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Abstract: The aim of the present work is to study the necessary and sufficient conditions for the
existence of periodic solutions for a class of third order differential equations by using the aver-
aging theory. Moreover, we use the symmetry of the Monodromy matrix to study the stability of
these solutions.
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1. Introduction and Statement of the Main Results

Third-order differential equations

...
x + g(x, ẋ, ẍ) = 0

are associated with so-called jerk dynamics. In the literature, the third derivative of the
position is called the jerk, see [1] and references therein. Many applications of the jerk
dynamics to multidisciplinary sciences are been development, see for instance [2].

From a purely mathematical view, various authors have done interesting research
about the periodic structure, chaos and other modern topics on nonlinear analysis related
to the jerk dynamics; see for example [3–6].

It is well known that the analytical study of the periodic orbits of differential equations
is one of the most important problems in qualitative theory. It is in terms of number, exis-
tence, non-existence, uniqueness and stability of such periodic orbits. Motivated by it, it will
make sense to study the perturbed jerk dynamics, i.e, the third-order differential equations,

...
x + g(x, ẋ, ẍ) = ε f (t, x, ẋ, ẍ, ε),

with ε is a small parameter and f , g are smooth functions.
In what follows, we endeavor to study the periodic structure of this type of problem.
There are different methods to face such a study. In the literature, there are some

papers analyzing the periodic orbits for this class of third order differential equations
using the Leray-Schauder method; see [7,8]. There are also some works that use the Leray-
Schauder method in the field of partial differential equations, for example, studying the
existence of weak solutions to the nonlinear elliptic problem [9] and studying the existence
of traveling waves for delay reaction-diffusion equations, see [10].

In the present paper, we shall study the periodic orbits of this class of third-order
differential equations, by using the averaging theory of dynamical systems, which is
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a completely different approach to the ones used in the mentioned papers. In [11–13]
averaging theory was applied to order three systems too.

One of the main problems in the qualitative study of a system of nonlinear differential
equations is the investigation of the periodic structure of the problem. Many of the current
methods used by researchers who study these problems are born from the ideas and
considerations expressed by Henri Poincaré in his treatise [14].

Among the analytical methods considered, the averaging method is a clear candidate
to address to the problems of the following type of vectorial differential equations

dx
dt

+ f (x) = εg(x, t).

In the literature on this matter, we can go back to Laplace where he introduces the
original foundations of the averaging method [15]. Already in the previous century, the
averaging theory was theoretically-based. In numerous works, different theoretical and
applied results of the development of the theory were collected.

Please note that in modern language, the averaging theory relies on the so-called dis-
placement map of the system and by mean of this method allows obtaining an asymptotic
expansion in the small parameter ε of this map. The zeros of the map which are hyperbolic
provide an asymptotic expansion of the initial condition of the periodic orbit. For more
details, see [16] and its references.

In [17], Garcia and Llibre studied the periodic structure of second order differential
equations of the form

ẍ + g(x) = ε f (t, x, ẋ, , ε),

and they chose a perturbation family of a Duffing equation and forced pendulum in
the form:

ẍ + g(x) = µ2n+1 p(t) + µ4n+1q(t, x, ẋ, µ), (1)

where n ∈ N, µ is a small parameter, and

g(x) = x + x2n+1(b + xh(x)),

where h(x) is smooth, b 6= 0, p(t) and q(t, x, y, µ) are smooth and periodic with period 2π
in the variable t.

Therefore, inspired by this study we decided to study the generalization of this system
considering the jerk variable in the form

...
x + g(x, ẋ, ẍ) = µ2n+1 p(t) + µ4n+1q(t, x, ẋ, ẍ, µ), (2)

where n ∈ N, µ is a small parameter, and

g(x, ẋ, ẍ) = −ẍ + ẋ− x + (x− ẋ)2n+1(b + xh(x)),

and q(t, x, ẋ, ẍ, µ), p(t) are smooth and periodic with period 2π in t, h(x) is even smooth
function with b 6= 0.

We introduce the following variables (y, z) = (ẋ, ẍ), then we write (2) as the differen-
tial system

ẋ = y,
ẏ = z,
ż = x− y + z− (x− y)2n+1(b + xh(x)) + µ2n+1 p(t) + µ4n+1q(t, x, y, z, µ).

(3)

Let α1 and β1 be the first Fourier coefficients of p(t), i.e.,

α1 =
1
π

∫ 2π

0
p(t) cos tdt, β1 =

1
π

∫ 2π

0
p(t) sin tdt,
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and let Γ(x) the gamma function.
In the following definition, we are concerned with the limit cycle and its properties:

Definition 1. A periodic orbit in the plane is called a limit cycle if it is an isolated trajectory in the
set of all periodic orbits of a differential equation.

The limit cycle is topologically distinguished with neighboring trajectories that are
not closed.

The statement of our main result on the periodic structure of system (2) is the following
theorem:

Theorem 1. If α1β1b 6= 0, α1 6= β1 then for µ 6= 0 sufficiently small the differential Equation (2)
has a periodic solution x(t, µ) of period 2π satisfying the initial condition

x(0, µ) = µπ
1

4n+2

(
Γ(n + 2)

2bΓ
(
n + 3

2
)) 1

2n+1 (
α2

1 + β2
1

) −n
1+2n (α1 − β1)

2
+ O

(
µ2n+1

)
.

2. Some Results on the Other Averaging Theory

We consider the differential system of the form

ẋ = F0(t, x) + εF1(t, x) + ε2R(t, x, ε), (4)

with ε 6= 0 is small parameter, F0, F1 : R× D → Rn and R : R× D× (−ε0, ε0)→ Rn are C2

functions, 2π–periodic in the first variable, and D is an open subset of Rn. We suppose that
the differential system

ẋ = F0(t, x), (5)

has a submanifold of periodic solutions. The system (5) is called the unperturbed system.
In what follows, we denote by x(t, z) the solution of the unperturbed system (5)

satisfying x(0, z) = z.
We consider the differential system

ẏ = DxF0(t, x(t, z))y, (6)

this system represents the first order variational equation on the periodic solution x(t, z).
Let Mz(t) be the fundamental matrix of the linear differential system (6) such that

Mz(0) be the identity matrix and let the projection ξ : Rk × Rn−k → Rk defined by
ξ(x1, . . . , xn) = (x1, . . . , xk).

In what follows, we denote by Cl(V) the closure of V. The closure of a subset V is the
smallest closed subset containing V.

Theorem 2. Assume that V ⊂ Rk be an open and bounded subset and β0 : Cl(V)→ Rn−k be a
C2 function. We consider the following statements:

(i) Z = {zα = (α, β0(α)) : α ∈ Cl(V)} ⊂ D and that for every zα ∈ Z the solution x(t, zα)
of (5) is periodic of period T.

(ii) for every zα ∈ Z there exists a fundamental matrix Mzα(t) of (6) such that the matrix
M−1

zα
(0)−M−1

zα
(T) has in the upper right corner the k× (n− k) zero matrix, and in the

lower right corner a (n− k)× (n− k) matrix ∆α with det(∆α) 6= 0.

Let us define the function F : Cl(V)→ Rk as

F (α) = ξ

(∫ T

0
M−1

zα
(t)F1(t, x(t, zα))dt

)
. (7)
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If there exists a ∈ V with F (a) = 0 and

det((dF/dα)(a)) 6= 0, (8)

then for ε 6= 0 sufficiently small there exists a periodic solution x(t, ε) of period 2π for differential
system (4) such that x(0, ε)→ za as ε→ 0.

For a proof on the existence of the periodic solution of Theorem 2 see Malkin [18] and
Roseau [19], or [20] for a proof in a shorter way. By using an idea similar to the one used
to proved the stability of the periodic solutions of Theorem 11.6 in [21] we can prove the
stability of periodic orbits.

3. Proof of Theorem 1

To apply the averaging theory summarized at Section 2 to the differential system (3)
we do the following rescaling x → µx, y→ µy and z→ µz . Hence the system (3) writes
as follows

ẋ = y,
ẏ = z,
ż = x− y + z + µ2n

(
−b(x− y)2n+1 + p(t)

)
−µ2n+1x(x− y)2n+1h(µx) + µ4nq(t, µx, µy, µz, µ),

(9)

Suppose that µ2n = ε, O(ε) =
(
−µ2n+1x(x− y)2n+1h(µx) + µ4nq(t, µx, µy, µz, µ)

)
and F(t, x, y, z) = −b(x− y)2n+1 + p(t) the system (9) becomes

ẋ = y,
ẏ = z,
ż = x− y + z + ε

(
−b(x− y)2n+1 + p(t)

)
+ O

(
ε2),

= x− y + z + εF(t, x, y, z) + O
(
ε2).

(10)

The origin is the unique equilibrium point of the unperturbed system (10)ε=0, the eigen-
values of this unperturbed system at the origin are i,−i, 1. We do the following lin-
ear change

(X, Y, Z)T = C(x, y, z)T ,

where the matrix

C =

 1 −1 0
0 −1 1
1 0 1

.

System (10) is transformed into the next system by using the previous linear change

X′ = −Y,
Y′ = X + εF̃(t, X, Y, Z) + O

(
ε2),

Z′ = Z + εF̃(t, X, Y, Z) + O
(
ε2), (11)

where the linear part of this system in the real Jordan canonical normal form and

F̃(t, X, Y, Z) = F
(

t,
X−Y + Z

2
,
−X−Y + Z

2
,
−X + Y + Z

2

)
.

Returning to (4), we consider x = (X, Y, Z), F0(t, x) = (−Y, X, Z), F1(t, x) = (0, F̃, F̃)
and F2(t, x) =

(
0, O

(
ε2), O

(
ε2)). Let x(t, X0, Y0, Z0, ε) be the solution to system (11) with

x(0, X0, Y0, Z0, ε) = (X0, Y0, Z0). Please note that the unperturbed system (11)ε=0 has a
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linear center at the origin in the (X, Y) plane, and the periodic solution x(t, X0, Y0, 0, 0) =
(X(t), Y(t), Z(t)) is

X(t) = X0 cos t−Y0 sin t, Y(t) = Y0 cos t + X0 sin t, Z(t) = 0. (12)

Please note that (X(t), Y(t), Z(t)) has period 2π. For our system, V and α from
Theorem 2 are

V =
{
(X, Y, 0) : 0 < X2 + Y2 < ρ

}
,

where ρ > 0 is arbitrary and α = (X0, Y0) ∈ V.
The fundamental matrix Mz(t) = M(t) of the first order variational equation (6)

satisfying the system (11)ε=0 is

M(t) =

 cos t − sin t 0
sin t cos t 0

0 0 et

,

We note that M(t) is independent from the initial condition (X0, Y0, 0), and

M−1(0)−M−1(2π) =

 0 0 0
0 0 0
0 0 1− e−2π

.

Very briefly, we confirmed that the statements of Theorem 2 hold. Now we study
the solutions α = (X0, Y0) ∈ V of the function F (α) given in (7). In other words, we have
F (α) = (F1(α),F2(α)) where

F (α) =
∫ 2π

0 M−1(t)F1(t, x(t, zα, 0))dt =

(
F1(X0, Y0)

F2(X0, Y0)

)
= ∫ 2π

0 sin(t)F̃(t, x(t, X0, Y0, 0, 0))dt∫ 2π
0 cos(t)F̃(t, x(t, X0, Y0, 0, 0))dt

 =


∫ 2π

0 sin(t)F
(

t, X(t)−Y(t)
2 ,−X(t)+Y(t)

2 , −X(t)+Y(t)
2

)
dt∫ 2π

0 cos(t)F
(

t, X(t)−Y(t)
2 ,−X(t)+Y(t)

2 , −X(t)+Y(t)
2

)
dt

 =


∫ 2π

0 sin(t)
(
−b(X0 cos t−Y0 sin t)2n+1 + p(t)

)
dt∫ 2π

0 cos(t)
(
−b(X0 cos t−Y0 sin t)2n+1 + p(t)

)
dt

,

Using simple calculations, it can be shown that

∫ 2π

0
sin t(X0 cos t−Y0 sin t)2n+1dt = −

2
√

πΓ
( 3

2 + n
)

Γ(2 + n)
Y0

(
X2

0 + Y2
0

)n
,

∫ 2π

0
cos t(X0 cos t−Y0 sin t)2n+1dt =

2
√

πΓ
( 3

2 + n
)

Γ(2 + n)
X0

(
X2

0 + Y2
0

)n
.

We solve the following system

(
F1(X0, Y0)

F2(X0, Y0)

)
=


b

2
√

πΓ
( 3

2 + n
)

Γ(2 + n)
Y0
(
X2

0 + Y2
0
)n

+ πβ1

−b
2
√

πΓ
( 3

2 + n
)

Γ(2 + n)
X0
(
X2

0 + Y2
0
)n

+ πα1

 =

(
0
0

)
.
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We obtain a unique solution

(
X∗0
Y∗0

)
= π

1
4n+2

(
Γ(n + 2)

2bΓ
(
n + 3

2
)) 1

2n+1 (
α2

1 + β2
1

) −n
1+2n

(
α1
β1

)
.

Returning to (8), the det(DF (X∗0 , Y∗0 )) is

(1 + 2 n)π
4n+1
2 n+1

(
Γ(n + 2)

2bΓ
(
n + 3

2
))− 2

1+2 n (
α2

1 + β2
1

) 2 n
1+2 n ,

in order because α1β1b 6= 0, the statements of Theorem 2 hold. Using the following
relationship

x(t) =
X(t)−Y(t) + Z(t)

2
where X(t), Y(t), Z(t)) are given by (12), we can prove that

x(0, µ) = µ
X∗0 −Y∗0

2
+ O

(
µ2n+1

)
= µπ

1
4n+2

(
Γ(n + 2)

2bΓ
(
n + 3

2
)) 1

2n+1 (
α2

1 + β2
1

) −n
1+2n (α1 − β1)

2
+ O

(
µ2n+1

)
.

This completes the proof of Theorem 1. �

Remark 1. The eigenvalues of the Jacobian matrix DF (X∗0 , Y∗0 ) are

λ1,2 = ±i(2n + 1)
1
2 π

4n+1
4n+2

(
2bΓ
( 3

2 + n
)

Γ(2 + n)

) 4n2+2n+1
2n+1 (

α2
1 + β2

1

) n
1+2 n .

In consequence, we cannot use the averaging theory found in Section 2 to study the stability of the
periodic solution of the differential system (10). To solve this problem we use the symmetry of the
Monodromy matrix.

The variational equation of this periodic orbit is a given by

·
y = A(t)y,

where y =(x, y, z)∈R3 and A(t) a 2π–periodic matrix given by

A(t) = A0 + εA1(t).

with

A0 =

 0 1 0
0 0 1
1 −1 1

,

A1(t) =

 0 0 0
0 0 0

−b(2n + 1)(x(t)− y(t))2n b(2n + 1)(x(t)− y(t))2n 0


The multipliers of the monodromy matrix of the variational equation are 1 +O(ε2), 1 +O(ε2)

and e2π + O(ε2). From it, we conclude that the periodic solution of the differential system (10) is
unstable because the multiplier e2π + O(ε2) > 1.
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4. Conclusions

Appropriately introducing the small parameter enables us to apply the averaging
theory to prove analytically the existence of periodic solutions for a class of third-order
differential equations. The application of this theory to the third-order differential equations
gave interesting results on the stability of the periodic orbits. Our future work will consist
of applying this theory to differential equations of order n, with n ≥ 4 with particular
physical applications.
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