN£O σn ∈ ξ X̃ such that xs,t,p ∈ σn
and ys1,t1,p1 qσn.

(6) r-SVNIT2 iff xs,t,pqys1,t1,p1 implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that
xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn.

(7) r-SVNIT2 1
2

iff xs,t,pqys1,t1,p1 implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that

xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and CI£
τρ̃$̃η̃ (σn, r)qCI£

τρ̃$̃η̃ (γn, r).
(8) r-SVNIT3 iff it is r-SVNITR2 and r-SVNIT1.
(9) r-SVNIT4 iff it is r-SVNITR3 and r-SVNIT1.

Theorem 14. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR0.
(2) If xs,t,pqσn = CI£

τρ̃$̃η̃ (σn, r), then there exists r-SVN£O γn ∈ ξ X̃ such that xs,t,pqγn and
σn ≤ γn.

(3) If xs,t,pqσn = CI£
τρ̃$̃η̃ (σn, r), then CI£

τρ̃$̃η̃ (xs,t,p, r)qσn = CI£
τρ̃$̃η̃ (σn, r).

(4) If xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r), then CI£

τρ̃$̃η̃ (xs,t,p, r)qCI£
τρ̃$̃η̃ (ys1,t1,p1 , r).

Proof. (1)⇒(2): Let xs,t,pqσn = CI£
τρ̃$̃η̃ (σn, r). Then,

s + ρ̃σn(ν) < 1, t + $̃σn(ν) ≥ 1, p + η̃σn(ν) ≥ 1,

for every ys1,t1,p1 ∈ σn, we have s1 < ρ̃σn(ν), t1 ≥ $̃σn(ν) and p1 ≥ η̃σn(ν). Thus,
xs,t,pqCI£

τρ̃$̃η̃ (ys1,t1,p1 , r). Since (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is an r-SVNIR0, we obtain ys1,t1,p1 qCI£
τρ̃$̃η̃

(xs,t,p, r). By Lemma 2(2), there exists an r-SVN£O ςn ∈ ξ X̃ such that xs,t,pqςn and
ys1,t1,p1 ≤ ςn. Let

γn =
∨

ys1,t1,p1∈σn

{ςn : xs,t,pqςn, ys1,t1,p1 ∈ ςn}.

From Lemma 1(1), γn is an r-SVN£O. Then, xs,t,pqγn, σn ≤ γn.
(2)⇒(3): Let xs,t,pqσn = CI£

τρ̃$̃η̃ (σn, r). Then, there exists an r-SVN£O γn ∈ ξ X̃ such
that xs,t,pqγn and σn ≤ γn. Since for every ν ∈ X̃,

s < 1− ρ̃γn(ν), t ≥ 1− $̃γn(ν), p ≥ 1− η̃γn(ν),

we obtain

CI£
τρ̃$̃η̃ (xs,t,p, r) ≤ CI£

τρ̃$̃η̃ ([γn]
c, r) = [γn]

c ≤ [σn]
c.
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Therefore, CI£
τρ̃$̃η̃ (xs,t,p, r)qσn = CI£

τρ̃$̃η̃ (σn, r).
(3)⇒(4): Let xs,t,pqCI£

τρ̃$̃η̃ (ys1,t1,p1 , r). Then, xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r) = CI£

τρ̃$̃η̃ (CI£
τρ̃$̃η̃

(ys1,t1,p1 , r), r). By (3), s1, t1, p1(xs,t,p, r)qCI£
τρ̃$̃η̃ (ys1,t1,p1 , r).

(4)⇒(1): Clear.

Theorem 15. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, if X̃ is

(1) [r-SVNIR3 and r-SVNIR0]⇒(a) r-SVNIR2 ⇒(b) r-SVNIR1 ⇒(c) r-SVNIR0.
(2) r-SVNIT2 ⇒ r-SVNIR1.
(3) r-SVNIT3 ⇒ r-SVNIR2.
(4) r-SVNIT4 ⇒ r-SVNIR3.
(5) r-SVNIT4 ⇒(a) r-SVNIT3 ⇒(b) r-SVNIT2 1

2
⇒(c) r-SVNIT2 ⇒(d) r-SVNIT1.

Proof. (1a). Let xs,t.pqςn = CI£
τρ̃$̃η̃ (ςn, r), by Theorem 14(3), CI£

τρ̃$̃η̃ (xs,t,p, r)qςn = CI£
τρ̃$̃η̃

(ςn, r). Since (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR3 and CI£
τρ̃$̃η̃ (xs,t,p, r) = CI£

τρ̃$̃η̃ (CI£
τρ̃$̃η̃ (xs,t,p, r), r),

there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ CI£
τρ̃$̃η̃ (xs,t,p, r) ≤ σn, ςn ≤ γn and

σnqγn. Hence, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR2.
(1b). For each xs,t,pqCI£

τρ̃$̃η̃ (ys1,t1,p1 , r), by r-SVNIR2 of X̃, there exist r-SVN£O sets
σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, ys1,t1,p1 , r ∈ CI£

τρ̃$̃η̃ (ys1,t1,p1 , r, r) ≤ γn and σnqγn. Thus,
(X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR1.

(1c). Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be r-SVNIR1. Then, for every xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r, r) and

xs,t,p 6= ys1,t1,p1 , there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and
σnqγn. Hence, xs,t,p ∈ σn ≤ [γn]c. Since γn is an r-SVN£O set, we obtain CI£

τρ̃$̃η̃ (xs,t,p, r) ≤
CI£

τρ̃$̃η̃ ([γn]c, r) = [γn]c ≤ [ys1,t1,p1 ]
c. Thus, ys1,t1,p1 qCI£

τρ̃$̃η̃ (xs,t,p, r) and (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is
r-SVNIR0.

(2). Let xs,t,pqCI£
τρ̃$̃η̃ (ys1,t2,p1 , r). Then, xs,t,pqys1,t1,p1 . By r-SVNIT2 of X̃, there exist r-

SVN£O sets σn, γn ∈ ξ X̃ such that xst,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn. Hence, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃)
is r-SVNIR1.

(3) and (4) The proofs are direct consequence of (2) .
(5a). The proof is direct consequence of (1).
(5b). For each xs,t,pqys1,t1,p1 , since X̃ is both r-SVNIR2 and r-SVNIT1, then, there

exists an r-SVN£O set ςn ∈ ξ X̃ such that xs,t,p ∈ ςn and ys1,t1,p1 qςn. Then,

xt ∈ ςn = int£
τρ̃$̃η̃ (ςn, r) ≤ int£

τρ̃$̃η̃ ([ys1,t1,p1 ]
c, r) = [CI£

τρ̃$̃η̃ (ys1,t1,p1 , r)]c.

Hence, xs,t,pqCI£
τρ̃$̃η̃ (ys1,t1,p1 , r). By r-SVNIR2 of X̃, there exist r-SVN£O sets σn, γn ∈

ξ X̃ such that xs,t,p ∈ σn, CI£
τρ̃$̃η̃ (ys1,t1,p1 , r) ≤ γn and σnqγn. Thus, σn ≤ [γn]c, so

CI£
τρ̃$̃η̃ (σn, r) ≤ CI£

τρ̃$̃η̃ ([γn]
c, r) = [γn]

c ≤ [CI£
τρ̃$̃η̃ (ys1,t1,p1 , r)]c.

It implies CI£
τρ̃$̃η̃ (σn, r)qCI£

τρ̃$̃η̃ (ys1,t1,p1 , r)with xs,t,p ∈ σn and ys1,t1,p1 ∈ CI£
τρ̃$̃η̃ (ys1,t1,p1 , r).

Thus, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIT2 1
2
.

(5c). Let xs,t,pqys1,t1,p1 . Then, by r-SVNIT2 1
2

of X̃, there exist r-SVN£O sets σn, γn ∈ ξ X̃

such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and CI£
τρ̃$̃η̃ (σn, r)qCI£

τρ̃$̃η̃ (γn, r), which implies that σnqγn.
Thus, (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIT2.

(5d). Similar to the proof of (5c).

Theorem 16. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR2.
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(2) If xs,t,p ∈ σn and σn is r-SVN£O set, then there exists r-SVN£O set γn ∈ ξ X̃ such that
xs,t,p ∈ γn ≤ CI£

τρ̃$̃η̃ (γn, r) ≤ σn.
(3) If xs,t,pqσn = CI£

τρ̃$̃η̃ (σn, r), then there exists r-SVN£O set [γn]j ∈ ξ X̃ , j = {1, 2} such that
xs,t,p ∈ [γn]1, σn ≤ [γn]2 and CI£

τρ̃$̃η̃ ([γn]1, r)qCI£
τρ̃$̃η̃ ([γn]2, r).

Proof. Similar to the proof of Theorem 14.

Theorem 17. Let (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃$̃η̃ , I ρ̃$̃η̃) is r-SVNIR3.
(2) If [σn]1q[σn]2 and [σn]1, [σn]2 are r-SVN£C sets, then there exists r-SVN£O set γn ∈ ξ X̃

such that [σn]1 ≤ γn and CI£
τρ̃$̃η̃ (γn, r) ≤ [σn]2.

(3) For any [σn]1 ≤ [σn]2, where [σn]1 is an r-SVN£O set, and [σn]2 is an r-SVN£C set, then,
there exists an r-SVN£O set γn ∈ ξ X̃ such that [σn]1 ≤ γn ≤ CI£

τρ̃$̃η̃ (γn, r) ≤ [σn]2.

Proof. Similar to the proof of Theorem 15.

Theorem 18. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) → (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be a £-SVNI-irresolute, bijective,
£-SVNI-irresolute open mapping and (X̃, τ̃

ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) is r-SVNIR2. Then, (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) is
r-SVNIR2.

Proof. Let ys,t,pqςn = Cl?(ςn, r). Then, by Definition 11, ςn is an r-SVN£C set in Ỹ. By The-
orem 3(2), f−1(ςn) is an r-SVN£C set in X̃. Put ys,t,p = f (xs,t,p). Then, xs,t,pq f−1(ςn). By r-
SVNIR2 of X̃, there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, f−1(ςn) ≤ γn and
σnqγn. Since f is bijective and £-SVNI-irresolute open, ys,t,p ∈ f (σn), ςn ≤ f ( f−1(ςn)) ≤
f (γn) and f (σn)q f (γn). Thus, (Ỹ, τ̃

ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) is r-SVNIR2.

Theorem 19. Let f : (X̃, τ̃
ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) → (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) be an £-SVNI-irresolute, bijective,
£-SVNI-irresolute open mapping and (X̃, τ̃

ρ̃$̃η̃
1 , I ρ̃$̃η̃

1 ) be an r-SVNIR3. Then, (Ỹ, τ̃
ρ̃$̃η̃
2 , I ρ̃$̃η̃

2 ) is
r-SVNIR3.

Proof. Similar to the proof of Theorem 18.

6. Conclusions

In summary, we have introduced the definition of the r-single valued neutrosophic £-
closed and r-single valued neutrosophic £-open sets over single valued neutrosophic ideal
topology space in Šostak’s sense. Many consequences have been arisen up to show that
how far topological structures are preserved by these r-single valued neutrosophic £-closed.
We also have provided some counterexamples where such properties fail to be preserved.
The most important contribution to this area of research is that we have introduced the
notion of £-single valued neutrosophic irresolute mapping, £-single valued neutrosophic
extremally disconnected spaces, £-single valued neutrosophic normal spaces and that we
defined some kinds of separation axioms, namely r-SVNIRi, where i = {0, 1, 2, 3}, and
r-SVNITj, where j = {1, 2, 2 1

2 , 3, 4}, in the sense of Šostak. Some of their characterizations,
fundamental properties, and the relations between these notions have been studied.
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