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Abstract: The Pauli exclusion principle (PEP) can be considered from two aspects. First, it asserts that
particles that have half-integer spin (fermions) are described by antisymmetric wave functions, and
particles that have integer spin (bosons) are described by symmetric wave functions. It is called spin-
statistics connection (SSC). The physical reasons why SSC exists are still unknown. On the other hand,
PEP is not reduced to SSC and can be consider from another aspect, according to it, the permutation
symmetry of the total wave function can be only of two types: symmetric or antisymmetric. They
both belong to one-dimensional representations of the permutation group, while other types of
permutation symmetry are forbidden. However, the solution of the Schrödinger equation may have
any permutation symmetry. We analyze this second aspect of PEP and demonstrate that proofs of PEP
in some wide-spread textbooks on quantum mechanics, basing on the indistinguishability principle,
are incorrect. The indistinguishability principle is insensitive to the permutation symmetry of wave
function. So, it cannot be used as a criterion for the PEP verification. However, as follows from our
analysis of possible scenarios, the permission of states with permutation symmetry more general
than symmetric and antisymmetric leads to contradictions with the concepts of particle identity and
their independence. Thus, the existence in our Nature particles only in symmetric and antisymmetric
permutation states is not accidental, since all symmetry options for the total wave function, except
the antisymmetric and symmetric, cannot be realized. From this an important conclusion follows, we
may not expect that in future some unknown elementary particles that are not fermions or bosons
can be discovered.

Keywords: Pauli exclusion principle; spin-statistics connection; indistinguishability principle; per-
mutation symmetry

1. Introduction

This paper is devoted to one of the fundamental principles of quantum mechanics—
the Pauli Exclusion Principle (PEP). Since the formulation of PEP was not derived from
general concepts of quantum mechanics and based on experimental data, its theoretical
foundation is still not based rigorously. In the following sections, I will analyze the existing
problems.

The conceptions of quantum mechanics were formulated in 1925. The first papers
were published by Heisenberg, Born, and Jordan [1,2] using the matrix formalism. It is
interesting to mention that Heisenberg [1] did not know that matrices are long ago used in
mathematics and independently created the mathematical formalism for his study. Born,
who used matrices in his lectures, in the paper with Jordan [2] noted that Heisenberg
introduced in quantum mechanics the well-known in mathematics matrix calculus. At the
same year, de Broglie [3] suggested the wave-particle dualism. In 1926 Schrödinger basing
on the wave-particle dualism, introduced the wave function ψ describing micro-particles
and formulated his famous wave equation [4,5].

First application of the new-born quantum mechanics to many-particle systems was
made independently by Heisenberg [6] and Dirac [7] in 1926. In both studies, the authors
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obtained the Pauli principle as a consequence of the antisymmetry of the Schrödinger wave
function and the antisymmetric many-electron wave functions were constructed.

Heisenberg [6] presented the antisymmetric eigenfunction as a sum of n identical particles:

ϕ =
1√
n!

∑(−1)δk ϕ1

(
mk

α

)
ϕ2

(
mk

β

)
. . . ϕn

(
mk

ν

)
. (1)

where δk. is a number of transpositions in permutation Pk, that is, it is a parity of per-
mutation, and mk

αmk
β . . . mk

ν is the new order of quantum numbers m1m2 . . . mn after the
application of the permutation Pk. This function cannot have two particles in the same state
and Heisenberg concluded that it satisfies the exclusion principle formulated by Pauli.

Dirac [7] represented an N-electron antisymmetric function in a determinantal form
constructed with one-electron wave functions ψni :

Ψn1n2 ...nr (1, 2, . . . , r) =

∣∣∣∣∣∣∣∣
Ψn1(1) Ψn1(2) . . . Ψn1(r)
Ψn2(1) Ψn2(2) . . . Ψn2(r)

. . . . . . . . . . . .
Ψnr (1) Ψnr (2) . . . Ψnr (r)

∣∣∣∣∣∣∣∣ (2)

where number of electrons N = r. It is worth-while to note that the determinantal repre-
sentation of the electronic wave function, was first introduced by Dirac [7] in 1926. In
1929 Slater [8] inserted spin functions into the determinant for calculations of the atomic
multiplets. At present, the so-called Slater’s determinants are widely used in atomic and
molecular calculations.

After presenting the many-electron wave function in the determinantal form,
Dirac [7] wrote:

“An antisymmetric eigenfunction vanishes identically when two of the electrons are
in the same orbit. This means that in the solution of the problem with antisymmetric
eigenfunctions there can be no stationary states with two or more electrons in the same
orbit, which is just Pauli’s exclusion principle.”

Thus, with the creation of quantum mechanics, the introduced by Pauli prohibition on the
occupation numbers of electron system was supplemented by the prohibition of all types
of permutation symmetry of electron wave functions except the antisymmetric ones.

The first quantum-mechanical calculation of the anomalous Zeeman effect in strong
magnetic field was performed by Heisenberg and Jordan [9]. In their study the Heisenberg
matrix approach was used. They introduced the spin vector s with components sx, sy, sz
obeying the same commutation relations as the components of the orbital angular moment
l. The obtained results were in a full accordance with experiment.

Next year Pauli [10] studied the spin problem using the Schrödinger wave function.
Pauli introduced spin operators sx, sy, sz. acting on wave function. The latter was de-
pending on the three spatial coordinates q and a spin coordinate. As a spin coordinate,
the spin projection sz was used. The latter is discrete with only two values. Therefore
the wave function ψ(q, sz) has only two components ψα(q) and ψβ(q) corresponding to
sz = 1

2 and sz = −1/2, respectively. The operator, acting on the two-component functions,
is presented as a matrix of the second order. The explicit form of the spin operators was
obtained. They were represented as sx = 1/2σx, sy = 1/2σy, and sz = 1/2σz, where στ are
the well-known Pauli matrices. Applying this formalism to the anomalous Zeeman effect,
Pauli obtained the same results that were obtained by Heisenberg and Jordan [9] using the
matrix approach.

Dirac applied the Pauli matrices in his famous derivation of the relativistic Schrödinger
equation for the electron [11]. In this study Dirac created the rigorous relativistic quantum
theory of the electron that includes naturally the conception of spin. We will not go inside
the Dirac relativistic theory but will discuss some consequences from it first analyzed by
Schrödinger in his remarkable paper [12]. Schrödinger [12] revealed that from the Dirac
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equation for the electron follows the rapid oscillatory motion of the massless charge with
the velocity c around a center of mass. Schrödinger named it in German as Zitterbewegung.
This original model developed by Schrödinger induced a discussion of the origin of spin.
Below we present a critical analysis of this discussion, which at present is still going on.

As was shown by Barut and collaborators [13,14], if one expresses Dirac’s dynamic
variables via the spin variables, spin appears as an orbital angular momentum of the
Zitterbewegung, see also [15–17] and recent publication by Hestenes [18]. These studies
demonstrate how the conception of spin follows from the relativistic quantum mechanics.

However, some authors, see for instance Ref. [19–22], basing on so-called stochastic
electrodynamics [23,24], claimed that from it follows the classical origin of the spin of
electron. In these publications, it was considered that the concept of spin does not follow
from quantum mechanics. Muradlijar [21] even in the title of his paper stressed that
spin has a classical origin. The point is that the authors of stochastic electrodynamics,
Marshall [23,24] and then Boyer [25–28], inserted in classical electrodynamics the zero-
point radiation, or the zero-point field (ZPF), depending on the Planck constant h̄ and
connected with discussed above Zitterbewegung [12].

The creators of stochastic electrodynamics have stressed that ZPF has a classical
nature. Thus, Boyer in all his numerous publications names ZPF as classical, in spite that
he obtained, using this “classical” ZPF, the exact quantum expressions for the dispersion
forces [25]. As was demonstrated in papers [29,30], the stochastic electrodynamics allows
to obtain the Lamb shift that is a pure quantum electrodynamics effect.

In his publication in 2018, Boyer [28] tried to prove that the quantum Planck constant
h̄ inserted in classical physics plays role only as a scaling factor. He noted that if one put
h̄ → 0 in quantum theory, it loses quantum properties, while classical physics remains
classical even if it contains terms depending on h̄. This viewpoint may not be considered
as correct; it is a fallacy. By definition, classical physics may not contain quantum terms.
The inclusion of the zero-point radiation in classical electrodynamics provides it by the
quantum properties. The zero-point radiation is a quantum phenomenon, its energy equal
to 1

2}ω0. In the classical limit when h̄→ 0, it does not exist.
The same is true in respect to the electron spin s = 1/2 h̄. It is evident that in classical

physics when h̄→ 0, the spin s = 0. Pauli was completely right when he stressed that the
spin is a quantum property of electron that cannot be defined in classical physics.

After this discussion of origin of the spin concept let us return to PEP.
In 1932 Chadwick [31] discovered neutron. Consequences of the model, in which

the nuclei are built from neutrons and protons, but not from protons and electrons, as
was accepted before, was studied by Heisenberg [32]. He put into account that the forces
between neutrons and protons (strong interaction) are equal and in this sense the neutron
and proton can be considered as different states of one particle, it means that the electro-
magnetic interaction are negligible in comparison with strong interaction. Heisenberg
introduced a variable τ; for the neutron state, τ = 1 was assigned and the value τ = −1 was
assigned to the proton state. Wigner [33] named τ as isotopic spin (at present it is named
also as isobaric spin). The isotopic spin has only two values, so, it can be represented as in
the fermion case, as τ = 1

2 . Considering that for neutrons and protons their nuclear spin
s = 1

2 too, Wigner studied the nuclear charge-spin supermultiplets using the Hamiltonian
not depending on the nuclear and isotope spins.

After discovery of various types of elementary particles, it was revealed that, as
follows from experiment, all discovered elementary particles are described by wave func-
tions of only two types of symmetry: completely symmetric and antisymmetric. As
a result, the exclusion principle formulated Pauli for electrons was generalized on all
elementary particles:

“The only possible states of a system of identical particles possessing spin s are those for
which the total wave function transforms upon interchange of any two particles as

PijΨ(1, . . . , i, . . . , j, . . . , N) = (−1)2sΨ(1, . . . , i, . . . , j, . . . , N) (3)
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That is, it is symmetric for integer values of s (the Bose-Einstein statistics) and antisym-
metric for half-integer values of s (the Fermi-Dirac statistics)”.

This general formulation holds also for composite particles. Ehrenfest and Oppenheimer [34]
considered some clusters of electrons and protons (at that time the neutron had not been
discovered): atoms, molecules, and nuclei. According to the rule formulated in Ref. [34],
the cluster’s statistics depends upon the number of particles from which they are built up.
For odd number of particles, it is the Fermi-Dirac statistics, and in the case of even number
it is the Bose-Einstein statistics. This rule is valid, if the interaction does not change internal
states of the composite particles, they are stable enough to preserve its identity.

The atomic nucleus represents a good example of such stable composite particle. Such
particle consists of nucleons: neutrons and protons, which are fermions, since they have
nuclear spin s = 1/2. Thus, one can speak, depending on the value of the total nuclear
spin, of fermion nuclei or boson nuclei, see Figure 1. The nuclei with an odd number of
nucleons have a half-integer value of the total spin S and are fermions, while the nuclei
with an even number of nucleons are bosons, because they have an integer value of the
total spin S. It is well known that for the 16O2 molecule the validity of PEP was precisely
checked in experiment, see Ref. [35] where a detailed discussion was presented.
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The above generalized formulation of PEP can be considered from two aspects. First,
it asserts that particles with integer spin (bosons) are characterized by symmetric wave
functions, while the particles with half-integer spin (fermions) are characterized by anti-
symmetric wave functions. This is the so-called spin-statistics connection (SSC). On the
other hand, PEP is not reduced only to SSC. It can be considered from another side—the
allowed symmetry types of many-particle wave functions are restricted. Namely, only
symmetric and antisymmetric permutation symmetries are allowed. Both symmetry types
belong to one-dimensional permutation group representations, other types of permutation
symmetry are forbidden.

These two aspects of PEP will be discussed in next two sections.

2. Spin-Statistics Connection

As follows from the previous text, the initial formulation of PEP by Pauli for electrons
and its generalization for all elementary particles are based on analysis of experimental
data. Pauli was not satisfied by that. As Pauli said, in his Nobel Prize lecture [36]:

“Already in my initial paper, I especially emphasized the fact that I could not find a logical
substantiation for the exclusion principle nor derive it from more general assumptions. I
always had a feeling, which remains until this day, that this is the fault of some flaw in
the theory.”

Let us stress that this was said in 1946, or after the Pauli famous theorem [37] of the
relation between spin and statistics. The point is that in this theorem, Pauli did not give a
direct proof. As he showed, due to some physical contradictions, the second quantization
operators for particles with half-integer spins cannot obey the boson commutation relations,
while the second quantization operators for particles with integer spins cannot obey the
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fermion commutation relations. Pauli was not content by such kind of negative proof. Very
soon it became clear that, as usual, Pauli was right.

The Pauli theorem [37], is implicitly assumed that particles can obey only fermion
or boson types of commutation relations. However, this fact was not rigorously proved
and stemmed from known at that time experimental data. In 1953 Green [38] and then
independently Volkov [39] showed that it can be introduced more general, paraboson
and parafermion trilinear commutation relations, which are satisfied by all physical re-
quirements and contain the boson and fermion commutation ITALICrelations as particular
cases. The introduced parastatistics is classified by its rank p. In the case of the parafermi
statistics, p is the maximum occupation number. The parafermi statistics for p = 1, becomes
identical to the Fermi-Dirac statistics (a more detailed and rather compact description of
parastatistics is presented by Greenberg and Messiah [40], see also book by Ohnuki and
Kamefuchi [41].

The elementary particles obeying the parastatistics are not detected up to date. In
1976, the author [42] revealed that for the quasiparticles in a crystal lattice, e.g., for the
Frenkel excitons or magnons the parafermi statistics is realized. However, Green’s trilinear
commutation relations are modified by the quasi-impulse conservation law due to a
periodical crystal field. Later on, as was shown in several theoretical papers, the modified
parafermi statistics introduced by Kaplan [42], is valid for different types of quasiparticles
in a periodical lattice among them: polaritons [43,44], defectons [45], delocalized holes in
crystals [46], and some others [47,48].

After 1940 numerous proofs of SSC have been published, but none of them were rigor-
ous; see, for instance, the Pauli criticism [49] on the proofs of such high-level physicists as
Feynman [50] and Schwinger [51]. In the comprehensive book by Duck and Sudarshan [52]
practically all proofs of the spin-statistics connection published at that time were criticized,
see also Refs. [53,54].

In his famous lectures Feynman [55] apologized in the front of audience:

“Why is it that particles with half-integral spin are Fermi particles whose amplitudes
add with the minus sign, whereas particles with integral spin are Bose particles whose
amplitudes add with the positive sign? We apologize for the fact that we cannot give you
an elementary explanation . . . It appears to be one of the few places in physics where
there is a rule which can be stated very simply, but for which no one found a simple and
easy explanation. The explanation is deep down in relativistic quantum mechanics”.

After this Feynman comment, it appeared many publications, in which authors claimed
that they fulfilled the Feynman requirement and proposed a simple explanation of SSC.
However, these proofs cannot be based in the frame of traditional quantum mechanics.

The simple, according to authors, proofs of SSC are still published, see recent pa-
pers [56–60]. For instance, Jabs [56] for proving SSC postulated a special procedure for
the exchange of identical particle that includes an additional rotation and differs from
the simple definition of exchange in quantum mechanics. The same drawback has the
relativistic proof by Bennet [57] based on the proof [56]. Santamato and De Martini [58–60]
proved the spin-statistics theorem in the frame of specially developed conformal quantum
geometrodynamics where wave functions are not applied, although some “wave function”
is used, but it is the same for fermions and bosons, since it does not change upon permu-
tations. The proof was also based on introduced in their article [58] a special “intrinsic
helicity” of elementary particles. For authors it was not important whether this property
has been detected in experiment or not. The neglect of experimental evidence is typical for
pure mathematical approaches to physics.

Thus, to the best of my knowledge, we still have no simple answer, what are the phys-
ical reasons that identical particles with integer spin are described by symmetric functions
and identical particles with half-integer spin are described by antisymmetric functions.
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3. Theoretical Foundations of PEP
3.1. Indistinguishability of Identical Particles and the Symmetrization Postulate

In the end of Section 1 we pointed out that the general formulation of PEP, see p. 4 (in
proofs to put a real page number) can be considered from two aspects. As follows from our
discussion in Section 2, the first aspect of PEP, namely – SSC, is still waiting its solution. In
this Section we will discuss the second aspect of PEP, according to which only symmetric
and antisymmetric types of permutation symmetry are allowed (both belong to the one-
dimensional representations of the permutation group).

The Schrödinger equation does not change under permutation of identical particles. It
should be also noted that the permutation operators commute with the Hamiltonian of an
identical particle system,

[P, H]− = 0, (4)

from this equation follows that the solutions of the Schrödinger equation can belong to any
representation of the permutation group, that is, also to multi-dimensional representations.

The question might be asked:

“whether the PEP limitation on the solution of the Schrödinger equation follows from the
fundamental principles of quantum mechanics or it is an independent principle?”

Depending on the answer on this question, physicists studding the foundations of quantum
mechanics can be divided on two groups.

Some physicists, including the founder of quantum mechanics Dirac [61] (see also the
concepts presented by Schiff [62] and Messiah [63] in their books), had assumed that there
are no laws in our nature that forbid the existence of particles described by wave functions
with permutation symmetry more complicated than those of fermions an bosons and the
existing limitations are due only to the properties of the known at that time elementary
particles. Messiah [63] has even introduced the symmetrization postulate. This term
emphasizes the primary nature of the constraints, following from PEP, on the allowed types
of the wave function permutation symmetry.

In his Princeton address, Pauli [64], formulated quite general the independence of his
exclusion principle from other fundamental principles of quantum mechanics:

“The exclusion principle could not be deduced from the new quantum mechanics but
remains an independent principle which excludes a class of mathematically possible
solutions of the wave equation. This excess of mathematical possibilities of the present-
day theory, as compared with reality, is indications that in the region where it touches on
relativity, quantum theory has not yet found its final form.”

There is another viewpoint on this problem. According to it, the symmetrization postulate
is not an independent principle, it can be derived from other fundamental principles of
quantum mechanics. This idea had been represented not only in articles (critical comments
on some publications were made in Refs. [65,66]), but in some textbooks on quantum
mechanics [67–69], including the famous textbook by Landau and Lifshitz [68]. In these
books, the proof of PEP was made using the principle of indistinguishability of identical
particles. The incorrectness of the proof in Corson’s [67] book was noted by Girardeau [66].
The proofs represented in Refs. [67–69] were critically analyzed in the author’s paper [70]
(a more detailed criticism was given in Refs. [35,71]). However, incorrect proofs of the
symmetrization postulate have been still appeared in current literature.

In review by Canright and Girvin [72] devoted to the fractional statistics, the authors
presented the same erroneous proof as it is in books [67–69]. It should be mention that the
creators of the fractional statistics Leinaas and Mirheim in their paper on the fractional
statistics [73] accepted wrong idea of Mirman [74] that for identical particles the word
“exchange” has no physical sense and therefore the indistinguishability principle used in
quantum mechanics has also no physical sense. Although the studies by authors [73] in
2D space were really pioneer and correct, the part in their paper devoted to 3D space was
wrong. If really the exchange, that is, a permutation of two particles, has no physical sense,



Symmetry 2021, 13, 21 7 of 16

then the permutation group could not be applied in physics, and fermions and bosons,
distinguishing in respect to action of permutations, could not be defined. Nevertheless,
this wrong idea was widely accepted in consequent studies in the fractional statistics field,
see for instance book by Khare [75]. In my book [76], see Section 5.4, this wrong conception
of exchange is discussed it in detail.

Even in the recently published, very good in many fundamental aspects of quantum
mechanics and quantum chemistry, book by Piela [77], the represented proof of PEP has
the same errors, as in the cited above textbooks. Thus, it is worth-while to analyze the
proof of the symmetrization postulate once more.

The typical argumentation (it is the same in Refs. [67–69,72,77]) is the following.
It was assumed that the states obtained by permutations of identical particles must be
physically equivalent. From this statement, authors conclude that any transposition of two
identical particles in the considered system should multiply the wave function only on an
insignificant phase factor,

P12 Ψ(x1, x2) = Ψ(x2, x1) = eiα Ψ(x1, x2) (5)

where α is a real constant and x is the set of spin and spatial variables. One more application
of the permutation operator P12 gives

Ψ(x1, x2) = ei2α Ψ(x1, x2) (6)

or
e2iα = 1 and eiα = ±1. (7)

Since all particles are assumed to be identical, the wave function should be changed in
the same way under transposition of any pair of particles, thus, it should be either totally
antisymmetric or symmetric.

This simple proof at first glance looks quite convincing. It seems that the simplicity
of this proof hypnotizes readers to accept it without any criticism. However, the proof
presented by Equations (5)–(7) contains two essential incorrectness at once. The first
incorrectness simply follows from the group theory formalism. Equation (5) is valid only
for one-dimensional representations. In the case of a multidimensional representation with
dimension f, the application of a group operation to one of its basis functions transforms it
as a linear combination:

P12 Ψi =
f

∑
k=1

Γki(P12 )Ψk (8)

where coefficients Γki(P12) form a square matrix of the order f.
The application of the permutation operator P12 to both sides of Equation (8) leads to

the identity. In contrary with Equation (6), we cannot arrive at any information about the
permutation symmetry of the wave function. The requirement that under permutation the
wavefunction should be multiplied on an insignificant wave-factor, one actually postulates
that the representation of the permutation group is one-dimensional. Thus, this proof is
based on the initial statement, which is proved as a final result.

The second incorrectness in the proof follows from physical considerations laying
in the base of quantum mechanics. This proof is related to the behavior of the wave
function. Although the wave function is not an observable. The indistinguishability
principle is related to it indirectly via the expressions of measurable quantities. In quantum
mechanics, the physical quantities are expressed as bilinear forms of wavefunctions. The
indistinguishability principle can be formulated as the invariance of these bilinear form:〈

P Ψ| L̂
∣∣PΨ

〉
=
〈

Ψ| L̂ |Ψ
〉

(9)
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where L̂ is an arbitrary operator. Girardeau [66,78] formulated the indistinguishability prin-
ciple as the invariance of the probability density of the configuration of identical particles,

P | Ψ(x1, . . . , xN)|2 = | Ψ(x1, . . . , xN)|2 (10)

For a function satisfying Equation (10), it is sufficient that under permutations it
changes as

P Ψ(x1, . . . , xN) = eiαp (x1,...,xN) Ψ(x1, . . . , xN), (11)

that is, unlike the requirement of condition (5), the phase is a function of permutation and
coordinates, Equation (6) evidently does not hold.

As was discussed above, most proofs of the symmetry postulate contain unjusti-
fied constraints. It should be mention that proofs of the symmetry postulate without
imposing additional constraints have been given by Girardeau [66,78] and the author [70].
Girardeau [66,78] based it on Equation (10), and in my paper [70] it was based on Equation
(9). As was noted later by the author [35,71,79], the proofs, in the forms (9) and (10) are
valid only for non-degenerate states.

In the degenerate state, the system is described with the equal probability by any
wavefunctions of the degenerate state. So, one cannot select the pure state (the one that is
described by the wavefunction). We should regard the degenerate state as a mixed one,
in which each wavefunction enters with the same probability. The presentation of the
density matrix through only one of the wavefunctions implies that the degeneracy has been
eliminated. However, it cannot be achieved without violating the identity of the particles.

Thus, both sides of Equations (9) and (10) must be sum over all wavefunctions that
belong to the degenerate state. The expression of the probability density is described via
the diagonal element of the density matrix and in the case of a degenerate state has the
following form

D[λ]
t (x1, . . . , xN ; x1, . . . , xN) =

1
fλ

fλ

∑
r=1

Ψ[λ]
rt (x1, . . . , xN)

∗ Ψ[λ]
rt (x1, . . . , xN), (12)

where Equation (12) is written for the fλ-dimensional representation Γ[λ] of the group πN

and the wave functions Ψ[λ]
rt are constructed by the Young operators ω[λ]

rt ,see Appendix A,
Equation (A2).

It can be proved that for every representation Γ[λ] of the permutation group πN , the
probability density, Equation (11), is a group invariant, that is, it is invariant upon action of
an arbitrary permutation. For an arbitrary finite group, it was proved in Ref. [80]. Thus, for
every permutation of the group πN

PD[λ]
t = D[λ]

t (13)

Equation (13) means that for all irreducible representations Γ[λ] of the permutation
group πN , the full density matrix (and all reduced densities matrices) transforms according
to the totally symmetric one-dimensional representation of πN . In this regard one cannot
distinguish between degenerate and nondegenerate permutation states. The expression for
the probability density (12) obeys the indistinguishability principle even in the case of multi-
dimensional representations. Therefore, the indistinguishability principle is insensitive to
the symmetry of wavefunction. So, it cannot be used as the criterion for selecting of its
correct symmetry.

It is important to note that from the discussion above does not follow that the wave
function is not significant, and in quantum-mechanical calculations can be used only the
density matrix formalism, as in the density functional theory (DFT). The symmetry of
wave function and the values of spin that characterized multiplets control the atomic and
molecular states allowed by the Pauli exclusive principle, see Chapter 4 in book [76]. For
the rotational states of the 16O2 molecule it was confirmed in experiment. Another example
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is the allowed multiplets in atomic spectroscopy. For example, in the (np)2 electronic shell
only 1S, 3P, and 1D states are realized. The latter were used for the classification of the
Cooper pair states in the theory of superconductivity.

At present, the elaborated by Kohn with co-authors [81,82], DFT approach became
the most widely used method for study molecules and solids. It can be applied to systems
with millions of atoms [83] applying modern computation facilities. In the atmosphere
of such great popularity, it is very important to know the limit of the applicability of
DFT methods. As it was rigorously proved at the theorem level by the author [80,84],
using group theoretical methods; the electron density for an arbitrary N-electron system
does not depend upon the total spin S. For all values of S it has the same form as for a
single-determinantal wavefunction. From this follows that the conventional Kohn-Sham
equations are the same for the states with different total spin.

The point is that the conception of spin in principle cannot be defined in the framework
of the electron density formalism, since it corresponds to the one-particle reduced density
matrix approach. The analysis by the author [80] of elaborated DFT procedures, which
take into account spin, showed that they modified only exchange functionals, while the
correlation functionals do not correspond to the total spin of the state. This is the main
reason of the problems that arise in the study of magnetic properties of the transition
metals by DFT approach. One of the possible ways to resolve these problems is to apply the
two-particle reduced density matrix formulation of DFT. However, in the most of published
studies, in which the two-particle reduced density matrix formalism is applied, only states
with S = 0 have been considered, see discussion in Ref. [84].

Let us stress that in functional density formalism such important physical property
as the phase of wave function cannot be defined. It also concerns the geometrical phase
of wave function suggested by Berry [85,86]. The Berry phase is a geometrical phase. It
appears in quantum systems that undergoes a cyclic adiabatic change, in addition to the
familiar dynamical phase in the wavefunction. For the same initial and final states of the
system, the geometrical phases of initial and final wave functions will be different.

The indistinguishability principle is insensitive to the permutation symmetry of wave-
function and, as was shown above, it is satisfied by wavefunctions with arbitrary symmetry.
Nevertheless, there are physical arguments [35,71,87], that the identical particle system
may not be characterized by an arbitrary permutations symmetry. In next subsection we
will discuss these arguments.

3.2. Analysis of the Properties of Identical Particle System Not Obeying PEP

Let us consider the property of a quantum system of N-identical particles without the
restrictions imposed by PEP. Thus, we assume that all possible permutation symmetries of
this system can be realized. The permutation symmetry of N identical particle system is
characterized by the irreducible representations of the πN group. They are labeled by the
symbol [λN ] of the corresponding Young diagram with [λN ] boxes and denoted by Γ[λN ],
see Appendix A.

The basis functions of an arbitrary irreducible representation Γ[λ] can be constructed
by applying the Young operators ω

[λ]
rt , see Equation (A2) in Appendix A, to the non-

symmetrized product of one-electron orthonormal functions (spin-orbitals) φa(i)

Φ0 = φ1(1)φ2(2) . . . . . . φN(N) (14)

numbers i in the argument of the function denote the set of particle space and spin co-
ordinates. We consider the case when all one-particle functions in Equation (14) are
different. It will not be qualitative changes in the results if some of one-particle function in
Equation (14) coincide.
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Action of the Young operators ω
[λ]
rt on the function Φ0 one obtained the basis functions

for an arbitrary irreducible representation Γ[λ]

Φ[λ]
rt = ω

[λ]
rt Φ0 = ( fλ/N!)1/2 ∑

P
Γ[λ]

rt (P)PΦ0 . (15)

According to PEP, only one-dimensional irreducible representations, either [N] or [1N],
are realized in nature, other irreducible representations are forbidden. In this subsection
we examine the situation that arises when no symmetry constraints are imposed.

One of the consequences of the different permutation symmetry of wave functions for
fermions and bosons is the dependence of the particle energy on the statistics of particles.
For the same law of dynamic interaction, the so-called exchange terms, which are appeared
in the one-particle approximation (Hartree-Fock approach), enter the expression for the
energy of boson and fermion system with opposite signs. The expression for the energy in
the state with symmetry, described by an arbitrary Young diagram [λ] with N boxes, was
obtained in Ref. [88] in a general case of non-orthogonal one-particle functions. For the
case when all functions in Equation (14) are different and orthogonal one gets

E[λ]
t = ∑

a
〈φa|h|φa〉+ ∑

a<b

[
〈φaφb|g|φaφb〉+ Γ[λ]

tt (Pab)〈φaφb|g|φbφa〉
]

(16)

where Γ[λ]
tt is the diagonal matrix element of the transposition Pab of functions φa and φb, h

and g are one- and two-particle interaction operators, respectively. Only exchange terms in
Equation (16) depend upon the permutation symmetry [λ] of the state. For one-dimensional
representations, Γ[λ]

tt (Pab) does not depend on the number of particles and the permutation
Pab: Γ[N](Pab) = 1 and Γ[1N ](Pab) = −1 for all Pab and N. For multi-dimensional representa-
tions, the matrix elements Γ[λ]

tt (Pab) depend on [λ] and Pab; in general, they are different
for different pairs of identical particles. The matrices of transpositions of all irreducible
representations for groups π2 −π6 are presented in book [89], Appendix 5.

Thus,

(1) transitions between states with different symmetry [λN] are strictly forbidden,
(2) N-particle states with different [λN] have a different analytical formula for its energy.

From this follows that each type of symmetry [λN] corresponds to a definite kind of
particles with statistics determined by this permutation symmetry.

Since the different [λN] corresponds to different statistics, the system of particles
with the definite permutation symmetry [λN] must have some additional inherent particle
characteristics that establishes why N-particles system is characterized by this permutation
symmetry, like half-integer and integer values of particle spin for fermions and bosons. This
inherent characteristic has to be different for different [λN]. Thus, the particles belonging
to different types of permutation symmetry [λN] are not identical. Just this, takes place in
the particular cases of fermions, [1N], and bosons, [N], that characterized by odd and even
values of the total spin S, respectively.

Let us trace down the genealogy of the Young diagrams for systems with different
number of particles. In Figure 2 the genealogy for all permitted [λN] with N = 2 to 4
is presented.
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The hypothetical particles that obey statistics intermediate between boson and fermion
statistics, we called as intermedions. They are characterized by the multi-dimensional
representations of the permutation group.

According to Figure 2, for fermions and bosons there are two non-intersecting chains of
irreducible representations:

[
1N]→ [

1N+1] and [N]→ [N + 1] , respectively. The energy
expressions for bosons and fermions does not depend on the number of particles in
the system. The situation drastically changes if we put into consideration the Young
diagrams describing the multi-dimensional representations. In this case, different [λN]
describe particles with different statistics. The number of different statistics depends
upon the number of particles and rapidly increases with N. In the case of the multi-
dimensional representations, we cannot select non-intersecting chains, as it is in the boson
and fermion cases.

As follows from Figure 2, the intermedion particles, characterized by the definite
[λN], in the N-th generation can originate from particles with different kinds [λN−1] in
the (N− 1)th generation, even from fermions or bosons. Thus, the N-particle state [λN ]
stems from the particles in the (N− 1)th generation with wave function, which must be in
general described by a linear combination of wave functions with different permutations
symmetry [λN−1].

In the simplest case of the three-particle system, the multi-dimensional representation
[λ3] = [21] proceeds from both two-particle representations: [λ2] = [2] corresponding to
bosons and [λ2] =

[
12] corresponding to fermions. Thus, if from the three-particle state

[21] delete one particle, the wave function describing the obtained two-particle state should
be a linear combination of symmetric and antisymmetric wave functions.

However, the wave function of two identical particles may not be described by some
superposition

Ψn(x1, x2) = c1Ψ[2](x1, x2) + c2Ψ[12](x1, x2). (17)

This superposition corresponds to non-identical particles since it does not satisfy the
indistinguishability principle. In fact,

P12

∣∣∣Ψn(x1, x2)
∣∣∣2 =

∣∣∣c1Ψ[2](x1, x2)− c2Ψ[12](x1, x2)
∣∣∣2 6=∣∣∣Ψn(x1, x2)

∣∣∣2 (18)

Let us stress that the permutation group, by definition, can be applied only to the iden-
tical particles. The symmetry of the identical particles system is characterized by the irre-
ducible representations Γ[λ] of the permutation group, but, not by their linear combinations.

The two identical particles can be only in the pure fermion or boson states. However, if
the multi-dimensional representations of the permutation group are permitted, the addition
of the third identical particle changes the boson and fermion statistics on the intermedion
statistics with the symmetry [λ3] = [21].
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It is obvious that for the ideal gas of N-identical particles, adding to the system one
identical particle cannot change the properties of created (N + 1)-particle system. On
the other hand, as was rigorously proved in Ref. [70], the permutation symmetry of non-
interacting identical particle system will not change if we introduce the interaction into
the system.

Thus, the scenario, in which all symmetry types [λN ] are allowed is in contradiction
with the concepts of particle identity and their independence from each other. These
contradictions are resolved when only one-dimensional irreducible representations of the
permutation group (symmetrical and antisymmetrical states) are permitted.

As we showed in this section, the physical picture, in which adding one particle
changes properties of all particles, contradicts the particle identity and its independence.
Although, it cannot be excluded for quasiparticles (collective excitations) systems, in which
quasiparticles are not independent. It is the case of excitons and magnons [42] or other
quasiparticle systems [46], see discussion in book [76], Chapter 5.

It is worth-while to mention that the multi-dimensional representations of the per-
mutation group can be used in quantum mechanics of identical particles, but only for its
factorized parts [89] and not for the symmetry of the total wave function, see also book by
Petrashen and Trifonov [90].

In Section 3.1 we showed that the so-called symmetrization postulate cannot be
derived from other fundamental principles of quantum mechanics. Nevertheless, it may
not be considered as a postulate, because all symmetry options for the total wavefunction,
except the one-dimensional representations, corresponding fermions and bosons, may not
be realized. These arguments can be considered as an answer on the second aspect of the
PEP: why in Nature only completely symmetric or antisymmetric multi-particle states
are realized. However, the physical reasons of the connection between the permutation
symmetry of wave function and the value of total spin (SSC) are still unknown.

4. Concluding Remarks

As we showed in Section 3.1, the indistinguishability principle is insensitive to the
permutation symmetry of wavefunction. It is satisfied by wavefunctions with arbitrary
symmetry. They can belong to the multi-dimensional representations characterized by the
Young diagrams [λN ] of general type. Thus, the indistinguishability principle cannot be
used for the verification of PEP. From this follows that all proofs based on PEP, including
proofs in textbooks [67–69,77], are incorrect.

However, we demonstrated in Section 3.2 that the scenario, in which an arbitrary
permutation symmetry (multi-dimensional representations) was permitted, leads to con-
tradictions with the concept of particle independence and their identity. Thus, the sym-
metrization postulate may not be considered as a postulate, since particles describing by
wave functions with symmetry, corresponding to multi-dimensional representations of the
permutation group, may not exist. These arguments explain why in Nature only symmetric
or antisymmetric multi-particle states are realized and can be considered as a theoretical
substantiation of PEP.

The realization in Nature only one-dimensional permutation symmetry (antisymmet-
ric and symmetric) is by no means accidental, as it was accepted. From this an important
consequence follows

“We may not expect that in future some unknown elementary particles can be discovered
that are not fermions or bosons”.

It is also important to stress that the existence of so-called fractional statistics does not
contradict PEP. According to fractional statistics, see subsection 5.4 in book [76], in the
2D-space a continuum of intermedium cases between boson and fermion cases can exist.
First this was shown by topological approach by Leinaas and Myrheim [73] and then by
Wilczek [91], who introduced anyons that obey any statistics. However, anyons are not
particles, they are quasiparticles (elementary excitations) in 2D-space. Particles can exist
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only in 3D-space and for them, as was proved above, only boson and fermion symmetries
are allowed.

In conclusion, I would like to stress that all known experimental data to date agree
with PEP. In different very precise experiments for the PEP verification, the Pauli-forbidden
transitions were not detected, see recent review [92].

At present we do not know any phenomena described by quantum mechanics where
PEP was not satisfied. This is confirmed also by precise calculations of H2 molecule, in
which PEP was certainly taken into account. The quantum mechanical calculations of the
dissociation energy and the first ionization potential [93,94] are in a complete agreement
with experimental values, see Table 1.1 in [95]. From this follows not only an additional
confirmation of PEP, but also a rather general conclusion that molecules obey the same
quantum-mechanical laws that obey traditionally physical objects: atoms and solids; at
nanoscale we should not distinguish between chemical and physical systems.
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Appendix A. Necessary Minimum Knowledge on the Permutation Group

The mathematical formalism of Young diagrams, characterizing the irreducible repre-
sentations of the permutation group, is presented below. For a more detailed treatise see
book by Rutherford [96], book [89], Chapter 2, or Appendix B in book [76].

The permutation symmetry of wave functions, as follows from the group theory, is
classified by the irreducible representations of the permutation group πN . These represen-
tations are labeled by the Young diagrams

[λ] = [λ1λ2 . . . λk],λ1 ≥ λ2 ≥ . . . ≥ λk,
k

∑
i=1

λi = N, (A1)

where λi is represented by a row of λi cells. The presence of several rows of identical length
λi are denoted by a power of λi. For example,
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The group π4 has five Young diagrams:

The Young diagram [λN ] uniquely corresponds to the irreducible representation Γ[λN ]

of the group πN . The permutation symmetry of the basis functions for an irreducible
representation Γ[λN ] are completely determined by the assignment of a Young diagram
[λN ]. Thus, the Young diagram [λN ] ascertains the behavior of basis functions under
permutations of their arguments. A Young diagram with one column corresponds to an
antisymmetric function. A diagram with one row corresponds to a function symmetric in
all its arguments. All other types of diagrams describe intermediate types of symmetry. It
was stablished certain rules that enable to find the matrices of irreducible representations
from the form of the corresponding Young diagram. These rules are very simple in the
case of the so-called standard orthogonal representation (the so-called Young-Yamanouchi
representation; see Ref. [89]).

The basis functions for the irreducible representation Γ[λN ] can be constructed via the
so-called normalized Young operators [89],

ω
[λ]
rt =

√
fλ

N! ∑
P

Γ[λ]
rt (P)P (A2)

where Γ[λ]
rt (P) are the matrix elements and fλ is its dimension of the irreducible represen-

tation Γ[λN ], the summation over P runs over all N! permutations of the group πN . The
application of operator (20) to a nonsymmetrized product of orthonormal one-electron
functions ϕa

Φ0 = ϕ1(1)ϕ2(2) . . . ϕN(N) (A3)

produces a normalized function

Φλ
rt = ω

[λ]
rt Φ0 =

√
fλ

N! ∑
P

Γ[λ]
rt (P)P Φ0 (A4)

transforming in accordance with the representation Γ[λN ].
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