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Abstract: We show that there is a mildly nonlinear three-dimensional system of ordinary differential
equations—realizable by a rather simple electronic circuit—capable of producing a generalized
attracting horseshoe map. A system specifically designed to have a Poincaré section yielding the
desired map is described, but not pursued due to its complexity, which makes the construction of a
circuit realization exceedingly difficult. Instead, the generalized attracting horseshoe and its trapping
region is obtained by using a carefully chosen Poincaré map of the Rössler attractor. Novel numerical
techniques are employed to iterate the map of the trapping region to approximate the chaotic strange
attractor contained in the generalized attracting horseshoe, and an electronic circuit is constructed to
produce the map. Several potential applications of the idea of a generalized attracting horseshoe and
a physical electronic circuit realization are proposed.

Keywords: generalized attracting horseshoe; strange attractors; poincaré map; electronic circuits

1. Introduction

The seminal work of Smale [1] showed that the existence of a horseshoe structure
in the iterate space of a diffeomorphism is enough to prove it is chaotic. Often these
diffeomorphisms arise from certain Poincaré maps of continuous-time chaotic strange
attractors (CSA), which in turn are discrete-time CSAs. Some examples of such attractors are
the Lorenz strange attractor [2], the Rössler attractor [3], and the double scroll attractor [4].
An example of a Poincaré map of the Lorenz equations is the Hénon map [5], which can be
further simplified to the Lozi map [6]. Unsurprisingly, symmetry (and symmetry breaking)
plays an important role in the analysis of these models.

In more recent years Joshi and Blackmore [7] developed an attracting horseshoe (AH)
model for CSAs, which has two saddles and a sink. This, however, negates the possibility
of the Hénon and Lozi maps, which have two saddles. Fortunately, the attracting horseshoe
can be modified into a generalized attracting horseshoe (GAH), which can have either one
or two saddles while still being an attracting horseshoe [8]. This results in a quadrilateral
trapping region. While extensive analysis was done in Joshi et al. [8], a simple concrete
example seemed to be illusive.

In this investigation, we implement novel numerical techniques to find the necessary
Poincaré map of the Rössler attractor that would admit a quadrilateral trapping region.
This trapping region represents a region of rotational symmetry as every iterate originating
in the trapping region will return after a 2π rotation. The trapping region would also
filter out any flow that does not obey this symmetry. An electronic circuit could use these
properties to isolate signals of interest. Similar to the experiments of Rahman et al. [9],
we design a physical realization of the dynamical system in the form of an electronic circuit.
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The remainder of the paper is organized as follows. In Section 2, we give an overview
of the algorithm with the MATLAB codes included in the Supplementary Materials.
Once we have the tools for our numerical experiments, we first propose a carefully con-
structed GAH model in Section 3. Then, we give numerical examples of Poincaré maps
of the Rössler attractor and the map of interest in Section 4 and real-world examples in
Section 5. Finally, we end discussions in Section 6 with some concluding remarks.

2. Poincaré Map Algorithm

To produce a general Poincaré section of a flow, we break up the program into four
parts: solving the ODE; computing a Poincaré section perpendicular to either x “ 0, y “ 0,
or z “ 0; rotating the Poincaré section; and iterating the Poincaré map. Solving the ODE is
standard through ODE45 on MATLAB, which executes a modified Runge–Kutta scheme.
Once we have our solution matrix, we need to approximate the values of first return maps
from the discretized flow. By restricting the first return onto a Poincaré section, the iterate
space of the Poincaré map can be visualized. This is easily done for a section perpendicular
to the axes, but in order to locate a highly specialized object, such as the GAH, we need
to be able to rotate the section. Once the desired section is found we can experiment on
iterating the points of trapping region candidates.

The initial major task is approximating the first return map on a Poincaré section of a
flow. Much of the ideas of our initial first return map code came from that of Gonze [10].
Once the discretized flow is found numerically a planar section for a certain value of x,
y, or z can be defined, which in general will lie between pairs of simultaneous points.
Then we may draw a line between the pair through the planar section and identify the
intersecting point, which approximates a point of the first return map. This can also be
done with more simultaneous points in order to get higher order approximations.

Once we can approximate a map for a section perpendicular to the axes we need to
have the ability to rotate and move the map to any position. This is where our program
completely diverges from that in [10]. While the first instinct might be to try to rotate the
section, it is equivalent to rotate the flow in the opposite direction to the desired rotation of
the section. Once the flow is rotated, the code for the first return map can be readily used.
This gives us the ability to analyze the first return map of a general Poincaré section.

Finally, we would like to not only compute a first return map, but also compute the
iterates of a Poincaré map of any system; that is, given an initial condition on an arbitrary
Poincaré section can we find the subsequent iterates. To accomplish this, we solve the ODE
for a given initial condition on the planar section to find the first return. Once we have the
first return, we record its location and use that as the new initial condition. This iterates
the map for as many returns as desired, thereby filling in a Poincaré map. Now we have
the tools needed to run numerical experiments on GAHs.

3. A Constructed GAH System

In this section, we give a brief description of the generalized attracting horseshoe
(GAH) map and devise a three-dimensional nonlinear ordinary differential equation with
a Poincaré section that produces it.

3.1. The GAH Map

The GAH is a modification of the AH that can be represented as a geometric paradigm
with either just one or two fixed points, both of which are saddles. Figure 1 shows a
rendering of a C1 GAH with two saddle points, which can be constructed as follows.
The rectangle is first contracted vertically by a factor 0 ă λv ă 1{2, then expanded
horizontally by a factor 1 ă λh ă 2, and finally folded back into the usual horseshoe shape
in such a manner that the total height and width of the horseshoe do not exceed the height
and width, respectively, of the trapping rectangle Q. Then, the horseshoe is translated
horizontally so that it is completely contained in Q. Obviously, the map f defined by
this construction is a smooth diffeomorphism. Clearly, there are also many other ways
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to obtain this geometrical configuration. For example, the map f as described above is
orientation-preserving, and an orientation-reversing variant can be obtained by composing
it with a reflection in the horizontal axis of symmetry of the rectangle, or by composing it
with a reflection in the vertical axis of symmetry followed by a composition with a half-turn.
Another construction method is to use the standard Smale horseshoe that starts with a
rectangle, followed by a horizontal composition with just the right scale factor or factors
to move the image of Q into Q, while preserving the expansion and contraction of the
horseshoe along its length and width, respectively.

It is important to note that subrectangle S with its left vertical edge through p, which
contains the arch of the horseshoe and the keystone region K, plays a key role in the
dynamics of the iterates of f . In particular, we require that the map satisfy the following
additional property, which is illustrated in Figure 2:

(‹) f maps the keystone region K pcontaining a portion of the arch of the horseshoeq to the left of
the fixed point p and the portion of its corresponding stable manifold Wsppq containing p and
contained in f pQq.

The definition above and (‹) can be shown to lead to the conclusion that

A “ Wuppq “
č8

n“1
f npQq,

where Wuppq is the unstable manifold of p, a global chaotic strange attractor (CSA).

Figure 1. A planar GAH with two saddle points.

The map above can be considered to be the paradigm for a GAH, but there are
many analogs. In fact, let F : Q̃ Ñ Q̃ be any smooth diffeomorphism of a quadrilateral
trapping region Q̃ possessing a horseshoe-like image with a keystone region K̃ containing
a portion of the arch of FpQ̃q analogous to that shown in Figure 1. Suppose that the
map is expanding by a scale factor uniformly greater than one along the length of the
horseshoe and contracting transverse to it by a scale factor uniformly less than one-half in
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the complement of a subset of Q̃ containing K̃. Then, if F satisfies an additional property
analogous to (‹), it maps K̃ into an open subset of Q̃ to the left of the saddle point p̃, and

A “ Wupp̃q “
č8

n“1
FnpQ̃q

is a global CSA.

Figure 2. Local (transverse) horseshoe structure of f 2 near p.

3.2. A GAH Producing System

We now construct an ODE in R3 with a Poincaré section that is a GAH. The transversal
we use is the following square in the xz-plane defined in Cartesian and polar coordinates

Q0 “ tpx, y, zq : 0.05 ď x ď 1.05, y “ 0,´0.5 ď z ď 0.5u

“ tpr, θ, zq : 0.05 ď r ď 1.05, θ “ 0,´0.5 ď z ď 0.5u. (1)

The trick is to find a relatively simple (necessarily nonlinear) C1 ODE having Q0 as a
transversal with an induced Poincaré first-return map P : Q0 Ñ Q0 Ą Q2π “ PpQ0q such
that PpQ0q Ă intQ0 is a GAH. We chose the ODE based upon a rotation about the z-axis
so that the square evolves into the GAH as Q0 makes a full rotation. The first half of the
metamorphosis takes care of the vertical squeezing and horizontal stretching, while the
second half produces the folding. It is not difficult to show that the system (in cylindrical
coordinates)

9r “
2 logp1.2q sin2 θ

π
r, 9θ “ 1, 9z “

2 logp0.2q sin2 θ

π
pz` 0.2q (2)

flows Q0 to

Qπ “ tpx, y, zq : ´1.26 ď x ď ´0.06, y “ 0,´0.26 ď z ď ´0.06u (3)
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which is the original square in the radial half-plane corresponding to θ “ 0 stretched by a
factor of 1.2 along the x-axis and squeezed by a factor of 1/5 with respect to z “ ´0.2 along
the z-axis in the radial half plane corresponding to θ “ π. Consequently, (2) produces the
first half of the desired result comprising the stretching and squeezing for 0 ď θ ď π.

Note that (2) can be integrated directly to obtain the following for 0 ď θ ď π and
initial condition prp0q, θp0q, zp0qq “ pr0, θ0, z0q :

rptq “ rpθq “ r0 exp
„

logp1.2q
2π

p2θ ´ sin 2θq



,

θptq “ t, (4)

zptq “ zpθq “ ´0.2` pz0 ` 0.2q exp
„

logp0.2q
2π

p2θ ´ sin 2θq



.

Now, we have to attend to the folding for π ď θ ď 2π. For this we use a rotation in
planes orthogonal to a fixed circle in the xy-plane. In these planes corresponding to a circle
of radius c, given as c “ 0.66, we define Euclidean coordinates with origin r “ 0.66, z “ 0
and corresponding polar coordinates pρ, φq as

ρ “
b

pr´ 0.66q2 ` z2 “
a

r̃2 ` z2, (5)

where r̃ “ r´ 0.66 “ ρ cos φ and z “ ρ sin φ. Then, when π ď θ ď 2π, we take the folding
part for φ ě ´π{2 to be

9̃r “ 9r “ ´2 sin2 θ ρ sin φ, 9θ “ 1, 9z “ 2 sin2 θ ρ cos φ, (6)

or equivalently
9̃r “ 9r “ ´2 sin2 θ z, 9θ “ 1, 9z “ 2 sin2 θ r̃. (7)

It is easy to verify from the above that ρ is constant (call it ρ0) for the solutions of (6)
or (7) and that the solution initially (at t “ θ “ π) satisfying pρ, φq “ pρ0, φ0q is

r̃ “ r̃ptq “ ρ0 cospφptq ` φ0q, θ “ θptq “ t, z “ zptq “ ρ0 sinpφptq ` φ0q, (8)

where
φptq “ pt´ πq ´ sin t cos t. (9)

The above ((6) or (7)) describes the folding field for π ď θ ď 2π and ´π{2 ď φ.
In order to smoothly fill in the rest of the field, we shall use the function

ψpr̃q “
"

0, r̃ ď ´0.6
sin2“ π

1.2 pr̃` 0.6q
‰

, ´0.6 ď r̃ ď 0
, (10)

which can be recast as

ξprq “
"

0, r ď 0.06
sin2“ π

1.2 pr´ 0.06q
‰

, 0.06 ď r ď 0.66
. (11)

We have now assembled all the elements for defining an ODE that generates a GAH
Poincaré section. This ODE, which incorporates (2) and (7) and is π-periodic in θ, has the
following form:

9r “ Rpr, θ, zq, 9θ “ 1, 9z “ Zpr, θ, zq, (12)

subject to the initial condition

prp0q, θp0q, zp0qq “ pr0, 0, z0q P Q0, (13)



Symmetry 2021, 13, 30 6 of 12

where

R “

$

’

’

&

’

’

%

logp1.2qσpθqr
π , 0 ď θ ď π

´σpθqz, pπ ď θ ď 2πq and pppr ě 0.66q or pz ě 0qq “ p´π{2 ď φ ď πqq
´ξprqσpθqz, pπ ď θ ď 2πq and ppr ă 0.66q and pz P r´0.26,´0.06sqq

0, pπ ď θ ď 2πq and ppr ă 0.66q and pz ă 0q and pz R r´0.26,´0.06sqq

,

Z “

$

’

&

’

%

plogp.2qσpθqpz`0.2q
π , 0 ď θ ď π

σpθqr̃, pπ ď θ ď 2πq and pppr ě 0.66q or pz ě 0qq “ p´π{2 ď φ ď πqq
0, pπ ď θ ď 2πq and pppr ă 0.66q and pz ă 0qq “ p´π ď φ ď ´π{2qq

,

and
σpθq “ 2 sin2 θ “ 1´ cos 2θ.

Finally, it is not difficult to show that the Poincaré section of the transversal (and
trapping region) Q0 under the system (12) is a GAH with an image that is simply a
symmetric reflection about the vertical axis of the horseshoe in Figure 1. However, it
appears that the construction of an electronic circuit simulating (12) would be a rather
formidable undertaking, so we selected a simpler system, namely, the Rössler attractor
model, which is a mildly nonlinear three-dimensional ODE that has a straightforward
circuit realization.

4. Poincaré Maps and Circuit Realization of the Rössler Attractor

We consider the Rössler attractor

9x “ y´ z
9y “ x` ay
9z “ b` zpx´ cq;

(14)

where we use the parameters a “ 0.2, b “ 0.1, and c “ 10. This produces the chaotic strange
attractor in Figure 3, and it can also be realized by a rather simple electronic circuit.

Figure 3. The Rössler attractor with parameters a “ 0.2, b “ 0.1, and c “ 10, and a rotation
(represented by x̂ and ŷ) of θ “ 2π{5 in spherical coordinates.
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4.1. The Poincaré Map

One can use the algorithm in Section 2 to compute any Poincaré section of the attractor;
however, what we are particularly interested in is identifying a trapping region for a
generalized attracting horseshoe. Assuming the system contains a GAH, we first look for a
Poincaré section with a horseshoe-like structure as shown in Figure 4.

Figure 4. Poincaré section (r “ 5, θ “ 2π{5) of the Rössler attractor containing a horseshoe-like
structure. Plot is shown in the rotated frame.

Now, if we can find a rotationally symmetric trapping region around this horseshoe,
we shall have shown evidence for the existence of a GAH. First, we identify vertices of a
quadrilateral that fully encompasses the horseshoe-like structure. Then, using a recursive
algorithm (described in Section 2) we compute the first return map of those vertices on
that particular Poincaré section, i.e., the first iteration of the Poincaré map of those points.
If the iterates are contained within that quadrilateral, the points on the quadrilateral itself
can be tested. In Figure 5, four-thousand points on the quadrilateral are iterated, and it is
illustrated that this first return is completely contained in the quadrilateral. While this is
not a proof, the grid spacing on the quadrilateral provides compelling evidence that this is
a trapping region for the GAH.

In order to provide more compelling evidence, we compute higher-order iterations of
the Poincaré map in Figure 6.
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Figure 5. The first return (blue markers) of the quadrilateral trapping region (red markers) with
vertices located at px̂, ŷq “ p´3.55,´27q, p11.91,´6.6q, p12, 0q, p´8.5, 3.5q. While the quadrilateral
edges look “continuous”, it should be noted that it is in fact discretized using four thousand points,
which are then mapped back to the Poincaré section (r “ 5, θ “ 2π{5). Plot is shown in the rotated
frame with x̂ and ŷ denoting rotated axes.

Figure 6. First five iterations of the Poincaré map (blue markers) of the quadrilateral trapping region
(red markers) with vertices located at px̂, ŷq “ p´3.55,´27q, p11.91,´6.6q, p12, 0q, p´8.5, 3.5q. While
the quadrilateral edges look “continuous”, it should be noted that it is in fact discretized using four
thousand points, which are then mapped back to the Poincaré section (r “ 5, θ “ 2π{5). Plot is
shown in the rotated frame with x̂ and ŷ denoting rotated axes.

4.2. Circuit Realization of the Rössler System

It happens that there are several known examples of electronic circuits realizing the
Rössler attractor system. We chose the one, obtained from [11], shown in Figure 7 with a
list of components in Table 1.
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Figure 7. Multisim circuit diagram for Röossler attractor.

The physical realization of the Rössler attractor circuit was constructed using summing
amplifiers, integrators, and a multiplier. Due to the nature of this system, the operational
amplifier must operate within ˘15 volts in order to avoid clipping of the Rössler Attractor
output waveform. In this circuit, resistors were used to represent constant values for
parameters a and b in (14). A potentiometer was used to vary the parameter value of b in
order to observe the bifurcations of the physical system. We first test the circuit on Multisim
and observe the aforementioned bifurcations in Figure 8.

4lzscyco.bmp

Figure 8. Multisim outputs of the Rössler attractor showing a period doubling Hopf bifurcation
leading to chaos.

Table 1. List of components for the Röossler attractor circuit.

Type Quantity Code

10 kΩ Resistor 11
100 kΩ Resistor 3
390 kΩ Resistor 1
56 kΩ Resistor 1
560 kΩ Resistor 1
5.1 kΩ Resistor 1

100 kΩ Potentiometer 1

100 nF Capacitor 6
2.2 nF Capacitor 3

Op-Amp 2 AD633JN
Multiplier 1 TL074CN

Next, we built the circuit and observed oscilloscope outputs as shown in Figure 9.
The Poincaré section that we chose was a particular vertical plane through the top arch of
the output shown (see also Figure 3). The acceptable planes were obtained by trial and
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error via varying the system parameters and rotation of the plane about a vertical axis
through the apex of the arc.

Figure 9. Oscilloscope output from Rössler attractor circuit.

5. Potential Applications

One can imagine several practical applications of devices containing electronic circuit
realizations of a GAH. Two, which are related to communications and intelligence gathering,
immediately come to mind: First, the circuit could be embedded in a communication
receiving device, and tuned to certain “static” frequencies different from those in the
expected incoming messages. The strong global attracting characteristics of the circuit
would separate the static from the incoming messages, thereby enhancing the receiving
capabilities of system. In effect, the GAH circuit would filter out the static.

Second, a stationary or compact mobile device incorporating the GAH circuit could
be used to penetrate and analyze various communication systems. Either by connecting
remotely in the case of a stationary device or directly for a mobile version, the global
attracting properties could be employed to extract crucial characteristics of the system to
which it is connected. Moreover, the same attracting features of the GAH circuit device
could be used to absorb various parts of sent messages that would render them useless,
false, or simply misleading.

The two rather basic applications mentioned provide just a glimpse of the possible
applications of GAH circuits, most of which would probably be related to information
systems, data collection, and filtering. Moreover, there are more applications that could
exploit the chaotic strange attractor associated with a GAH circuit. For, example a GAH
circuit device could be used either to control chaos, introduce chaos or adjust the fractal
dimension of outputs of a variety of applicable processes based on dynamical systems.

Such mechanisms may aid in a variety of fields including cryptography and cyber
security. While encryption techniques reliant on the iterate by iterate behavior of chaotic
maps have had their short comings due to irreversibly in analog form and a lack of
proper security when implemented in software, the global properties of a GAH circuit
may provide a useful intermediate stage during various forms of symmetric encryption
by allowing a signal of importance to pass both through and around such a subsystem in
parallel. Long-term global properties from the signal sent through a GAH circuit can be
extracted and used to manipulate the unaltered signal before reaching the recipient, thereby
substantially increasing the difficulty of decryption. As the global properties of such a
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system (i.e., factors taken from its geometry and macro-scale structure) are less influenced
by minor imperfections in the circuit, reversing the process becomes far more tangible.

Furthermore, adding to our second practical application claim, a GAH device could
prove to have various applications in machine learning, specifically regarding the creation
and prevention of adversarial attacks on deep neural networks. By altering carefully chosen
properties of the data meant to be received by the network intelligible yet incorrect results
can be forced. In the same light, the proper extraction of dominant incoming signals may
help prevent the same sort of issue in special cases.

6. Conclusions

We constructed a rather complicated nonlinear three-dimensional ordinary differential
equation (ODE) having a Poincaré section that is a GAH map, but it is not particularly
amenable to electronic circuit realization, which was a goal of the investigation. Therefore,
instead of the initial ODE, we selected the Rössler attractor; a mildly nonlinear three-
dimensional ODE that has a reasonably simple circuit realization and can actually produce
GAH maps for carefully chosen Poincaré sections. We constructed the corresponding GAH
circuit and used a novel iteration procedure to generate good approximations of the chaotic
strange attractors associated to the GAH maps. Finally, in addition to the experimental
and analytic aspects of our investigation, we discussed a number of potential practical
applications of the GAH circuit. Most of the envisioned applications were in the realms of
communication and information gathering.
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/30/s1.
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