
symmetryS S

Article

Effectiveness of Focal Loss for Minority Classification in
Network Intrusion Detection Systems

Mulyanto Mulyanto * , Muhamad Faisal , Setya Widyawan Prakosa and Jenq-Shiou Leu

����������
�������

Citation: Mulyanto, M.; Faisal, M.;

Prakosa, S.W.; Leu, J. Effectiveness of

Focal Loss for Minority Classification

in Network Intrusion Detection

Systems. Symmetry 2021, 13, 4. https://

dx.doi.org/10.3390/sym13010004

Received: 30 November 2020

Accepted: 19 December 2020

Published: 22 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan; d10802803@mail.ntust.edu.tw (M.F.); d10702804@mail.ntust.edu.tw (S.W.P.);
jsleu@mail.ntust.edu.tw (J.-S.L.)
* Correspondence: d10602813@mail.ntust.edu.tw

Abstract: As the rapid development of information and communication technology systems offers
limitless access to data, the risk of malicious violations increases. A network intrusion detection
system (NIDS) is used to prevent violations, and several algorithms, such as shallow machine learning
and deep neural network (DNN), have previously been explored. However, intrusion detection with
imbalanced data has usually been neglected. In this paper, a cost-sensitive neural network based
on focal loss, called the focal loss network intrusion detection system (FL-NIDS), is proposed to
overcome the imbalanced data problem. FL-NIDS was applied using DNN and convolutional neural
network (CNN) to evaluate three benchmark intrusion detection datasets that suffer from imbalanced
distributions: NSL-KDD, UNSW-NB15, and Bot-IoT. The results showed that the proposed algorithm
using FL-NIDS in DNN and CNN architecture increased the detection of intrusions in imbalanced
datasets compared to vanilla DNN and CNN in both binary and multiclass classifications.

Keywords: deep learning; neural networks; intrusion detection; imbalanced datasets; minority classification

1. Introduction

The recent rapid development of information and communication technology systems
that offers limitless access to data has been changing internet behavior. As huge amounts of
data are accessed by internet users in a relatively short time, the risk of malicious violations,
such as unauthorized access to the network, increases. A network intrusion detection
system (NIDS) is used to prevent unauthorized access. It is able to aid abnormal traffic
diagnosis and predict the type of attack in the network. In addition, NIDS is robust to the
rapid changes of attack classes. The robustness of NIDS largely affects the effectiveness
of intrusion detection. NIDS works by analyzing and classifying the passing traffic data.
Once the attack is identified, NIDS classifies the type of attack. Traditional approaches
have been employed to identify and classify the type of attack using shallow machine
learning methods, such as support vector machine, decision tree, and naïve Bayes [1–3].
The effectiveness of the approaches has been evaluated using several benchmark datasets,
such as KDD99 and Tokyo2016+, and they have obtained an intrusion detection accuracy
of up to 97.41%. In addition, due to its increasing popularity in recent years, the neural
network model has gained attention as an alternative to NIDS [4–8]. Neural network
models, such as convolution neural network (CNN), recurrent neural network, and deep
neural network (DNN), have been evaluated and applied to benchmark datasets. The deep
model can obtain an intrusion detection accuracy of up to 99%, which is higher than that of
shallow machine learning.

Despite the high accuracy obtained by shallow machine learning and deep neural
network, NIDS models suffer high false-positive alarm rates and lower intrusion detection
rates due to imbalanced datasets [9]. The data imbalance problem in datasets refers to the
condition in which the distribution of classes is underrepresented. This condition occurs
when one majority class is significantly outnumbered compared to the minority class,
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and the ratios can reach 1:100, 1:1000, or higher [10,11]. For instance, we have previously
evaluated three benchmark NIDS real-world datasets: NSL-KDD [12], UNSW-NB15 [13],
and Bot-IoT [14]. Figure 1 visualizes the distribution of each dataset. As can be seen, all
suffer from high-class imbalance. The imbalance ratio reaches 1:534 between the majority
and minority classes in the UNSW-NB15 dataset, while the highest imbalance ratio suffered
by Bot-IoT is 1:26,750. Table 1 shows a complete description of the three benchmark datasets.
This significant ratio of classes may mislead and bias the NIDS model during intrusion
detection. Therefore, the minority class is not adequately learned, even in binary-class
problems or multiclass classification [15–17].
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Table 1. Index ratio (IR) of datasets.

Dataset Class Features Data Size * Max Class Size Min Class Size IR Major-
ity/Minority

IR
Majority/Rest

NSL-KDD 5 41 148,517 77,054 119 647.51 1.08
UNSW-NB15 10 42 257,673 93,000 174 534.48 0.56

Bot-IoT 5 15 1,782,280 936,264 35 26,750.4 1.9

* After preprocessing.

Typically, there are two commons techniques when dealing with the imbalanced data
problem: the data level technique and the algorithm level technique [18]. The data level
technique focuses on manipulating an imbalanced dataset to balance the distribution of the
classes. The dataset is modified by adding repetitive data (oversampling) for the minority
class and removing data (undersampling) for the majority class [19,20]. The most popular
algorithm that uses the data level technique to cope with imbalanced data is the synthetic
minority oversampling technique (SMOTE) [21]. SMOTE works by generating synthetic
data via oversampling of the minority class in its feature space interpolation. The minority
class is oversampled in the region of the line segment between the samples by utilizing
k-nearest neighbors. The number of generated samples depends highly on the imbalanced
dataset, and the samples are used to balance the dataset. On the other hand, an algorithm
level technique modifies cost matrices using cost-sensitive learning to misclassify the data
sample [10,22]. Cost-sensitive learning mainly focuses on the misclassified minority by
directly modifying the reweighting value in the learning procedures. The learning costs
are represented as a cost matrix to evaluate the ability of a trained network so that mis-
classification is reduced [23]. Moreover, in cost-sensitive learning, more attention is given
to the existing algorithm by weighting the minority class [24]. In the evaluation of imbal-
anced datasets, the neural network tends to misclassify the majority samples with high
average classification accuracy [25]. To overcome this issue, cost-sensitive learning based
on cross-entropy (CE) is preferable for training the neural network. Recently, a method that
enhances cross-entropy, termed focal loss, has been emerging as an alternative candidate to
improve performance [26–30]. Specifically, the authors of [30] performed a methodology to
improve the performance of the deep learning technique using a focal loss neural network.
The idea was proven feasible in machine vision and performed better than conventional
cross-entropy. In summary, learning using an imbalanced dataset requires different han-
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dling techniques. Empirical study shows that some conventional handling techniques that
are feasible for applying to a balanced dataset might obtain high misclassification costs
when imbalanced datasets are used. As we know, in the real environment, data handled
by machine learning is always in an imperfect form, i.e., they are examples of imbalanced
data. Therefore, it is necessary to investigate a scheme to address this phenomenon.

The realm of intrusion detection has been studied extensively by many researchers.
Vinayakumar et al. [4,6] proposed DNN using cross-entropy (DNN CE) and CNN using
cross-entropy (CNN CE) to address the imbalance problem. Our preliminary results
using the algorithms showed that both DNN CE and CNN CE could be successfully
implemented in the datasets. However, even though both algorithms achieved good
accuracy, they continued to suffer from the imbalance problem, as shown by the F1 score.
In our preliminary results, we also utilized SMOTE to cope with the imbalance problem [21].
SMOTE is used for balancing the majority and minority classes and intended to address the
class imbalance. By combining DNN and CNN, SMOTE (DNN SMOTE and CNN SMOTE,
respectively) was successfully implemented and achieved good accuracy. However, the F1
score was lacking. This means that addition of the data preprocessing step resulted in
imbalance. In the end, we used an improved classification model for the intrusion detection
system, termed the focal loss network intrusion detection system (FL-NIDS), to address
the class imbalance in NIDS. Deep neural network and convolutional neural network
layers were utilized to compare the performance of the system with previous research
results. The effectiveness of FL-NIDS was analyzed using three benchmark datasets: NSL-
KDD, UNSW-NB15, and Bot-IoT. In conclusion, the paper’s contributions are as follows:
(i) proposing a loss function modification based on focal loss to solve the imbalanced data
problem; (ii) comparing the performance of the proposed method with common methods
using imbalanced datasets; and (iii) empirically testing the system with real-world datasets
to validate the proposed model. The rest of the paper is organized as follows. Section 2
presents detailed research related to the development of the proposed method. Section 3
defines the methodology and the proposed model. Section 4 explores some observations
on the proposed model and discusses the accuracy of the proposed method compared to
existing neural network models, such as vanilla deep neural network, vanilla convolutional
neural network, and SMOTE, on three different datasets. Section 5 concludes the paper.

2. Related Work

Shallow machine learning algorithms, which include support vector machine, decision
tree, and naïve Bayes, have been evaluated in NIDS and proven to be feasible solutions
to the intrusion detection problem [1–3]. Due to the emergence of deep neural network
algorithms in recent years, attention has automatically shifted to new algorithms that
offer limitless exploration abilities but are complex. Vinayakumar et al. [6] evaluated the
effectiveness of shallow machine learning algorithms and deep neural networks. The au-
thors concluded that deep neural network performed well in most experimental scenarios
because the information in the network was learned by the distinguished pattern of several
layers. Another discussion that compared shallow machine learning and deep neural
networks was presented by Hodo et al. [9]. The authors showed that deep neural net-
work outperformed shallow machine learning in attack detection. Various CNN and long
short-term memory (LTSM) deep neural network architectures were evaluated by Roopak
et al. [31]. The authors concluded that the deep neural network combination of CNN +
LTSM performed well and obtained the highest accuracy of 97.16%. These previous studies
have shown that, in general, deep neural network performs better than shallow machine
learning. However, the imbalanced data case that is encountered in real-world datasets is
neglected.

The imbalanced data case refers to the problem where the distribution of the dataset
is significantly underrepresented. Some attempts to improve imbalanced datasets have
been made. Sun et al. reviewed some methods that were able to overcome an imbalanced
dataset [11]. The methods included data level and algorithm level solutions. Furthermore,
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evaluation of the matrix was used to measure the effect on imbalanced datasets. Heibo com-
pared some approaches to solve the imbalanced data problem and recommended several
approaches from both the data level and algorithm level [10]. Chawla et al. conducted an
experiment using an oversampling approach for an imbalanced dataset [21]. They utilized
SMOTE, and the results showed that the method improved accuracy. However, despite
SMOTE obtaining higher accuracy, the algorithm required huge computation time. Works
applying algorithms to imbalanced datasets have also been conducted. The typical ap-
proach is to utilize cost-sensitive learning. Elkan presented a concept to optimize a neural
network [32]. The concept utilized the neural network to prevent and minimize the mis-
takes of different misclassification errors caused by different losses. The paper proposed
and formulated cost-sensitive learning to optimize the proportion of negative and positive
training. Wang et al. examined the ability of a neural network to overcome an imbalanced
dataset [33]. Despite obtaining high accuracy, the deep neural network did not achieve
high precision. The research proved that an improvement of the cost learning rate in a
neural network contributed to higher precision. Another research conducted by Cui et al.
assessed the combination of cost-sensitive learning cross-entropy with focal loss [26].

Focal loss is able to counter extreme foreground–background class imbalances [27].
This study reshaped the typical cross-entropy loss so that the loss assigned to the classified
sample was reduced. Focal loss is interested in a sparse set of hard samples during training
and prevents the majority class from inundating the detector. In the area of machine
vision, focal loss is utilized to detect characters in random images [28]. This research was
conducted on text recognition from images. The evaluation of the benchmark dataset
showed that the focal loss detector performed better, with the accuracy increasing by 2.5%
compared to the focal lossless algorithm. Nemoto et al. observed rare building changes by
employing a CNN based on focal loss. Building changes is categorized as a rare positive
case as building construction in rural areas is limited. The experiment showed that the
application of focal loss was effective for detecting rare problems, and the model avoided
overfitting.

3. Methodology
3.1. Oversampling for Imbalanced Datasets

The data level technique, which compensates imbalanced datasets, focuses on mod-
ifying the minority class (oversampling) and the majority class (undersampling). Over-
sampling refers to modifying the data distribution so that the appearance of samples is
based on the calculated cost. In other words, this technique duplicates higher-cost training
data until the data distribution is proportional to their costs. To address the imbalanced
data case, Chawla et al. introduced SMOTE, an oversampling technique that generates
synthetic samples of the minority class [21]. The method utilizes linear interpolation in the
region of the minority class sample so that new synthetic samples are generated. Based on
the required oversampling rate, the neighbors from the k-nearest neighbors are randomly
chosen. SMOTE is effective at enhancing the ability of a neural network to map the mi-
nority class features [15,16,19]. In NIDS, a neural network with the SMOTE approach
is evaluated using imbalanced datasets and can significantly improve the accuracy and
harmonic mean [4,5,8].

3.2. Cost-Sensitive Neural Network

A deep neural network utilizes a loss function to optimize the parameters. Typically,
the loss function assigns the cross-entropy, which uses the sigmoid function to classify
the binary class and the softmax function to conduct multiclass classification. The typical
cross-entropy loss used for classification is mathematically defined as follows:

CE(p, y ) =

{
− log(p) i f y = 1
− log(1− p) otherwise

(1)
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y ∈ {±1} denotes the ground-truth class and p ∈ [0,1] refers to the model’s estimated
probability for the class with label y = 1. More concisely, we calculate pt as follows:

pt =

{
p i f y = 1

1− p otherwise
(2)

On an imbalanced dataset, a large class overwhelms the loss and dominates the
gradient. If CE (pt) = CE (p,y), αt is balancing the importance of positive and negative
examples. Lin et al. [27] modified cross-entropy loss by adding a modulating factor (1− pt)γ

with tunable focusing parameter γ ≥ 0, which is termed focal loss. Formally, focal loss is
expressed as follows:

FL(pt) = − αt(1− pt)
γ log(pt) (3)

where γ denotes a prefixed positive scale value and

αt =

{
α i f y = 1

1− α otherwise
(4)

A combination of the cross-entropy and the modulating factor (1 − pt)ˆγ is used as it
yields better accuracy, as mentioned in Equation (1). Figure 2 [27] shows the comparison
between the cross-entropy γ = 0 and the focal loss. The weight term αt(1− pt)

γ is inversely
proportional and dependent on the value of pt.
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3.3. Applying a Focal Loss Network Intrusion Detection System

Focal loss is emerging as one of the cost-sensitive learning methods that balances cross-
entropy loss so that the hard negative examples, including rare classes, are learned [27–29].
The authors verified the capability of focal loss in a detection process considering imbal-
anced classes. Focal loss is proposed to address imbalanced classes by reshaping and
modifying the standard cross-entropy based on the loss function to obtain better classifi-
cation. Focal loss is applied to solve this imbalanced data issue in computer vision and
achieves excellent performance. However, the effectiveness of focal loss is not limited to
the detection task. Regardless of the number of classes and the task, adjusting the learning
according to the difficulty of samples is considered to be effective [29].

In this paper, we propose FL-NIDS, which can be applied in deep neural network and
convolutional neural network, to overcome the imbalanced NIDS problem. Focal loss was
utilized as a loss function on the output of the classification subnet. The architecture of
deep neural network is shown in Figure 3a, and the architecture of convolution neural
network is shown in Figure 3b. The deep neural network included three layers: DNN
layer 1, DNN layer 2, and DNN layer 3. Each layer included one dense layer followed
by a dropout layer and softmax layer for multiclass classification and a sigmoid layer for
binary classification. Table 2 shows the full description of DNN. Another algorithm, CNN,
was introduced with three layers: CNN layer 1, CNN layer 2, and CNN layer 3. Each
layer included a 1D convolutional layer with a filter size of three. Every two layers were
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normalized using 1D MaxPooling with a filter size of two, which was followed by a dropout
layer with a rate of 0.2. Table 3 shows the full description of CNN. Hyperparameter tuning
was utilized using a batch size of 64. The Adam optimizer with a learning rate of 0.0001
and decay of 0.004 was used. The training included 250 epochs with an option to stop
using the early stopping parameter of 25. To show the effectiveness of FL-NIDS, several
algorithms, such as SMOTE as well as CNN and DNN with cross-entropy, were compared.
In this experiment, we referred to Lin et al. [27] to set the focal loss parameters as γ = 2
and α = 0.25.
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Figure 3. Architecture of (a) convolutional neural network (CNN) and (b) deep neural network (DNN).

Table 2. Configuration of the DNN model.

Layers Type Shape Output Activation Explain

0–1 Dense (None, 512) ReLU

1–2 Dense (None, 256) ReLU

2–3 Dropout (0.01) (None, 256)

3–4 Dense (None, 128) ReLU

4–5 Dropout (0.01) (None, 128)

5–6 Dense
(None, 5)

Softmax/Sigmoid
NSL-KDD

(None, 10) UNSW-NB15
(None, 13) Bot-IoT
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Table 3. Configuration of the CNN model.

Layers Type Shape Output Activation Explain

0–1 Conv1D (None, 256) ReLU

1–2 Conv1D (None, 128) ReLU

2–3 MaxPooling1D (None, 128)

3–4 Conv1D (None, 64) ReLU

4–5 MaxPooling1D (None, 64)

5–6 Dense (None, 128)

6–7 Dropout(0.2) (None, 128)

7–8 Dense
(None, 5)

Softmax/Sigmoid
NSL-KDD

(None, 10) UNSW-NB15
(None, 13) Bot-IoT

3.4. Evaluation Matrics

Evaluation metrics assess the performance of the classifier. In classification problems,
assuming that class “M” is the observed minority, the possibility of detecting class “M” is
based on the following widely used confusion matrix, which is shown in Table 4. The term
true positive (TP) refers to correctly predicted values “M”, which means that the value of
the actual class is “M”. True negative (TN) correctly predicts the values “not M”, which
means that the value of the actual class is “not M”. False positive (FP) and false negative
(FN) values occur when the actual class contradicts the predicted class.

Table 4. Confusion matrix for classifying “M”.

Predicted True Class “M” Predicted Class “not M”

Actual class “M ” True positive (TP) False negative (FN)

Actual class “not M” False positive (FP) True negative (TN)

It is common to measure the classification performance using a confusion matrix,
especially the current one. Typically, accuracy is most commonly utilized. Accuracy is the
number of correct predictions compared to all predictions made. However, accuracy is only
suitable when the data distribution is balanced. When the classes are imbalanced, accuracy
is not the favored method as the minority class is overwhelmed and the accuracy sums up
all correct predictions from the total population. This could be misleading when the data
is presented. In this case, metrics such as precision and recall are good at showing how
a classifier performs with respect to the minority class. Precision and recall can indicate
the model that catches the greatest number of instances of the minority class, even if it
increases the number of false positives. The method with high precision/recall will possess
the best potential to represent the minority. The accuracy, precision, and recall of the two
classes can be computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2
Precision× Recall
Precision + Recall

(8)
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When classification is conducted on multiple classes, a confusion matrix class label can
be produced for every single class. The precision, recall, and F1 score are calculated for
each class. Further, the scoring metrics via one vs. all classification could be utilized. They
include both the microaveraged and macroaveraged results [34]. The microaverage focuses
on the weight of each number of true instances, and the macroaverage is interested in the
weight of each class. The microaverage and macroaverage of the precision score in a k-class
are defined as follows:

Precisionmicro =
TP1 + · · ·+ TPk

TP1 + · · ·+ TPk + FP1 + · · ·+ FPk
(9)

Precisionmacro =
PRE1 + · · ·+ PREk

k
(10)

4. Experiment and Performance Evaluation
4.1. Description of Network Intrusion Detection System Datasets

The benchmark datasets for NIDS are currently limited. Most of them are internal
network simulations based on traffic and attack data simulations. This research utilized
three benchmark datasets for NIDS: NSL-KDD, UNSW-NB15, and Bot-IoT. They were
consistently utilized to evaluate the effectiveness of machine learning algorithms.

NSL-KDD: This dataset is the updated version of KDDCup99 that removes the redun-
dant data and invalid records. This clean version prevents the machine learning algorithm
from being biased during the training data phase. The dataset typically includes the con-
nection information with 41 features and its associated labels, and there are five categories
of labels: normal, DoS (denial of service), R2L (unauthorized access from a remote ma-
chine), U2R (unauthorized access to local root privileges), and probing (surveillance and
other probing).

UNSW-NB15: This dataset is formed from a network simulation. The simulation is
established by creating a network that consists of a server and router. The server generates
simulated traffic data, including normal data traffic and malicious data. The router captures
the simulated traffic data. The dataset consists of 10 classes and 42 features.

Bot-IoT: This new NIDS dataset covers all 11 typical updated attacks, such as DoS,
distributed denial of service (DDoS), reconnaissance, and theft. Bot-IoT2019 contains a
large number of traffic packets and attack types that has occurred over five consecutive
days. The whole dataset encompasses 3,119,345 instances and 15 features containing five
class labels (one normal and four attack labels).

4.2. Environment

The experiment was run on Ubuntu 18.04 LTS. Deep neural network was implemented
using GPU TensorFlow and Keras as a higher-level framework. A Nvidia GeForce RTX2080
11 GB was installed on a computer containing an Intel® Xeon® CPU E5-2630 v4 @2.20 GHz
CPU and 128 GB of DDR4 RAM.

4.3. Discussion

Imbalanced dataset has a huge influence on the ability of neural networks during
training. The influence, which is affected by the majority class, is reflected by the late
convergence of the loss function during the training process as the model sums the losses
of all the large classes and rarely focuses on the minority class. By adding focal loss to
cross-entropy loss, it reduces the large class contribution and extends the range to access
the minority class. In this experiment, we compared and examined the cross-entropy of
DNN using cross-entropy (DNN CE) from reference [6], CNN using cross-entropy (CNN
CE) from reference [4], DNN using SMOTE (DNN SMOTE) from reference [21], and CNN
using SMOTE (CNN SMOTE) from reference [21]; for DNN and CNN, focal loss with
È = 2.0 and α = 0.25 was used following reference [27]. Figure 4a,b shows the loss function
compared to DNN and the loss function compared to CNN using the respective techniques.
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Both models that utilized focal loss converged faster compared to DNN CE, CNN CE,
DNN SMOTE, and CNN SMOTE. In addition, the proposed model obtained minimum
loss errors that were 7 times better for the DNN architecture and 3.7 times better for the
CNN architecture than CNN SMOTE. It also had better generalizability, as shown by the
validation losses. The detailed loss error and loss validation are shown in Table 5.

1 
 

 
Figure 4. Loss function comparison. (a) deep neural network (DNN) model. (b) convolutional neural network (CNN) model.

Table 5. Loss error and loss validation for CNN and DNN.

Method Loss Loss Validation

DNN

DNN CE [6] 0.00590 0.00526

DNN SMOTE [21] 0.00334 0.00737

FL-NIDS (È= 2.0, α = 0.25) 0.00048 0.00043

CNN

CNN CE [4] 0.00819 0.00842

CNN SMOTE [21] 0.00532 0.01351

FL-NIDS (È= 2., α = 0.25) 0.00142 0.00129

In terms of accuracy, the performance of FL-NIDS applying the DNN and CNN archi-
tecture was comparable to DNN CE, DNN SMOTE, CNN CE, and CNN SMOTE. Detailed
accuracy results for the binary and multiclass classification using FL-NIDS are given in
Tables 6 and 7, respectively. The results showed that the accuracy was equally distributed,
implying that the techniques are comparable to each other. The accuracy distribution
of the NSL-KDD and UNSW-NB15 datasets were located approximately 77–89% in the
binary classification and located slightly lower at approximately 66–78% in the multiclass
classification. The opposite occurred in the Bot-IoT dataset. The accuracy distribution was
located approximately 75–89% in the binary classification and located slightly higher at
approximately 98–99% for the multiclass classification. In more detail, in the binary classifi-
cation and multiclass classification using the DNN architecture, FL-NIDS outperformed
DNN CE by a maximum of 5% in three layers using the Bot-IoT dataset. However, in some
cases, FL-NIDS also surpassed the accuracy of DNN CE and DNN SMOTE. In the CNN-
based architecture, FL-NIDS obtained even better accuracy by outperforming CNN CE
and CNN SMOTE by a maximum of 2%. However, in some cases, FL-NISD also surpassed
the accuracy of both of them. This result indicates that FL-NIDS has effective binary and
multiclass classification performance and is able to classify potential future threats.
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Table 6. The accuracy comparison of the DNN architecture.

Method
NSL-KDD UNSW-NB15 Bot-IoT

Accuracy Accuracy Accuracy

Binary Classification

Layer 1

DNN CE [6] 0.8112 0.8546 0.893

DNN SMOTE [21] 0.8248 0.8817 0.8826

FL-NIDS (Ours) 0.8141 0.8591 0.8446

Layer 2

DNN CE [6] 0.8061 0.8581 0.781

DNN SMOTE [21] 0.8304 0.8581 0.7935

FL-NIDS (Ours) 0.8247 0.8661 0.7952

Layer 3

DNN CE [6] 0.8074 0.8607 0.7837

DNN SMOTE [21] 0.8195 0.8797 0.7815

FL-NIDS (Ours) 0.8395 0.8604 0.7529

Multiclass Classification

Layer 1

DNN CE [6] 0.7472 0.729 0.9818

DNN SMOTE [21] 0.7548 0.6642 0.9844

FL-NIDS (Ours) 0.7463 0.7228 0.986

Layer 2

DNN CE [6] 0.7484 0.7565 0.997

DNN SMOTE [21] 0.7335 0.7565 0.9972

FL-NIDS (Ours) 0.7527 0.7436 0.9971

Layer 3

DNN CE [6] 0.7672 0.7521 0.9978

DNN SMOTE [21] 0.7597 0.6757 0.998

FL-NIDS (Ours) 0.7513 0.7339 0.9983

Table 7. Accuracy comparison of the CNN architecture.

Method NSL-KDD UNSW-NB15 Bot-IoT

Binary Classification

Layer 1

CNN CE [4] 0.8338 0.8673 0.7921

CNN SMOTE [21] 0.8302 0.884 0.7938

FL-NIDS (Ours) 0.8334 0.8785 0.7832

Layer 2

CNN CE [4] 0.8369 0.8573 0.8029

CNN SMOTE [21] 0.8208 0.8926 0.8029

FL-NIDS (Ours) 0.8513 0.8772 0.7987

Layer 3

CNN CE [4] 0.8369 0.8697 0.9419

CNN SMOTE [21] 0.8334 0.8132 0.7966

FL-NIDS (Ours) 0.8489 0.8673 0.956

Multiclass Classification

Layer 1

CNN CE [4] 0.7651 0.729 0.9944

CNN SMOTE [21] 0.7691 0.6642 0.9939

FL-NIDS (Ours) 0.7737 0.7228 0.9943

Layer 2

CNN CE [4] 0.7841 0.7565 0.9973

CNN SMOTE [21] 0.7405 0.6595 0.9958

FL-NIDS (Ours) 0.7833 0.7436 0.9959

Layer 3

CNN CE [4] 0.7606 0.7521 0.9968

CNN SMOTE [21] 0.7547 0.6603 0.9969

FL-NIDS (Ours) 0.7526 0.7339 0.9945
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We have shown that accuracy for FL-NIDS is equal to the CE model and SMOTE model.
However, accuracy alone cannot represent detection of the minority class. According to
Equation (1), the accuracy only compares the positive detection of every class with respect
to the total dataset. Therefore, when there is a change in the detection of the minority
class, the detection does not affect the whole accuracy and tends to be ignored. We used
precision, recall, and F1 score to assess the detection for imbalanced datasets. As shown
in Equation (2), precision quantifies the exactness of the correctly labeled class. Precision
focuses on the ratio of positive detections to the detection of each class, and it will be
affected when there is a change in the minority class. Recall measures the sensitivity
or correctly labeled positive classes. Recall is affected by the sensitivity of the model to
negative detection errors. The F1 score is the average of precision and recall and measures
the balance of precision and recall.

Detailed results of the DNN and CNN experiments using precision, recall, and F1
score are shown in Tables 8 and 9, respectively. In the shallow layer (layer 1), the precision
of FL-NIDS was poor compared to the other algorithms. However, as the number of
layers increased, the precision of FL-NIDS was superior to the other models. It is obvious
that FL-NIDS works best at a deep layer [27]. In the deep model (layer 3), FL-NIDS
outperformed the other models by 3% with the DNN architecture and 12% with the CNN
architecture.

Table 8. The binary classification of DNN.

Method
NSL-KDD UNSW-NB15 Bot-IoT

Prec Recall F1 Score Prec Recall F1 Score Prec Recall F1 Score

Layer 1
DNN CE [6] 0.8269 0.827 0.8112 0.8728 0.8429 0.8485 0.8976 0.8981 0.893

DNN SMOTE [21] 0.8233 0.8294 0.8237 0.8838 0.8772 0.8796 0.8951 0.8901 0.8825

FL-NIDS (Ours) 0.8261 0.8282 0.8141 0.8766 0.8479 0.8535 0.8639 0.8538 0.8442

Layer 2
DNN CE [6] 0.8241 0.8228 0.8061 0.8759 0.8467 0.8523 0.8358 0.7963 0.7769

DNN SMOTE [21] 0.8334 0.8394 0.8299 0.8759 0.8467 0.8523 0.8377 0.8072 0.7906

FL-NIDS (Ours) 0.8352 0.8382 0.8247 0.8821 0.8555 0.861 0.8399 0.809 0.7924

Layer 3
DNN CE [6] 0.8198 0.8216 0.8074 0.8776 0.8497 0.8552 0.8101 0.7946 0.7823

DNN SMOTE [21] 0.8228 0.8286 0.8191 0.8805 0.8761 0.8778 0.8289 0.7958 0.7781

FL-NIDS (Ours) 0.8447 0.8502 0.8392 0.9066 0.9082 0.9041 0.8399 0.809 0.7924

Table 9. The binary classification of CNN.

Method
NSL-KDD UNSW-NB15 Bot-IoT

Prec Recall F1 Score Prec Recall F1 Score Prec Recall F1 Score

Layer 1
CNN CE [4] 0.8421 0.8463 0.8337 0.8867 0.8559 0.8618 0.8151 0.8022 0.7911

CNN SMOTE [21] 0.8283 0.8343 0.829 0.8866 0.8792 0.8818 0.8277 0.806 0.7919

FL-NIDS (Ours) 0.8429 0.8465 0.8333 0.8921 0.8691 0.8744 0.8184 0.7956 0.781

Layer 2
CNN CE [4] 0.8467 0.8503 0.8369 0.8895 0.8426 0.8493 0.8433 0.816 0.8006

CNN SMOTE [21] 0.834 0.8356 0.8208 0.8956 0.8879 0.8906 0.8352 0.8095 0.7943

FL-NIDS (Ours) 0.8568 0.8625 0.8511 0.8939 0.8668 0.8726 0.842 0.8123 0.7961

Layer 3
CNN CE [4] 0.8467 0.8503 0.8369 0.8961 0.8566 0.8633 0.9425 0.9451 0.9418

CNN SMOTE [21] 0.831 0.8368 0.832 0.8692 0.7927 0.797 0.8352 0.8095 0.7943

FL-NIDS (Ours) 0.8568 0.8614 0.8487 0.8978 0.8533 0.8603 0.9556 0.9559 0.9557
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In the multiclass experiment, FL-NIDS outperformed the other models. Detailed
results of multiclass classification using the DNN and CNN architectures are shown in
Tables 10 and 11, respectively. The precision was superior for the deep model (layer 3)
compared to the other models. This finding was expected as FL-NIDS was developed
to handle multiclass and imbalanced data. However, there was an anomaly during the
detection of NSL-KDD using the DNN model, which might have been caused by the
selection of the focal loss parameter because the performance of focal loss is heavily
dependent on the dataset. In spite of the anomaly, FL-NIDS is suitable and superior to
other algorithms.

Table 10. The multiclass classification of DNN.

Method
NSL-KDD UNSW-NB15 Bot-IoT

Prec Recall F1 Score Prec Recall F1 Score Prec Recall F1 Score

Layer 1

DNN CE [6] 0.6788 0.5307 0.5332 0.4868 0.404 0.3941 0.9924 0.9242 0.9534

DNN SMOTE [21] 0.6633 0.5466 0.5526 0.4557 0.4621 0.427 0.9791 0.9795 0.9793

FL-NIDS (Ours) 0.6469 0.5243 0.5254 0.5003 0.4102 0.4009 0.9944 0.9779 0.9859

Layer 2

DNN CE [6] 0.682 0.5245 0.5251 0.4915 0.3967 0.391 0.9833 0.9683 0.9756

DNN SMOTE [21] 0.6533 0.5388 0.5307 0.4915 0.3967 0.391 0.9845 0.9846 0.9845

FL-NIDS (Ours) 0.634 0.5038 0.4847 0.5061 0.3987 0.3935 0.9988 0.9683 0.9824

Layer 3

DNN CE [6] 0.7258 0.5072 0.5113 0.4483 0.4098 0.4064 0.9838 0.9669 0.9751

DNN SMOTE [21] 0.6239 0.5093 0.4986 0.4322 0.4307 0.4106 0.9839 0.9707 0.977

FL-NIDS (Ours) 0.6351 0.4871 0.4733 0.5578 0.4073 0.3978 0.9993 0.9689 0.983

Table 11. The multiclass classification of CNN.

Method
NSL-KDD UNSW-NB15 Bot-IoT

Prec Recall F1 Score Prec Recall F1 Score Prec Recall F1 Score

Layer 1

CNN CE [4] 0.5777 0.528 0.5233 0.4341 0.3892 0.3767 0.9819 0.9666 0.974

CNN SMOTE [21] 0.6633 0.5466 0.5526 0.4636 0.3803 0.348 0.9591 0.9831 0.9703

FL-NIDS (Ours) 0.7256 0.5484 0.5547 0.4816 0.3895 0.377 0.9818 0.9649 0.9731

Layer 2

CNN CE [4] 0.6753 0.5365 0.5337 0.4766 0.403 0.3885 0.9963 0.9621 0.9781

CNN SMOTE [21] 0.6318 0.5284 0.5111 0.4432 0.4815 0.4097 0.958 0.9692 0.9634

FL-NIDS (Ours) 0.7139 0.5374 0.5303 0.514 0.3947 0.3992 0.9977 0.9834 0.9903

Layer 3

CNN CE [4] 0.7258 0.5072 0.5113 0.4615 0.3766 0.3725 0.96 0.9449 0.9511

CNN SMOTE [21] 0.6436 0.5192 0.5145 0.4133 0.4036 0.3688 0.9619 0.9674 0.9646

FL-NIDS (Ours) 0.765 0.5241 0.5196 0.4872 0.4112 0.3952 0.9726 0.9398 0.9551

To get an insight on the scalability of the proposed approach, we measured the
effectiveness of FL-NIDS by simulating a condition where few data are available. To mimic
those circumstances, we trained the model using 25, 50, and 75% of the training dataset.
Furthermore, the models were evaluated on the whole available testing data.

As depicted in Tables 12 and 13, the scalability assessment of the proposed approach
was conducted by comparing the performance of the DNN and CNN models using different
data sizes. The performance comparison consisted of accuracy, precision, recall, and F1
score in multiclass classification. The results, shown in Tables 12 and 13, indicate that our
proposed approach is stable enough as the outcome achieved was almost the same, even for
the model trained with few data. Figures 5a–d and 6a–d show the performance comparison
for FL-NIDS in the DNN and CNN models, respectively. From the presented results, it can
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be seen that the performance of the proposed scheme is scalable enough as the accuracy of
FL-NIDS could be maintained at 74% for DNN and 77% for CNN, even with the availability
of only 25% of the data size for training.

Table 12. Scalability assessment of DNN FL-NIDS.

Data
Scale (%)

NSL-KDD UNSW-NB15 Bot-IoT

Accuracy Prec Recall F1
Score Accuracy Prec Recall F1

Score Accuracy Prec Recall F1
Score

25 0.7465 0.5325 0.5161 0.5047 0.746 0.5013 0.3914 0.3743 0.9983 0.9848 0.9831 0.9839

50 0.7486 0.6 0.5314 0.5225 0.7476 0.5245 0.3903 0.3916 0.9976 0.9926 0.9534 0.9717

75 0.7587 0.6159 0.5125 0.5117 0.7449 0.5389 0.3974 0.3983 0.9977 0.9972 0.9687 0.9819

100 0.7513 0.6351 0.4871 0.4733 0.7339 0.5578 0.4073 0.3978 0.9983 0.9993 0.9689 0.983

Table 13. Scalability assessment of CNN FL-NIDS.

Data
Scale (%)

NSL-KDD UNSW-NB15 Bot-IoT

Accuracy Prec Recall F1
Score Accuracy Prec Recall F1

Score Accuracy Prec Recall F1
Score

25 0.7744 0.7069 0.5355 0.5312 0.7196 0.4536 0.3717 0.3652 0.9975 0.9654 0.9201 0.9413

50 0.7769 0.7392 0.5287 0.5352 0.7198 0.4406 0.3815 0.3684 0.9975 0.9687 0.9389 0.9532

75 0.7539 0.7414 0.5038 0.4919 0.7241 0.4637 0.3969 0.3822 0.9976 0.971 0.9433 0.9566

100 0.7643 0.765 0.5241 0.5196 0.7339 0.4872 0.4112 0.3952 0.9945 0.9726 0.9398 0.9551
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This study explored an improved cross-entropy neural network method, termed FL-
NIDS, that can be applied to intrusion detection. The effectiveness of the algorithm was
examined using three benchmark NIDS datasets that suffer from imbalanced classes. Our
results showed that FL-NIDS improved the accuracy of detection in imbalanced datasets
compared to the traditional DNN and CNN architecture. These results are consistent with
our hypothesis that focal loss adjusts the weight of false predicted samples. As intrusion
detection is needed for adversarial attack, we suggest applying focal loss to other datasets,
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