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Abstract: In the present paper, a role of Hamiltonian systems in mathematical and physical for-
malisms is considered with the help of skew-symmetric differential forms. In classical mechanics the
Hamiltonian system is realized from the Euler–Lagrange equation as the integrability condition of
the Euler-Lagrange equation and discloses specific features of Lagrange formalism. In the theory of
differential equations, the Hamiltonian systems reveals canonical relations that define the integrabil-
ity conditions of differential equations. The Hamiltonian systems, as a self-independent equations,
are an example of dynamic systems that describe a behavior of dynamical systems in phase space.
The connection of the Hamiltonian systems with differential equations and dynamical systems point
to the fact that dynamical systems can be generated by differential equations. Under the investigation
of Hamiltonian systems, in addition to exterior skew-symmetric differential forms it is suggested to
use the skew-symmetric differential forms that are defined on a nonintegrable manifolds and possess
a nontraditional mathematical apparatus, such as degenerate transformations and transitions from
nonintegrable manifold to integral structures.

Keywords: Euler-Lagrange equation; Lagrangian and Hamiltonian manifolds; degenerate transfor-
mation; realization of Hamiltonian systems

1. Introduction

In the present paper, it is shown that a qualitative analysis of Hamiltonian systems with
the help of skew-symmetric differential forms [1–3] enables one to describe a mechanism
of Hamiltonian system implementation and uncover a role of invariant properties of the
Hamiltonian systems in various branches of mathematics and mathematical physics.

Such possibitlities of studying the Hamiltonian systems with the help of skew-
symmetric differential forms relates, firstly, to the fact that closed exterior skew-symmetric
forms are invariant ones, and, secondly, there exist skew-symmetric forms [3] that are
defined on nonintegrable manifolds and they generate closed exterior forms, namely, invari-
ants. Such skew-symmetric forms disclose a mechanism of Hamiltonian systems generation.

In Section 2, it is shown that a difference between the Lagrange function, which is
directly obtained from the Euler–Lagrange equation, and the Hamilton function that obeys
the Hamiltonian system and is realized from the Euler–Lagrange equation, relates to the
integrability of the Euler–Lagrange equation. The Lagrange function is defined on tangent
(Lagrangian) manifold on which the Euler–Lagrange equation and, correspondingly, the La-
grange function, appear to be nonintegrable. Additionally, the Hamilton function is defined
on structures (sections of bundle) of cotangent (phase, Hamiltonian) manifold, on which the
Euler–Lagrange equation becomes integrable (the Lagrangian and Hamiltonian manifolds
are not equivalent ones).

In Section 3, a connection of Hamiltonian systems with differential equations is shown.
A partial differential equation of the first order that does not explicitly depend on the
function desired is studied. The canonical relations, which have a form of Hamiltonian
system, are integrability conditions of such an equation. This correspondence discloses
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properties of Hamiltonian systems, namely, a realization of Hamiltonian systems under
degenerate transformations and properties of integral structures of cotangent manifold.

The realization of Hamiltonian system, i.e., the transition of a tangent manifold to
a cotangent one, is an evolutionary process, namely, is a process of the emergence of
physical structures.

In Section 4, the Hamilton-Jacobi equation is considered, on which the integrability
conditions are identically imposed, namely, the Hamiltonian system is fulfilled. In this case,
the Hamiltonian system is an example of dynamical system that enables one to investigate
peculiarities of dynamical system.

The correspondence between Hamiltonian systems and field theory equations was
considered. This relates to the fact that the Hamiltonian systems, as well as the field
theory equations, are relations solutions to which there are not functions (as in differential
equations), but differentials, i.e., closed exterior forms (invariants).

2. Analysis of Hamiltonian Systems

Hamiltonian systems arise in the problems of functional extremum that has wide
application in quantum field theory and in the problems of classical mechanics at the basis
of which such dynamic principles as the principle of minimal action, the principle of virtual
motions, and so on lie.

The Hamiltonian system can be written in the form

dqj

dt
=

∂H
∂pj

,
dpj

dt
= −∂H

∂qj
(1)

The Hamilton function H results from the Lagrange function L under the Legendre
transformation: H(t, qj, pj) = pj q̇j − L, pj = ∂L/∂q̇j, which converts the Lagrange func-
tion L(t, qj, q̇j) defined on tangent manifold {qj, q̇j} into the Hamilton function H(t, qj, pj)
defined on cotangent manifold {qj, pj}.

The Hamiltonian system is connected with the Euler–Lagrange equation

d
dt

∂L/∂q̇j −
∂L
∂qj

= 0, (2)

which specifies a curve that is an extremal of the functional.
The connection of Hamiltonian systems with the Euler–Lagrange equation can be

traced by comparing the differential of Hamilton function H(p, q, t) with the differential of
the function (p q̇j − L) (such comparison is presented in the paper [4]. However, in present
case we shall focus our attention on some points of such comparison).

The total differential of the Hamilton function H(p, q, t) is written in the form

dH =
∂H
∂pj

dpj +
∂H
∂qj

dqj +
∂H
∂t

dt

Additionally, the total differential of the Hamilton function expressed in terms of the
Lagrange function H = pj q̇j − L has the form

dH = q̇jdpj −
∂L
∂qj

dqj −
∂L
∂t

dt

These expressions will be identical under the condition

q̇j =
∂H
∂pj

,
∂L
∂qj

= − ∂H
∂qj

,
∂L
∂t

= − ∂H
∂t

(3)
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From the Euler–Lagrange Equation (2), it follows that ∂L/∂qj = ṗj. Replacing in the
second relation (3) the ∂L/∂qj by ṗj, we obtain

dpj

dt
= −∂H

∂qj
,

which corresponds to the second relation of Hamiltonian system. That is, the second
relation of Hamiltonian system is just the Euler–Lagrange equation.

However, from relations (3), one can see that, changing from the Lagrange function
to the Hamilton function in addition to the relation corresponding to the Euler–Lagrange
equation, one more relation arises; namely, the first relation (3) that corresponds to the first
relation for Hamiltonian system (1) and it is not connected with the Euler–Lagrange equation.

Thus, one can see that the Hamiltonian system contains an additional relation that is
not directly connected with the Euler–Lagrange equation.

What is a physical meaning of additional relation.
The Euler–Lagrange equation has been obtained from the maximum condition of the

action functional S:
δS = 0 (4)

where
S =

∫
Ldt

In the actual case, when forces are nonpotential or couplings are nonholonomic, the
quantity δS is not a closed exterior form (the invariant), which is, d δS 6= 0. This points to
the fact that the Euler–Lagrange equation appears to be nonintegrable on specified space.
(It should be noted that functionals, such as wave function, the action functional, Pointing’s
vector, Einstein’s tensor, and other [5], specify a variation of the system considered. This is
connected with conservation laws.).

The condition (4) is satisfied along trajectories and this corresponds to conservation
law for energy. However, the state of the system described also depends on the conser-
vation law for momentum (and the conservation laws for angular momentum and mass).
The peculiarity consists in the fact that the conservation law for momentum, which governs
interactions between the trajectories, in a general case, without additional conditions, does
not commutate with law for energy and, hence, the condition of invariance is not satisfied,
i.e., d δS 6= 0.

However, the Hamiltonian system is obtained from the condition dδS = 0, which is a
closure condition for the form δS. This means that a closed exterior form has been realized,
namely, a differential. However, it realizes discretely on the pseudostructures of cotangent
space. The first relation of Hamiltonian systems describes such pseudostructures.

As it was noted, the Euler–Lagrange equation on tangent space appears to be non-
integrable, since δS is not a closed form. The realization of Hamiltonian system, namely,
the realization of pseudostructures (the sections of bundle) of cotangent space with closed
form, is a realization of integrability conditions for the Euler–Lagrange equation.

The transition of the Euler–Lagrange equation from the tangent space, where the form
is unclose (i.e., is not a differential) to cotangent space with closed form (which is a differ-
ential), is a degenerate transformation; namely, a transformation that does not conserve
a differential. Such a transition is achieved with the help of the Legendre transformation
being a degenerate transformation.

Here, it should be noted that the Legendre transformation is fulfilled under discrete
realization of additional conditions that are conditioned by any degrees of freedom (the at-
tention to this will be called in the next Section).

Because the Legendre transformation is discretely fulfilled, it can only be realized
in closed inexact form, namely, the exterior form being closed only to a certain structure
(a pseudostructure with respect to its metric properties) that is described by a dual form.
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The first relation of system (3) entered into the Hamiltonian system defines a pseu-
dostructure on which a closed inexact exterior form is defined. This points to the integra-
bility of the Hamilton system.

It can be noted that the closed inexact exterior form (a conservative quantity) and rele-
vant dual form, which describe pseudostructure, made up a differential-geometrical struc-
ture that describes a physical structure (a structure with conservative quantity) on which
conservation laws are obeyed. The solutions to Hamilton systems describe such structures.

(Here, the following may be pointed out. The Hamiltonian system is an example of a
dynamic system. The fact that this system is generated by the Euler–Lagrange equation, i.e.,
by a differential equation, leads to a statement that dynamical systems can be generated
by differential equations, i.e., by the equations that describe any processes. This will be
considered in the next section.)

Let us consider one more peculiarity of Hamiltonian systems.
As it was already pointed out above, the Hamiltonian system was obtained with the

help of degenerate transformation. However, on the other hand, the Hamiltonian system is
a canonical relations which execute a nondegenerate transformation.

Such a peculiarity of Hamiltonian systems discloses a connection between degenerate
and nondegenerate transformations. The degenerate transformation is a transition from
tangent space (qj, q̇j) to cotangent manifold (qj, pj). Additionally, the nondegenerate trans-
formation is a transition in cotangent space from some pseudostructure (phase trajectory)
(qj, pj) to another pseudostructure (Qj, Pj). (The formula of canonical transformation can
be written as pjdqj = PjdQj + dW, where W is the generating function).

The transition from tangent space to cotangent one under degenerate transformation
when the closed exterior form is realized describes an origination of invariant structure.
Additionally, the nondegenerate transformation (with the help of canonical relations) is a
transition from one invariant structure to another invariant structure. This demonstrates
the connection between the degenerate and nondegenerate transformations.

One can see that such a connection describes a mechanism of evolutionary processes.

3. Connection of Hamiltonian Systems with the Equations of Mathematical Physics

The Hamiltonian systems, as well as the field theory equations, are relations, rather
then differential equations. A specific feature of such relations consists in the fact, as
opposed to differential equations where solutions are functions, solutions to relations are
differentials, namely, closed exterior forms that are invariants. Such relations describe
physical structures, since the closed inexact exterior forms, which are conservative quanti-
ties, and relevant dual forms describe structures on which conservation laws are fulfilled.
(In paper [6] demonstrated that closed exterior forms and the corresponding dual forms
of the zero and first degree are solutions to the equations of Hamilton formalism; the
electromagnetic field equations are based on closed exterior forms and its corresponding
dual form of second degree; the gravitational field is based on closed exterior and dual
forms of third degree.).

Such relations are obtained from the mathematical physics equations when studying
the integrability of equations (that depends on the consistency of the derivatives of the
described functions with respect to various variables and on the consistency of equations if
the mathematical physics equations are a set of equations).

The Hamiltonian system results when studying the integrability of partial differential
equation of the first order that does not explicitly depend on the function desired and it is
resolved with respect to some variables, for example, the time t. That is, the equation has
the form

∂u
∂t

+ E(t, xj, pj) = 0, pj =
∂u
∂xj (5)

The differential equation appears to be integrable if the derivatives of this equation
made up a differential. This is true when the skew-symmetric differential form θ = pj dxj
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(the summation over repeated indices is implied) is a closed exterior form (the differential
of skew-symmetric form equals zero), i.e., it is a differential.

In the general case, from Equation (5), it does not follow (explicitly) that the derivatives
pj = ∂u/∂xj, which obey to the Equation (and given boundary or initial conditions of the
problem), made up a differential.

It turns out that, without additional conditions, the differential equation is non-
integrable on original coordinate space. On original coordinate space, the solution to
differential equation is not a function, since the derivatives of this solution do not make up
a differential.

In order to obtain a solution that is a function (i.e., the derivatives of this solution
compose a differential), it is necessary to add a closure condition for the form θ = pjdxj

and for corresponding dual form (in the present case, the functional ∂u
∂t + E(t, xj, pj)

plays a role of a form dual to θ):{
d( ∂u

∂t + E(t, xj, pj)) = 0
d(pj dxj) = 0

(6)

The dual form that corresponds to exterior differential form defines a structure, on
which the closed inexact exterior form is defined.

In order to expand the differentials, one obtains a set of homogeneous equations with
respect to dxj and dpj (in the 2n-dimensional cotangent space):

{ (
∂E
∂xj

)
dxj +

(
∂E
∂pj

)
dpj = 0

dpj dxj − dxj dpj = 0
(7)

The solvability conditions for this system (vanishing the determinant that is composed
of coefficients at dxj, dpj) have the form:

dxj

∂E/∂pj
=
−dpj

∂E/∂xj = dt

and can be reduced to the form

dxj

dt
=

∂E
∂pj

,
dpj

dt
= − ∂E

∂xj (8)

These are characteristic relations for Equation (5), which are conditions of integrability
of this equation.

The canonical relations have just such a form, as is well known.
Characteristic relations determine an integrable structure on which the derivatives of

Equation (5) p1 = ∂u/∂t , pj = ∂u/∂xj made up a differential

(− E dt + pj dxj)π = dπ u

namely, a closed inexact exterior form on the integrable structure that is a dual form.
This points to the emergence of a physical structure that corresponds to conservation law,
namely, a structure with conservative quantity (closed exterior form).

The solution to Equation (5) corresponding to such derivatives will be a discrete function.
One can see the correspondence between relations (8) (which are an example of

canonical relations) and the Hamiltonian system. This correspondence enables one to
disclose the peculiarities of Hamiltonian systems and its solutions.

4. Peculiarities of Hamiltonian Systems

It has been shown that Equation (5) only becomes integrable if the supplementary
conditions, namely, the canonical relations (8), are realized.
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As it is known, for a description of integrable systems, the equation that obeys inte-
grability conditions has been obtained. The Hamilton–Jacobi equation is such an equation.

Equations of such type include the equation

∂S
∂t

+ H

(
t, qj,

∂S
∂qj

)
= 0,

∂S
∂qj

= pj (9)

where S is the action functional.
Corresponding characteristic relations for Equation (9) have the form

dqj

dt
=

∂H
∂pj

,
dpj

dt
= −∂H

∂qj
(10)

that is, they are a Hamiltonian system.
Here, it should be emphasized that, in spite of the fact that Equations (5) and (9) have

the same form, they significantly differ from one another.
The distinction consists in the fact that Equation (5) is defined on tangent space,

whereas Equation (9) does so on cotangent space.
Equation (5) is nonintegrable on original space, as has been shown. The drivatives

of the solution do not make up a differential. The solution is not a function (but it has a
physical meaning). The integrability (local) is possible if additional conditions (conditions
of degenerate transformation), such as vanishing the determinant (that may be caused by
any degrees of freedom) are realized.

Under degenerate transformation, the transition from tangent manifold to the cotan-
gent one takes place. This occurs discretely when the conditions of degenerate transfor-
mation are fulfilled and the integrable structures (bundles of cotangent manifold) with a
discrete function are realized, as it was shown.

That is, the solutions to Equation (5) possess a duality. They are obtained on original
coordinate space as well as on integrable structures. A connection between these solu-
tions and transitions from the solution on coordinate space to the solutions on integrable
structures describe the mechanism of evolutionary processes that proceed in the system
under consideration.

As opposed to Equation (5), Equation (9) is integrable. This equation obeys a Hamilto-
nian system. Such an equation can only have a solution on structures of cotangent space
that are defined by the solution of Hamiltonian system.

Compatibility between Equations (5) and (9) shows that the Hamiltonian system may
be realized from differential equation that describes any processes. The Euler–Lagrange
equation is such an equation, as shown in Section 2.

From the analysis of Equation (5), one can see that the realization from differential
equation of Hamiltonian system, as a canonic relation describes the evolutionary process
of physical structures emergence. Additionally, Hamiltonian systems, as independent
equations, are dynamic systems that describe only possible structures.

5. Conclusions

The investigation of Hamiltonian systems with the help of skew-symmetric differ-
ential forms reveals a unique role of Hamiltonian systems in various mathematical and
physical formalisms.

In classical mechanics, the Hamiltonian system, as a integrability condition of the
Euler–Lagrange equation, discloses a nonequivalent correspondence between Lagrange
and Hamilton descriptions of the state of mechanical systems under consideration.

In the theory of differential equations, the Hamiltonian system as a canonical relation
is a integrability condition of differential equations.

There is a correspondence between Hamiltonian systems and field theory equations.
Hamiltonian systems, as well as the field theory equations, are relations (whose solutions
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are differentials) rather then differential equations (whose solutions are functions). It can
be noted that, in the field theory, the Hamiltonian enters into the Schrodinger equation.

The Hamiltonian system, as an example of dynamical system, points out to a possi-
ble connection between dynamical systems and differential equations (as generators of
dynamical systems).

In topology, the Hamiltonian system describes a structure of cotangent (covariant) space.
In the theory of transformations, the Hamiltonian system (as a canonical relations)

describes nondegenerate transformations (transformations that save a differential), which,
in particular, are field theory transformations.
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