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Abstract: The revolutionary idea of asymmetric cryptography brings a fundamental change to our
modern communication system. However, advances in quantum computers endanger the security of
many asymmetric cryptosystems based on the hardness of factoring and discrete logarithm, while
the complexity of the quantum algorithm makes it hard to implement in many applications. In this
respect, novel asymmetric cryptosystems based on matrices over residue rings are in practice. In
this article, a novel approach is introduced. Despite the matrix algebra M(k,Zn), the matrix algebra
M(k, R′n), R′n =

Z2[w]
〈wn−1〉 as the chain ring is considered. In this technique, instead of exponentiation,

the inner product automorphisms the use for key generation. The chain ring provides computational
complexity to its algorithm, which improves the strength of the cryptosystem. However, the residue
ring endangers the security of the original cryptosystem, while it is hard to break using R′n. The
structure of the chain ring deals with the binary field Z2, which simplifies its calculation and makes
it capable of efficient execution in various applications.

Keywords: asymmetric cryptosystems; chain ring; general linear group

1. Introduction

Internet and network applications have become the basic necessity of the modern
world. Cryptography techniques provide security for these applications. Cryptography is
the deliberate attempt to scramble information so that adversaries fail to access secret data.
Symmetric cryptography mainly focuses on private-key encryption. The key-distribution
and key-management problems make it futile for today’s world. A new approach is
required to overcome these problems. Asymmetric cryptography provides a solution.
Moreover, it gives a new direction to cryptography. The idea of key exchange protocol
was initiated by Merkle, Differ, and Hellman [1] in the mid-1970s. One of the earliest
asymmetric cryptosystems is the famous RSA. Later on, many more asymmetric algorithms
were introduced, such as ElGamal and ECC [2,3], which were based on the complexity
of the integer factorization problem. It was further modified by different cryptologists
in [4–6]. The elliptic curve discrete logarithm problem (ECDLP) has been a prominently
researched area, still under the analysis of many cryptographers [7,8].

Data confidentiality, integrity, and authenticity are the fundamental protection goals
of cryptography. Hash functions and digital signatures improve message integrity and
make it more authentic [9,10]. Nowadays, a critical problem that classical and modern
cryptography fails to address is long term security. Quantum cryptography can resolve
this problem as it is based on the law of quantum physics, which is valid forever [11,12].
The complexity of the quantum algorithm makes it difficult to be implemented in various
applications. In this respect, asymmetric cryptosystems based on matrix algebra over
residue ring have been studied for the last decade.

The main focus of this work is to ensure an improvement in Khan et al.’s [13] proposed
scheme, based on a commutative subgroup of the GL(2, Zn). Our goal is to increase the
security of the algorithms by using a unique algebraic structure of the local chain ring
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R′n = Z2[w]
〈wn−1〉 and generalizing both the cryptosystems given in [13]. However, the local

ring Zn of integer modulo n makes both cryptosystems insecure in the sense that an attacker
that is efficient in solving linear equations in Zn can easily break both schemes in a very
limited period. In 2016, Jianwei Jia et al.’s [14] worked on schemes given in [13]; they
conducted a detailed analysis of structural attack and deduced that both cryptosystems
were breakable. In this article, we propose new asymmetric cryptosystems that are based
on the abelian subgroup of the general linear group GL(k, R′n), as done for Cryptosystem
1 over residue ring in [15]. Chain ring R′n has a special structure of polynomials; the
coefficients of a polynomial are from Z2 which make its calculations easy but unfeasible for
the attacker to decrypt it.

The rest of the article comprises as follows. In Section 2, we briefly define the chain
ring. The details of the proposed scheme are given in Section 3, and then it is verified with
an example in Section 4. Finally, some attacks are discussed in the security analysis in
Section 5, and a conclusion is drawn in the end.

2. Chain Ring

Chain ring R is a commutative ring, with identity having the property that under
inclusion, each of its ideals forms a chain. More precisely, it is a finite local ring with radical
M of R as a principal ideal. Roughly speaking, it is an extension over the Galois ring

GR(q, h) = Zq [w]

〈g(w)〉 , where q = pm, such that p is a prime, m, h > 0, and g(w) ∈ Zq[w] is a

basic irreducible polynomial of degree h. The cardinality of the Galois ring is pmh. Now,
if M is a maximal ideal of R, then R

M is residue field which is the Galois extension field

GF
(

ph
)

.

The finite chain ring is quotient ring
GF(ph)[w]

〈wn−1〉 =
Fph [w]

〈wn−1〉 = ∑n−1
0 wnFph , where Fph [w]

is Euclidean domain and wn = 1, n ≥ 2, whereas one of the special class of finite chain
ring is quotient ring R′n = GF(2)[w]

〈wn−1〉 = F2[w]
〈wn−1〉 = ∑n−1

0 wnF2. The cardinality of R′n is 2n.
Elements of this class of chain ring are invertible if the sum of the coefficient of the element
∑n−1

0 bnwn ∈ R′n is non-zero, i.e., ∑n−1
0 bn 6= 0, where bn ∈ F2. The group of invertible

elements of R′n is denoted as R′n∗. In particular, take n = 8, so the finite chain ring will be
R′8 = F2[w]

〈w8−1〉 = ∑7
0 wnF2, where w8 = 1. The number of elements in this chain ring and its

unit elements is

r =
∣∣R′8∣∣ = 28 = 256, and

∣∣R′8∗∣∣ = φ(r) = 28−1(2− 1) = 128.

3. Proposed Cryptosystems

In the proposed asymmetric cryptosystems, the subgroup of GL(k, R′n) is the aim
of the study, while in the original cryptosystems, the subgroup of GL(2,Zn) was under
discussion. Hence, the proposed algorithm is a generalization of original cryptosystems,
while the finite chain ring is used instead of a residue ring. We will discover later that this
modification increases in the computational complexity of the proposed cryptosystem.

Let Q be the subgroup of GL(k, R′n). It can be easily proved that Q is an abelian
subgroup of GL(k, R′n).

Proposition 1. Let M(k, R′n) be the ring of matrices and GL(k, R′n) its general linear group.
Then,
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Q =





x́1 x́2 x́3 x́4 · · · x́k
0 x́1 x́2 x́3 · · · x́k−1

0 0 x́1 x́2 · · ·
...

...
. . . . . . . . . . . . x́3

0 0 0 · · · x́1 x́2
0 0 0 · · · 0 x́1


|x́1 ∈ R′n

∗, x́i ∈ R′n, i = 2, 3, . . . , k and det Q ∈ R′n
∗


is an abelian subgroup of GL(k, R′n).

Proof of Proposition 1.

1. Let Q1, Q2 ∈ Q.

Q1 =



x́1
0
0
...
0
0

x́2
x́1
0
. . .
0
0

x́3
x́2
x́1
. . .
0
0

x́4
x́3
x́2
. . .
· · ·
· · ·

. . .

. . .

. . .
. . .
x́1
0

x́k
x́k−1

...
x́3
x́2
x́1


, Q2 =



ý1
0
0
...
0
0

ý2
ý1
0
. . .
0
0

ý3
ý2
ý1
. . .
0
0

ý4
ý3
ý2
. . .
· · ·
· · ·

. . .

. . .

. . .
. . .
ý1
0

ýk
ýk−1

...
ý3
ý2
ý1


Then,

Q1Q2 =



x́1
0
0
...
0
0

x́2
x́1
0
. . .
0
0

x́3
x́2
x́1
. . .
0
0

x́4
x́3
x́2
. . .
· · ·
· · ·

. . .

. . .

. . .
. . .
x́1
0

x́k
x́k−1

...
x́3
x́2
x́1





ý1
0
0
...
0
0

ý2
ý1
0
. . .
0
0

ý3
ý2
ý1
. . .
0
0

ý4
ý3
ý2
. . .
· · ·
· · ·

. . .

. . .

. . .
. . .
ý1
0

ýk
ýk−1

...
ý3
ý2
ý1



=



x́1ý1

0

0
...
0

0

x́1 ý2 + x́2ý1

x́1ý1

0
. . .
0

0

x́1 ý3 + x́2 ý2 + x́3ý1

x́1 ý2 + x́2ý1

x́1 ý1

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
x́1 ý1

0

x́1 ýk + x́2ýk−1 + . . . + x́k−1ý2 + x́k ý1

x́1ýk−1 + x́2ýk−2 + . . . + x́k−2ý2 + x́k ýk−1

...
x́1ý3 + x́2ý2 + x́3 ý1

x́1ý2 + x́2 ý1

x́1ý1


Since det(Q1) = x́k

1 6= 0, det(Q2) = ýk
1 6= 0, therefore, det(Q1Q2) = x́k

1ýk
1 6= 0 implies

Q1Q2 ∈ Q.
2. Let Q1 ∈ Q, and det(Q1) = x́k

1 6= 0. Then,

Q−1
1 =



x́−1
1
0
0
...
0
0

x́−2
1 x́2
x́−1

1
0
. . .
0
0

x́−3
1 x́2

2 + x́−2
1 x́3

x́−2
1 x́2
x́−1

1
. . .
· · ·
· · ·

. . .

. . .

. . .
. . .

x́−1
1
0

x́k x́−2
1 + . . . + x́−k

1 x́k−1
2

...

...
x́−3

1 x́2
2 + x́−2

1 x́3
x́−2

1 x́2
x́−1

1


Since det

(
Q−1

1

)
= x́−k

1 6= 0, therefore Q−1
1 ∈ Q.
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3. Let Q1, Q2 ∈ Q. Then

Q1Q2 =



x́1

0

0
...
0

0

x́2

x́1

0
. . .
0

0

x́3

x́2

x́1

. . .
0

0

x́4

x́3

x́2

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
x́1

0

x́k

x́k−1

...
x́3

x́2

x́1





ý1

0

0
...
0

0

ý2

ý1

0
. . .
0

0

ý3

ý2

ý1

. . .
0

0

ý4

ý3

ý2

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
ý1

0

ýk

ýk−1

...
ý3

ý2

ý1



=



x́1 ý1

0

0
...
0

0

x́1ý2 + x́2ý1

x́1ý1

0
. . .
0

0

x́1 ý3 + x́2ý2 + x́3ý1

x́1 ý2 + x́2ý1

x́1ý1

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
x́1 ý1

0

x́1 ýk + x́2 ýk−1 + . . . + x́k−1 ý2 + x́k ý1

x́1ýk−1 + x́2ýk−2 + . . . + x́k−2ý2 + x́k ýk−1

...
x́1ý3 + x́2 ý2 + x́3 ý1

x́1 ý2 + x́2 ý1

x́1 ý1



=



ý1 x́1

0

0
...
0

0

ý1 x́2 + ý2 x́1

ý1 x́1

0
. . .
0

0

ý1 x́3 + ý2 x́2 + ý3 x́1

ý1 x́2 + ý2 x́1

ý1 x́1

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
ý1 x́1

0

ý1 x́k + ý2 x́k−1 + . . . + ýk−1 x́2 + ýk x́1

ý1 x́k−1 + ý2 x́k−2 + . . . + ýk−2 x́2 + ýk x́k−1

...
ý1 x́3 + ý2 x́2 + ý3 x́1

ý1 x́2 + ý2 x́1

ý1 x́1



=



y1

0

0
...
0

0

y2

y1

0
. . .
0

0

y3

y2

y1

. . .
0

0

y4

y3

y2

. . .
· · ·
· · ·

. . .

. . .

. . .

. . .
y1

0

yk

yk−1

...
y3

y2

y1





x́1

0

0
...
0

0

x́2

x́1

0
. . .
0

0

x́3

x́2

x́1

. . .
0

0

x́4

x́3

x́2

. . .

. . .

. . .

. . .

. . .

. . .

. . .
x́1

0

x́k

x́k−1

...
x́3

x́2

x́1


= Q2Q1

Hence it is proved that Q is an abelian subgroup of GL (k, R′n). �

The probability P′ that any matrix N ∈ GL(k, R′n) but does not exist in Q is

P′ = 1− φ(r)
r

, where r =
∣∣R′n∣∣

The following is the main scheme proposed in this article. Now we discuss Cryptosys-
tems 1 and 2 in detail.

Cryptsystem 1
Key Generation
1. Choose fixed prime number z = 2 and random number n such that r = zn, n ≥ 2.
2. Select random elements x1 ∈ R′∗n and xi ∈ R′n, where i = 2, 3, . . . , k.
3. Construct two matrices from these elements, such that L, M ∈ Q with L 6= M. If

either matrix is not in Q then repeat Step 2.
4. Define α, β two commutative inner product automorphisms of Mk(R′n).

α : A→ L−1 AL, β : A→ M−1 AM, ∀ A ∈ Mk
(

R′n
)

5. Compute another automorphism of Mk(R′n) by taking the composition of the above
two automorphisms,
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γ = α2β, ω = β2α γ : A→ (L2M)
−1

A
(

L2M
)

, ω : A→ (LM2)
−1

A
(

LM2
)

, ∀ A ∈ Mk
(

R′n
)

Since α and β commute, therefore γ and ω also commute, and we have

γ = αβ−1ω, ω = α−1βγ

Choose a random matrix T ∈ GL(k, R′n) such that T does not belong to Q, and then
calculate the public key

(
r, γ(T), ω

(
T−1)) and the private key (L, M).

Encryption
1. Choose the plaintext m ∈ Mk(R′n).
2. Now for each m, choose a unique random matrix Zm ∈ Q.
3. Define commutative inner product automorphism δ : A→ (Zm)−1 A(Zm), ∀ A ∈

Mk(R′n).
4. Calculate matrices δ(γ(T)), δ

(
ω
(
T−1)), and mδ(γ(T)).

5. Choose a random unit element u ∈ R′n∗ and calculate the ciphertext,

K = (K1, K2) =
(

uδ
(

ω
(

T−1
))

, u−1mδ(γ(T))
)

Decryption
Compute the plaintext matrix m = K2α β−1(K1).
Cryptsystem 2
Key Generation
1. Choose fixed prime number z = 2 and a random number n such that r = zn, n ≥ 2.
2. Select any random matrix A ∈ GL(k, R′n) such that detA ∈ R′∗n .
3. Now compute the matrices L = A2, M = A3, L2M, and LM2.
4. Choose a random matrix T ∈ GL(k, R′n). Define α, β two commutative inner product

automorphisms of Mk(R′n), α : A→ L−1 AL and β : A→ M−1 AM, where A ∈ Mk(R′n).
5. Define other automorphisms γ & ω,

γ = α2β, ω = αβ2

γ : A→ (L2M)
−1

A
(

L2M
)

, ω : A→
(

LM2
)−1

A
(

LM2
)

, ∀ A ∈ Mk
(

R′n
)
.

Since α and β commute, therefore γ and ω also commute, and we have

γ = αβ−1ω, ω = α−1βγ

Calculate the public key
(
r, LM, γ (T), ω

(
T−1)) and the private key (L , M).

Encryption
1. Choose the plaintext m ∈ Mk(R′n).
2. Now for each m, choose an arbitrary integer f ≥ 2, such that V = (LM) f .
3. Define automorphism δ : A→ (V)−1 A(V), where A ∈ Mk(R′n).
4. Calculate the matrices

(
δ(γ(T)), δ

(
ω
(
T−1))).

5. Choose a random unit element u ∈ R′n∗ and calculate the ciphertext

K = (K1, K2) =
(

uδ
(

ω
(

T−1
))

, u−1mδ(γ (T))
)

.

Decryption
Compute the plaintext matrix m = K2αβ−1(K1).

4. Illustration

Cryptsystem 1
Key generation
1. Select random integer k = 3, n = 8 and fixed number z = 2 such that r = 28 = 256.
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2. Choose random elements 1, w2 + w + 1 ∈ R′∗8 (diagonal entries of upper triangular
matrices L and M) and w + 1, w2, w, w2 + 1 ∈ R′8 (rest of entries of matrices).

3. Now the matrices L, M ∈ Q with L 6= M.

L =

 1 w + 1 w2

0 1 w + 1
0 0 1

, M =

 w2 + w + 1 w w2 + 1
0 w2 + w + 1 w
0 0 w2 + w + 1


4. Define two inner product automorphisms α and β of M3(R′8),

α : A→ L−1 AL, β : A→ M−1 AM, ∀ A ∈ M3
(

R′8
)

5. Now define other automorphisms γ & ω of M3(R′8),

γ = α2β, ω = β2α

γ : A→
(

L2M
)−1

A
(

L2M
)

, ω : A→
(

LM2
)−1

A
(

LM2
)

6. Select a random invertible matrix T ∈ Q ≤ GL(3, R′8),

T =

 1 w w2 + 1
w2 w + 1 w3

w3 + 1 w2 + w w


7. Calculate the matrices,

(
γ(T), ω

(
T−1)) = ((L2M

)−1
(T)
(

L2M
)
,
(

LM2)−1(T−1)(LM2))


 w7 + w6 + w5 + w4 + w3 + 1 w7 + w6 + w3 + w2 + 1 w6 + w5 + w4 + w3 + w2 + w + 1
w w7 + w5 + w4 + w2 + w w5 + w3

w3 + 1 0 w6 + w3 + w2 + w + 1

, w7 + w2 w7 + w5 + w4 w6 + w5 + w4 + w3 + w2 + w + 1
w6 + w3 + w2 w7 w7 + w6 + w3 + w2 + 1

w7 + w5 + w4 + w w7 + w3 w5 + w4 + w3 + w2 + w




8. The public key is

(
256, γ(T), ω

(
T−1)) and the private key is (L , M).

Encryption
1. Choose the plaintext m ∈ M3(R′8)

m =

 1 w w2

w3 w2 + 1 w
w2 1 w + 1



2. For each plaintext m, choose a unique matrix Zm =

 w w + 1 w2

0 w w + 1
0 0 w

 ∈ Q.

3. Define automorphism

δ : A→ (Zm)−1 A(Zm), ∀ A ∈ M3
(

R′8
)

4. Calculate
(
δ(γ(T)), δ

(
ω
(
T−1)))

 w7 + w5 + w + 1 w6 + w4 + w w5 + w4 + w2 + w
w7 + w3 + w2 + w + 1 w7 + w6 + w5 + w4 + w3 + w2 + w w5 + w4 + w

w3 + 1 w7 + w3 + w2 + 1 w6 + w4 + w3 + w2 + 1

, w7 + w4 + w2 + 1 w7 + w4 + w2 w7 + w4 + w3 + w2

w7 + w5 + w2 + w + 1 w5 + w4 + w3 w7 + w6 + w3 + 1
w7 + w5 + w4 + w w6 + w5 + w + 1 w7 + w4 + w2 + w + 1
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5. Now choose a unit element u = 1 + w + w2 and calculate the ciphertext

K = (K1, K2) =
(

uδ
(

ω
(

T−1
))

, u−1mδ(γ(T))
)



 w7 + w6 + w5 + w3 w7 + w6 + w5 + w3 + w2 + w + 1 w7 + w6 + w4 + w2 + w + 1
w6 + w5 + w4 + w2 + w w7 + w5 + w3 w6 + w5 + w4 + w3 + w2 + 1

w4 + w3 + w2 + 1 w5 + w3 w7 + w6 + w5 + w2 + w

, w7 + w2 + 1 w5 + w4 + w + 1 w7 + w6 + w4 + w2 + w + 1
w7 + w6 + w5 + w2 w5 + w4 + w2 w7 + w6 + w5 + w4 + w3 + w2 + 1

w7 + w5 + w4 + w + 1 w6 + w5 w7 + w6 + w4 + w3 + 1




Decryption

Compute the plaintext matrix m = K2αβ−1(K1) =

 1 w w2

w3 w2 + 1 w
w2 1 w + 1


Cryptosystem 2
Key generation
1. Select a random number k = 3, n = 8, and fixed number z = 2 such that r = 28 = 256.
2. Choose a random matrix A ∈ GL(3, R′8) such that detA ∈ R′

∗
8 .

A =

 1 w w2 + 1
w2 w + 1 w3

w3 + 1 w2 + w w


3. Calculate

L = A2 =

 w5 + w2 w4 + w3 + w w4 + w3 + w2 + w + 1
w6 w5 + w4 + w3 + w2 + 1 w4 + w3 + w2

w + 1 w4 + w2 w4 + w3 + 1



M = A3 =

 w7 + w5 + w3 + w + 1 w5 + w2 w6 + w4 + w3 + w
w6 + w3 w7 + w3 + w2 + w + 1 w7 + w4

w7 + w w6 + w5 + w3 + w2 w7 + w4 + w3 + w2 + 1


4. Choose a random invertible matrix T ∈ GL(3, R′8).

T =

 1 w w2

w3 w2 + 1 w
w2 1 w + 1


5. Define α, β inner product automorphisms of M3(R′8) as

α : A→ L−1 AL, β : A→ M−1 AM, ∀ A ∈ M3
(

R′8
)

6. Define other automorphisms γandω,

γ = α2β, ω = αβ2

γ : A→
(

LM2
)−1

A
(

L2M
)

, ω : A→
(

LM2
)−1

A
(

LM2
)

, ∀A∈ M3
(

R′8
)
.
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7. Calculate

γ(T) = (L2M)
−1T

(
L2M

)
=

 w7 + w6 + w4 w6 + w2 + w + 1 w7 + w5 + w4 + 1
w4 + w3 + w2 + w + 1 w5 + w3 + w w4 + w

w6 + w5 + w3 + w2 w7 + w6 + w5 + w4 + w3 + w + 1 w7 + w6 + w5 + w4 + w3 + w2 + 1


ω
(
T−1) = (LM2)−1

(T)−1(LM2)
=

 w7 + w6 + w5 + w3 + w2 + 1 w4 + w2 w6 + w4 + w2

w7 + w6 + w2 w6 + w5 + w3 w7 + w6 + w3

w6 + w4 + w2 + w w6 + w5 + w w7 + w5 + w4 + 1


LM =

 w5 + w4 + w3 + w2 w5 + w3 + w2 + w + 1 w6 + w5 + w3 + w + 1
w6 + w5 + w4 + w3 + w w7 + w6 + w4 + w3 + 1 w7 + w4 + w3

w7 + w6 + w5 + w2 + w + 1 w6 + w5 + w + 1 w3 + w2 + 1


8. The public key is

(
256, LM, γ(T), ω

(
T−1)) and the private key is (L, M).

Encryption
1. Select the plaintext m ∈ M3(R′8)

m =

 w w7 1
w2 + 1 w2 w5

w3 1 w + 1


2. Select unique random number f = 2, for each plaintext m and then compute matrix

V = (LM)2, w7 + w5 + w4 + w3 + w2 w5 w7 + w5 + w3 + w2

w7 + w6 + w3 + w2 + 1 w6 + w5 + w4 + w2 + w + 1 w3 + w2 + 1
w5 + w4 + w3 + w w7 + w5 + w2 + w w7 + w6 + w4 + w3 + w2 + w + 1


3. Define automorphism δ : A→ (V)−1(A)(V), ∀A ∈ M3(R′8).
4. Compute the matrices

(
δ(γ(T)), δ

(
ω
(
T−1)))



 w7 + w5 + w4 w7 + w4 + 1 w6 + w4 + w3 + w2 + 1
w7 + w6 + w5 + w3 w7 + w6 + w + 1 w6 + w + 1

w6 + w5 + w4 w6 + w2 w6 + w5 + w4 + w2

, w6 + w5 + w4 + w3 + 1 w4 w7 + w6 + w5 + w + 1
w7 + w2 + 1 w2 w4 + w3 + w2 + w

w6 + w5 + w2 + w + 1 w5 + w3 + w + 1 w6 + w3 + 1




5. Now choose a unit element u = 1 + w + w2 and calculate the ciphertext

K = (K1, K2) =
(

uδ
(

ω
(

T−1
))

, u−1mδ(γ(T))
)



 w6 + w5 + w3 + w2 + w w6 + w5 + w4 w6 + w5 + w3 + w + 1
w7 + w4 + w3 w4 + w3 + w2 w6 + w4 + w3 + w
w5 + w4 + w2 w7 + w6 + w4 + 1 w7 + w6 + w5 + w4 + w3 + w2 + w

, w4 + w2 + w + 1 w7 + w6 + w5 + w3 + w2 w7 + w6 + w3 + w2 + w + 1
w5 + w3 + 1 w7 + w6 + w2 + w w7 + w6 + w5 + w + 1
w7 + w4 + w w7 w7 + w6 + w4 + 1




Decryption
1. Compute the plaintext matrix

m = K2αβ−1(K1) =

 w w7 1
w2 + 1 w2 w5

w3 1 w + 1

.
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Theorem 1. The algorithm of Cryptosystems 1 and 2 are accurate.

Proof of Theorem 1. Since automorphisms in the proposed cryptosystems remain the
same, so its proof is similar to the original scheme. The commutative inner automorphisms
are defined in this article α : A→ L−1 AL, β : A→ M−1 AM, ∀ A ∈ M(k, R′n) , and an-
other automorphism of M(k, R′n) by taking the composition of above two automorphisms
γ = α2β : A→ (L2M)

−1 A
(

L2M
)
, ω = β2α : A→ (LM2)

−1 A
(

LM2). Since α and β com-
mute, therefore γ and ω also commute, and we have γ = αβ−1ω, ω = α−1βγ

K2αβ−1(K1) = (umδ(γ (T)))
(

αβ−1
(

u−1δ
(

ω
(

T−1
))))

=
(

uu−1mδ(γ (T))
)((

δ(αβ−1
(

ω
(

T−1
))))

= (mδ(γ(T)))
((

δ(γ
(

T−1
)))

, uu−1 = 1

=
(

mδ
(

γ
(

TT−1
)))

= (mδ(γ(I))) = (mδ(I)) = m(I) = m

�

Now, we illustrate the comparison of proposed and original schemes in Table 1. This
demonstrates that we compute different public keys from the same private keys in both
algebraic structures. Further detail is given in the security analysis section. (Note that we
can convert elements from R′8 to Z256 and vice versa).
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Table 1. Comparison of the proposed scheme and the original scheme.

Comparison of Proposed Scheme Original Scheme

Proposed Scheme Original Scheme

Local Ring R′8 Z256

Operation Polynomial addition and multiplication s.t
w8n = 1, w9n = w, w10n = w2, w11n = w3, w12n = w4, w13n = w5, w14n = w6, w15n = w7, n ∈ N Modulo addition and multiplication

Non-Commutative Group GL
(
3, R′8

)
GL(3,Z256)

Cryptsystem 1

Public-Key L =

 1 1 + w w2

0 1 1 + w
0 0 1

, M =

 1 + w + w2 w 1 + w2

0 1 + w + w2 w
0 0 1 + w + w2

 L =

 1 3 4
0 1 3
0 0 1

,

M =

 7 2 5
0 7 2
0 0 7



Private-Key

(
256, γ(T), ω

(
T−1))

256, w7 + w6 + w5 + w4 + w3 + 1 w7 + w6 + w3 + w2 + 1 w6 + w5 + w4 + w3 + w2 + w + 1
w w7 + w5 + w4 + w2 + w w5 + w3

w3 + 1 0 w6 + w3 + w2 + w + 1


 w7 + w2 w7 + w5 + w4 w6 + w5 + w4 + w3 + w2 + w + 1

w6 + w3 + w2 w7 w7 + w6 + w3 + w2 + 1
w7 + w5 + w4 + w w7 + w3 w5 + w4 + w3 + w2 + w





(
256, γ(T), ω

(
T−1))

256, 73 202 133
240 11 156
9 26 178


 95 166 87

187 252 96
155 153 207




Cryptsystem 2

Public-Key

A =

 1 w w2 + 1
w2 w + 1 w3

w3 + 1 w2 + w w


L =

 w5 + w2 w4 + w3 + w w4 + w3 + w2 + w + 1
w6 w5 + w4 + w3 + w2 + 1 w4 + w3 + w2

w + 1 w4 + w2 w4 + w3 + 1


M =

 w7 + w5 + w3 + w + 1 w5 + w2 w6 + w4 + w3 + w
w6 + w3 w7 + w3 + w2 + w + 1 w7 + w4

w7 + w w6 + w5 + w3 + w2 w7 + w4 + w3 + w2 + 1



A =

 1 2 5
4 3 8
9 6 2

,

L =

 54 38 31
88 65 60
51 48 97


M =

 229 152 124
120 219 56
92 60 65
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Table 1. Cont.

Comparison of Proposed Scheme Original Scheme

Proposed Scheme Original Scheme

Private-Key

(
256, γ(T), ω

(
T−1), LM

)

256, w7 + w6 + w4 w6 + w2 + w + 1 w7 + w5 + w4 + 1
w4 + w3 + w2 + w + 1 w5 + w3 + w w4 + w

w6 + w5 + w3 + w2 w7 + w6 + w5 + w4 + w3 + w + 1 w7 + w6 + w5 + w4 + w3 + w2 + 1

, w7 + w6 + w5 + w3 + w2 + 1 w4 + w2 w6 + w4 + w2

w7 + w6 + w2 w6 + w5 + w3 w7 + w6 + w3

w6 + w4 + w2 + w w6 + w5 + w w7 + w5 + w4 + 1

, w5 + w4 + w3 + w2 w5 + w3 + w2 + w + 1 w6 + w5 + w3 + w + 1
w6 + w5 + w4 + w3 + w w7 + w6 + w4 + w3 + 1 w7 + w4 + w3

w7 + w6 + w5 + w2 + w + 1 w6 + w5 + w + 1 w3 + w2 + 1





(
256, γ(T), ω

(
T−1), LM

)

256, 123 21 104
6 133 180

126 53 9

, 29 37 156
50 7 94
52 52 117

, 66 214 87
192 235 20
251 20 213
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5. Security Analysis of the Proposed Cryptosystem

The essence of every cryptosystem lies in its security. So, to find the efficiency of any
cryptosystem, security analysis plays a fundamental role in this aspect. Now we discuss
some attacks. The proposed scheme has the potential to resist these attacks effectively.

5.1. Ciphertext-Only Attack

Suppose
(
r, γ(T), ω

(
T−1), K1, K2

)
information is known to the adversary, and he

wants to compute the message m by using a ciphertext-only attack, as done by
Jianwei Jia et al.’s [14] for Zn. First of all, the attacker finds out the invertible element
u ∈ R′∗n by det(K1) = (u)2det

(
ω
(
T−1)), ∀ K1 (Note inverse of R′n is hard to compute as

compare with Zn, since the square root of polynomials makes this step laborious for the
attacker). Now, the cryptanalyst solves the system of homogeneous linear equations,

(Zm)K1 = uω
(

T−1
)
(Zm) (1)

After solving the system of Equation (1), he can compute the unknown matrix
Zm = Zm

o for each u = u0. Finally, he solves the system (2) and decrypts the corre-
sponding message m = mo.

m0 = u0K2(Zm
o )
−1γ(T)−1Zm

o (2)

(Note that here, the systems consist of the polynomial matrices from GL(k, R′n) since
equations have become nonlinear, so it becomes hard to find an unknown matrix Zm

o
for a large value of k. However, the attacker can easily compute this system in Zn. On
the other hand, if an attacker tries to compute the system in Zn by converting the given
information from R′n to Zn, it does not work because the public key generated in both
cryptosystems differ and the attacker fails to compute m as demonstrate in comparison
Table 1 for R′8 and Z256).

The cryptanalyst gets φ(r)rk−1 possibilities of Zm since he has φ(r) possibilities of
diagonal entry and rk−1 possibilities rest of upper diagonal entries of Zm. Hence, it is
clear that it becomes infeasible for the attacker to decrypt the plaintext for a large value of
r and k.

5.2. Known-Plaintext Attack

In this case, the adversary gets access to some of the plaintext m and its ciphertext K.
He fails to reveal any information about the key. Because for each plaintext m, we choose
a unique matrix Zm, the cryptanalyst wants to find out all pairs (m, Zm), but, in this case,
he cannot find a new pair from the known information. Hence the attacker is not able to
retrieve any information and is incapable of this attack.

5.3. Chosen-Ciphertext Attack and its Prevention

Suppose Alice wants to send a message m to Bob. She decrypts the message m
and finds the ciphertext K = (K1, K2). The attacker intercepts during the communication
and gets access to ciphertext K. He selects a random matrix

..
m ∈ GL(k, R′n) and sends

K∗ =
(
K1,

..
m K2

)
to Bob. Now Bob deciphers the false ciphertext K∗ and computes a new

plaintext m∗ = mK∗. The cryptanalyst uses this information and finds the original message
m successfully. ( ..

m
)−1( ..

mm
)
= m

To protect the cryptosystem from this type of attack, one must replace the one-sided ci-
phertext with the two-sided ciphertext text. Now replace the ciphertext,
K1 = u(Zm)−1(ω(T−1))Zm, K2 = (u−1)

2
(Zm)−1(γ(T))Zm (m) (Zm)−1(γ(T))Zm. In

this case, one can decrypt the message by calculating m = αβ−1(K1)K2αβ−1(K1) since



Symmetry 2021, 13, 45 13 of 13

the matrices Zm and m do not commute in general. Hence this attack is inefficient in
this scenario.

6. Conclusions

In this article, asymmetric cryptosystems of [13] have been generalized and the residue
ring has been replaced by a finite chain ring. The local ring Zn resulted in the insecurity
of the cryptosystem, as inferred by Jianwei Jia et al.’s [14] in their cryptoanalysis of the
original scheme. It can be anticipated that the security of the proposed algorithm increased
compared to the original one for various attacks. The finite local ring R′n enhances the
complexity of algorithms in a way that it becomes laborious for the attacker to decrypt it.
Hence, it maximizes the computational security of the cryptosystem. The chain ring has
the potential to resist the attacks and both cryptosystems are invulnerable in a sense that
attackers unable to solve the system of equation in R′n for large values of n and k. The use
of a binary field in the local ring R′n avoids the exponentiation approach, which makes it
efficient to use in various applications.
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