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Abstract: High-dimensional data recognition problem based on the Gaussian Mixture model has
useful applications in many area, such as audio signal recognition, image analysis, and biological
evolution. The expectation-maximization algorithm is a popular approach to the derivation of the
maximum likelihood estimators of the Gaussian mixture model (GMM). An alternative solution is to
adopt a generalized Bayes estimator for parameter estimation. In this study, an estimator based on
the generalized Bayes approach is established. A simulation study shows that the proposed approach
has a performance competitive to that of the conventional method in high-dimensional Gaussian
mixture model recognition. We use a musical data example to illustrate this recognition problem.
Suppose that we have audio data of a piece of music and know that the music is from one of four
compositions, but we do not know exactly which composition it comes from. The generalized Bayes
method shows a higher average recognition rate than the conventional method. This result shows
that the generalized Bayes method is a competitor to the conventional method in this real application.

Keywords: Gaussian mixture model; maximum likelihood estimator; generalized Bayes estimator;
recognition rate

1. Introduction

Recognizing high-dimensional data is an important problem in many applications,
such as audio signal recognition, image analysis, and biological evolution. Especially, au-
dio signal classification is an important high-dimensional data analysis problem. There are
many tools that are established for audio signal classification. Convolutional neural net-
work and tensor deep stacking network were used to sound classification [1]. A joint
time-frequency approach was used in analyzing and extracting information from audio
signals [2]. In this study, we focus on the high-dimensional data recognition problem when
the data are assumed to follow Gaussian Mixture Models (GMMs). GMM is a very useful
model that can be adopted in many real applications [3–5].

We use a musical data example to illustrate this recognition problem. Suppose that
we have audio data of a piece of music and know that the music is from one of the four
compositions, Beethoven’s Moonlight Sonata, Beethoven’s Minuet in G major, Beethoven’s
Pastoral Symphony, or Beethoven’s Sonata Pathetique, but we do not know exactly which
composition it comes from. To efficiently identify the composition that contains this
piece of music, we can adopt signal recognition methods instead of a brute-force method.
To adopt an audio signal recognition method, for each composition, we can use all the
audio signal data or part of the audio signal data from this composition as training data
to fit a high-dimensional GMM. After obtaining the four respective fitted GMMs for the
four compositions, we can fit the audio data of this piece of music using these four GMMs,
and find the GMM that best fits these data. The composition corresponding to this GMM is
the composition to which this piece of music may belong.

We provide a general description of the method below. Suppose that we have K
training samples, and each sample is assumed to follow a high-dimensional GMM with
unknown parameters. These samples are used as training data to estimate the parameters of
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these K GMMs. Next, for a new sample that is known to be drawn from one of the K GMMs,
we intend to find the valid GMM from which this sample is drawn. A conventional method
applies the expectation-maximization (EM) algorithm to calculate the maximum likelihood
estimator (MLE) of each GMM based on these training data [6,7]. After substituting these
estimated parameter values into these GMMs, we can calculate the likelihood function
value of each GMM based on this new sample. Next, we assign this new sample to the
GMM with the highest likelihood function value. The rate of classifying the data to the
valid model is called the recognition rate. For related studies on audio signal recognition
or high dimensional data classification application, please refer to Reference [1,8–10].

In fact, the recognition rate mainly depends on the parameter estimation of the GMMs.
Although the EM algorithm is a widely-used method to derive the MLEs of a GMM,
it suffers from the local maxima problem and the initialization dependence problems.
In addition to the MLE method, an alternative approach is to adopt Bayes estimators
to estimate the parameters in the GMMs. The Bayesian approach has been widely-used
in many applications, such as the response ranking problem in the survey data analysis
and other areas [11].

By adopting a Bayes estimator, most studies focus on the Bayesian estimation, with
respect to a proper prior [12–14]. A challenge of adopting a Bayes estimator, with respect
to a proper prior is the selection of a suitable proper prior. In this study, we propose
the use of a Bayes estimator, with respect to an improper prior (noninformative prior),
which is called a generalized Bayes estimator [12], to estimate the parameters of GMMs.
In addition, we compare these two methods under the frequentist framework. To the best
of our knowledge, there are no reports in the literature regarding the use of the generalized
Bayes estimator in GMMs for this recognition problem.

A procedure is given in Section 2 to obtain the generalized Bayes estimator. This pro-
cedure applies the Gibbs sampling method to calculate the generalized Bayes estimator
and uses the k-means clustering method to find the initial values in the Gibbs sampling.
We investigate the performance of this method by a simulation study and also by an actual
real audio signal data application. The results show that the recognition rate obtained by
the generalized Bayes estimator is higher than that obtained by the MLE method derived
from the EM algorithm.

2. Methods

Suppose that we have K samples as training data, each with sample size n and drawn
from a p-dimensional GMM. These training data are used to estimate the parameters of the
K GMMs. The distribution of the jth GMM has the form

φ1jN
(
u1j, Σ1j

)
+ φ2jN

(
u2j, Σ2j

)
+ · · ·+ φmjN

(
umj, Σmj

)
, (1)

where m is the component number, N
(
uij, Σij

)
denotes a p-dimensional multivariate

normal distribution with the means uij = (uij1, ...., uijp)
′ and covariance matrix Σij, and φ′ijs

denote the proportions of the components in the GMM. The φ′ijs satisfy ∑m
i=1 φij = 1 and

φij ≥ 0. To simplify the notation, here, we consider a case in which each GMM has the
same component number m. The methods used in this study can be directly applied to
a case in which the K component numbers are different. In addition, to select a suitable
component number for a GMM, we can apply model selection criteria, such as the Akaike
information criterion (AIC) or other criteria, to find an appropriate component number.

Let yj1, ...., yjn, where yjl = (yjl1, ..., yjlp)
′, denote the training sample drawn from the

jth GMM, and we have K training samples {y11, ....y1n}, ......, {yK1, ....yKn} for the K GMMs.
Assume that we have another new p-dimensional sample that is drawn from one of the K
GMMs, and we are not aware of which model this sample is drawn from. The goal of this
study is to find the true model from which this new sample is drawn.

Here, the parameters of interest are θj =
{(

uij, φij, Σij
)
| i = 1, · · · , m

}
, j = 1, ..., K.

For a fixed j, to estimate the parameters uij and Σij, we propose the use of generalized
Bayes estimators, with respect to the Jeffreys prior
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π1
(
uij
)
= I
(
−∞ < uijh < ∞

)
, 1 ≤ i ≤ m, 1 ≤ h ≤ p

π2
(
Σij
)
= |Σij|−(p+2)/2, 1 ≤ i ≤ m,

(2)

where I(·) denotes the indicator function, and |A| denotes the determinant of the matrix
A. The prior π1

(
uij
)

is symmetry for different dimensions because, for each dimension,
the prior is (−∞, ∞). For estimating the parameters φij, we obtain an estimator of φij in the
Gibbs sampling steps given below.

To calculate the generalized Bayes estimator, we utilize a natural invariant loss func-
tion. Let X1, . . . , Xn be a random sample from a p-dimensional multivariate normal distri-
bution Np(µ, Σ) and

Xn =
1
n

n

∑
i=1

Xi and S =
n

∑
i=1

(Xi − Xn)(Xi − Xn)
′
.

The conditional posterior for µ and marginal posterior for Σ under the Jeffreys prior are

(µ|Σ, X1, . . . , Xn) ∼ Np(Xn,
1
n

Σ)

and
Σ|X1, . . . , Xn ∼ Inverse Wishart(S, n).

Under the entropy loss, defined by

L(µ̂, Σ̂; µ, Σ) = (µ̂− µ)Σ̂−1(µ̂− µ) + tr(Σ̂−1Σ)− log|Σ̂−1Σ| − p,

the generalized Bayes estimators of µ and Σ are

µ̂B = E(µ|X1, .., Xn) = Xn

and

Σ̂B =
n + 1

n
E(Σ|X1, .., Xn) =

(n + 1)
(n(n− p− 1))

S,

with respect to the Jeffreys prior (2) when p = 2 [15]. To provide a more simple form,
we propose using E(µ|X1, .., Xn) and E(Σ|X1, .., Xn) as estimators for estimating the mean
and the covariance matrix of a multivariate normal distribution for each subgroup in
the Gibbs sampler procedure introduced below. Although the result of Sun and Berger
(2007) [15] is specific to the two dimensional case, the simulation results shown in Section 3
reveal that the proposed estimator also has good performance in higher dimensional cases.

To adopt the above result to GMMs, we apply the Gibbs sampler to calculate the
generalized Bayes estimator, and derive the formulas in each step of the Gibbs sampler pro-
cedure. The Gibbs sampler is well-adapted to sampling the posterior distribution [16–18].
For implementing the Gibbs sampler, it is necessary to set the initial values of the parame-
ters. The k-means algorithm is a popular method for cluster analysis in data mining [2,19].
We adopt this algorithm to select the initial values in the Gibbs sampler procedure. The data
can be first approximately classified into several groups using the k-means approach.

To simplify the notation and without loss of generality, we consider the case of the first
GMM model with j = 1 in the procedure of Gibbs sampler below. Assume that we have
training data y1l , l = 1, ..., n, for the first GMM. The Gibbs sampler approach is to associate
with each observation y1l a missing multinomial variable zl ∼ Mm(1; ηl1, · · · , ηlm) such
that y1l conditions on zl = h follows a normal distribution N(uh1, Σh1),
whereMm(1; ηl1, · · · , ηlm) denotes a multinomial distribution with probabilities ηl1, · · · , ηlm.
Using the random variables zl, we can assign data y1l, l = 1, ..., n to m groups and then esti-
mate the mean and the covariance matrix for each subgroup. Thus, we have the following
procedure for calculating the generalized Bayes estimator by the Gibbs sampler.
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Procedure for calculating the generalized Bayes estimator of a GMM, with respect to
prior (2).

The notation “count” below denotes the iteration number.
Step 1. Adopt the k-means approach to classify the observations y1l , l = 1, ..., n to

m groups. For an i ∈ {1, ..., m}, the sample mean u(0)
i1 and the sample covariance Σ(0)

i1 of
the data which are clustered to the ith group are used as the initial values for ui1 and Σi1,
respectively. We can set an initial value for the φi1 to be the equal weight φ

(0)
i1 = 1/m for

i = 1, ..., m.
Step 2. For each l, l = 1, ..., n, obtain probabilities (ηl1, · · · , ηlm) in the multinomial dis-

tributionMm(1; ηl1, · · · , ηlm) for the missing variable zl based on (u(0)
i1 , Σ(0)

i1 , φ
(0)
i1 ) values

as follows. For w = 1, ..., m, let

η
(0)
lw = P

(
zl = w | u(0)

i1 , Σ(0)
i1 , φ

(0)
i1 , i = 1, ..., m

)

=

φ
(0)
w1

1

(2π)
p
2
√
|Σ(0)

w1 |
exp{− (y1l−u(0)

w1 )
′(Σ(0)

w1 )
−1(y1l−u(0)

w1 )
2 }

m
∑

i=1
φ
(0)
i1

1

(2π)
p
2
√
|Σ(0)

i1 |
exp{− (y1l−u(0)

i1 )′(Σ(0)
i1 )−1(y1l−u(0)

i1 )
2 }

.

Next, we generate z(0)l from the multinomial distributionMm

(
1; η

(0)
l1 , η

(0)
l2 , · · · , η

(0)
lm

)
for l = 1, ..., n.

Step 3. Let ni denote the number of z(count−1)
l equal to i for i = 1, ..., m. If there exists

an i such that ni = 0 for some i, go to Step 1 and redo the steps.
Let

u(count)
i1 = ∑

{l:z(count−1)
l =i}

y1l

n(count−1)
i

,

Σ
(count)
i1 =

1
n− p− 1 ∑

{l:z(count−1)
l =i}

(y1l − u(count)
i1 )(y1l − u(count)

i1 )
′

and

φ
(count)
i1 =

n(count−1)
i

n
.

Step 4. Let

η
(count)
lw = p

(
zl = w | u(count−1)

i1 , Σ
(count−1)
i1 , φ

(count−1)
i1 , i = 1, ..., m

)
=

φ
(count−1)
w1 exp{− (yl1−u(count−1)

w1 )′(Σ(count−1)
w1 )−1(yl1−u(count−1)

w1 )
2 }

m
∑

i=1
φ
(count−1)
i1 exp{− (yl1−u(count−1)

i1 )′(Σ(count−1)
i1 )−1(yl1−u(count−1)

i1 )
2 }

.

Next, we generate z(count)
l from the multinomial distribution

Mm

(
1; η

(count)
l1 , η

(count)
l2 , · · · , η

(count)
lm

)
.

Step 5. Repeat Steps 3 and 4 for count = c. Let

ûi1 =

c
∑

count=1
u(count)

i1

c
, Σ̂i1 =

c
∑

count=1
Σ(count)

i1

c
, φ̂i1 =

c
∑

count=1
φ
(count)
i1

c
.

The ûi1, Σ̂i1 and φ̂i1 are used to estimate ui1, Σi1 and φi1, respectively.
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The flowchart of the classification is presented in Figure 1. In addition, according to
Jasra, Holmes and Stephens (2005) [20], there are label switching problems in the Bayesian
analysis of finite mixture models. The problems are mainly caused by the nonidentifiability
of the components under symmetric priors [20,21]. To deal with the label switching
problem, we may avoid this problem by checking the results of the iterations, and relabel
them when a label switching occasion occurs.

 

K high-dimensional 
training data 

Fit K Gaussian mixture 
models 

Parameter estimation 

by the generalized 

Bayes estimator 

Parameter estimator 

by the MLE method 

A new high-dimensional data 

Fit the K models  

Classify this new data to the 
class with the highest 

likelihood value 

Figure 1. The flowchart of the classification.
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3. Results and Discussion
3.1. Simulation

To compare the generalized Bayes method with the MLE method derived by the EM
algorithm, we conduct a simulation study. The simulation is performed using MATLAB
codes. The MLEs derived from the EM algorithm of a GMM are obtained using the
MATLAB function gmdistribution.fit. The performances of the methods are evaluated in
terms of the recognition rate, which is defined below. For a new sample y∗1 , ..., y∗r (r > 0),
to classify it to one of the K models, we calculate the likelihood function values of this new
sample for each model when the parameters in each GMM are estimated by the training
data. Let gj(θ̂j, t) denote the likelihood function of the jth GMM, where θ̂j are estimated
based on the training data. There are a total of K likelihood function values associated with
this sample. For a method, we classify this sample to the GMM with the largest likelihood
function value, where the parameters are estimated by this method. That is, we classify
this sample to the vth GMM, where

v = arg maxj Πr
i=1gj(θ̂j, y∗i ). (3)

The recognition rate is the proportion that the data was classified to the valid model.
In the simulation, we first generate a sample with size n for each GMM with given parame-
ter values. Using these samples, we derive the maximum likelihood estimators and the
generalized Bayes estimators for the parameters of each GMM. Next, we randomly select
a GMM and generate a sample from this GMM. We repeat the above process 1000 times
and each time the true parameter values are reset. Then, we calculate the proportion in the
1000 replications that the sample is assigned to the valid GMM. Tables 1 and 2 shows the
recognition rates of the maximum likelihood method and the generalized Bayes method
for different cases when the number m of clusters in each model is assumed to be known.
The range of p for the simulation is from 3 to 40. The true parameters of GMMs used
in Tables 1 and 2 are selected by randomly generating uij from a p-dimensional uniform
distribution, with each dimension following a uniform U(0, w) distribution, and letting
Σ = V′V + pIp, where V is a p× p matrix with each element generated from a uniform
distribution U(0, 1), and Ip is a p-dimensional identity matrix.

The simulation results in Tables 1 and 2 show that the generalized Bayes approach
improves the recognition rate compared with the MLE approach, especially when the
training data sample size is not large. In Tables 1 and 2, the sample size r of the test data is
from 20 to 80. The recognition rates for both methods increase when r increases. We can
see that the generalized Bayes approach is always better than the MLE method even when
r is not large. In addition, there is a tendency that the improvement of the generalized
Bayes approach increases when r increases. For example, in the first case in Table 1,
the recognition rate increases from 0.4884 to 0.5350 for the MLE method, with increase
0.0466. The recognition rate increases from 0.5058 to 0.6427 for the generalized Bayes
approach method, with increase 0.1369. Furthermore, we consider the dimension p from 3
to 40 in this simulation study. When p increases, the recognition rate for the generalized
Bayes approach method has better improvement than the MLE method. For example,
for the case of n = 2000, K = 5, m = 4, w = 4, and r = 20, in Table 1, we can see that
the recognition rates of the generalized Bayes approach and the MLE method are 0.9390
and 0.9200 for the case of p = 6, respectively. In Table 2, we can see, for the case of
n = 2000, K = 5, m = 4, w = 4, and r = 20, the recognition rates of the generalized Bayes
approach and the MLE method are 0.9510 and 0.8236 for the case of p = 25, respectively.
The improvements of the generalized Bayes approach are 0.0190 and 0.1274 for the cases of
p = 6 and p = 25, respectively.

We also analyze the computational complexity of these two methods. The central
processing unit (CPU) times for calculating the MLE and the generalized Bayes estimator
with MATLAB codes are close and are not costly when the dimension and sample sizes
are not large. For example, when n = 500, K = 4, m = 2, p = 5, and r = 80, the calculating
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time for the MLE method of 40 iterations are about 0.014 s. In addition, in real applications,
the component number m of GMMs is typically unknown. Table 3 shows the recognition
rates when m is misspecified, where s in Table 3 is the misspecified value of m. Although the
component number is misspecified for these cases, the recognition rates are greater than 0.5
for all of the cases. In addition, the results reveal that the generalized Bayes method still has
better performance than the MLE method for these misspecified component number cases.

Table 1. The recognition rates for the cases of p = 3, 5, and 6 when the component number of the
Gaussian mixture models (GMMs) is known.

r 20 40 60 80

n = 100, K = 3, m = 2, p = 3, w =
1

MLE 0.4884 0.5214 0.5152 0.5350
Generalized Bayes 0.5058 0.5621 0.5749 0.6427

n = 300, K = 5, m = 4, p = 5, w =
2

MLE 0.4974 0.5925 0.6645 0.6463
Generalized Bayes 0.6103 0.7355 0.7781 0.8199

n = 500, K = 3, m = 2, p = 3, w =
1

MLE 0.5703 0.6309 0.7000 0.7505
Generalized Bayes 0.5868 0.6870 0.8000 0.7921

n = 500, K = 5, m = 4, p = 5, w =
2

MLE 0.5696 0.6548 0.6833 0.7280
Generalized Bayes 0.6526 0.7808 0.8115 0.8672

n = 1000, K = 5, m = 4, p = 5, w =
3

MLE 0.7830 0.8749 0.9210 0.9620
Generalized Bayes 0.8240 0.9245 0.9680 0.9840

n = 1000, K = 5, m = 4, p = 6, w =
4

MLE 0.8918 0.9632 0.9871 0.9913
Generalized Bayes 0.9333 0.9797 0.9940 0.9980

n = 2000, K = 5, m = 4, p = 6, w =
4

MLE 0.9200 0.9766 0.9950 0.9944
Generalized Bayes 0.9390 0.9804 0.9970 0.9981

n = 2000, K = 3, m = 2, p = 5, w =
5

MLE 0.9900 0.9970 1 1
Generalized Bayes 0.9920 0.9970 1 1
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Table 2. The recognition rates for the cases of p = 15, 20, 25, and 40 when the component number of
the GMMs is known.

r 20 40 60 80

n = 1000, K = 3, m = 2, p =
15, w = 1

MLE 0.5290 0.6161 0.7031 0.7389
Generalized Bayes 0.6160 0.7103 0.7241 0.8222

n = 1000, K = 5, m = 4, p =
15, w = 2

MLE 0.5141 0.5834 0.7059 0.8658
Generalized Bayes 0.6396 0.6875 0.7353 0.9146

n = 1500, K = 3, m = 2, p =
20, w = 1

MLE 0.5664 0.6030 0.6982 0.7420
Generalized Bayes 0.5929 0.6884 0.7658 0.8310

n = 1500, K = 5, m = 4, p =
20, w = 2

MLE 0.5378 0.6067 0.6394 0.6735
Generalized Bayes 0.7198 0.7267 0.8115 0.8367

n = 2000, K = 5, m = 4, p =
25, w = 3

MLE 0.7525 0.8043 0.8366 0.8537
Generalized Bayes 0.7921 0.8913 0.9543 0.9431

n = 2000, K = 5, m = 4, p =
25, w = 4

MLE 0.8236 0.9554 0.9362 0.9912
Generalized Bayes 0.9510 0.9821 0.9912 1

n = 3000, K = 5, m = 4, p =
40, w = 4

MLE 0.8273 0.9388 0.9386 0.9539
Generalized Bayes 0.9727 0.9728 0.9911 0.9923

n = 3000, K = 3, m = 2, p =
40, w = 5

MLE 0.9935 1 1 1
Generalized Bayes 1 1 1 1
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Table 3. The recognition rates when the component number m is misspecified by s.

r 20 40 60 80

n = 500, K = 3, m = 2, p = 3, w =
1, s = 4

MLE n 0.6000 0.5860 0.6597 0.6732
Generalized Bayes 0.5000 0.7044 0.7571 0.7620

n = 1000, K = 3, m = 2, p = 3, w =
1, s = 4

MLE 0.5653 0.6833 0.7280 0.7540
Generalized Bayes 0.5859 0.7033 0.7050 0.8080

n = 1000, K = 5, m = 4, p = 5, w =
2, s = 2

MLE 0.6690 0.7750 0.8260 0.8580
Generalized Bayes 0.7120 0.8000 0.8670 0.8730

n = 2000, K = 5, m = 4, p = 5, w =
2, s = 6

MLE 0.6310 0.7350 0.7853 0.8430
Generalized Bayes 0.6880 0.8120 0.8863 0.9070

In addition, to obtain the advantages of both methods, we may consider combining
aspects of each of the methods, such as using the generalized Bayes estimator, as an initial
value in the EM algorithm. However, it takes more time to perform this combined method.

To evaluate these two methods, we compare their performances in terms of the
recognition rate because it is difficult to directly compare the mean estimator and the
covariance matrix estimator due to the following. For example, when we consider a GMM
with 3 components, in the simulation study, we first set the three true parameters for
the means and covariance matrices. Next, we generate data from the GMM and obtain
estimators using either the generalized Bayes method or the MLE method. If we directly
compare the mean and covariance matrix estimators of these two methods, there is a
problem regarding how to correspond the three sets of estimators to the three sets of true
parameters. There are 3× 2 = 6 combinations by which the estimators correspond to
the true parameters. In addition, we do not know which combination is suitable for use.
This issue causes the difficulty in the comparison of the estimators for the mean and the
covariance matrix. Therefore, it is not suitable to directly compare different estimators of
the mean and the covariance matrix in a GMM.

3.2. A Real Data Example

In this section, we revisit the musical data example in the introduction section to
illustrate the methods and present their performances on this real data application. In audio
signal recognition, the signal data, are usually recorded in wav format and then converted
to 13, 26, or 39 dimensional Mel-frequency cepstral coefficients (MFCCs), which are used
as a perceptual weighting that more closely resembles how we perceive sounds [22,23].

We record 7 different pieces of music in wav format for each song of the 4 classical
music songs and then transform the data to 13-dimensional MFCCs. A MATLAB function
“wave2mfcc” can be used to transform the data to MFCCs [1]. The recorded time of each
piece is approximately ten seconds. The sample size of MFCCs of a ten-second piece of
music is approximately 600. Next, we use one of the 7 pieces of each song as training data
to estimate the parameters of the GMM. Thus, we use a total of 4 pieces as training data
to estimate the parameters of the 4 GMMs, and we use the other 24 pieces as testing data.
The component number m in each GMM is set to 3.
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To select a component number, we can use AIC to select a number. For example, a
piece of Beethoven’s Moonlight Sonata has AIC values, 26,979, 26,298, 25,905, and 25,919
corresponding to component numbers 1, 2, 3, and 4, respectively. Therefore, we select the
component number 3, which has the smallest AIC value among these models. However,
it may not be the most suitable component number for other pieces of music. In this real
data study, we use the GMMs with m = 3. If the component number selected by the AIC
criterion or other criteria is too large, to reduce the computing cost, we may select a model
with the component number less than 5.

The process is repeated 7 times, and each time, we use different pieces of songs as the
training data, with the remaining 24 pieces of songs used as the testing data. The recognition
rates for the 7 times and their average recognition rates are presented in Table 4.

Table 4. The recognition rates of different cases and the average recognition rates.

1 2 3 4 5 6 7 Average Rate

MLE 0.708 0.792 0.708 0.792 0.75 0.708 0.667 0.732
Generalized Bayes 0.792 0.833 0.667 0.833 0.75 0.75 0.875 0.786

In this example, except in the third case, the generalized Bayes method has a higher
recognition rate than the MLE method. The generalized Bayes method also has a higher
average recognition rate than the MLE method. This result shows that the generalized
Bayes method is a competitor to the MLE method in this real application. The compu-
tations are performed by MATLAB codes. The range of the CPU time for performing a
method, which includes reading a wave file (10-second data), converting the wave data
to 13-dimensional MFCC data and obtaining the parameter estimators of a GMM is from
0.036 s to 0.056 s, with an average CPU time 0.046 s. Both methods require similar amounts
of CPU time.

4. Conclusions

In this study, a generalized Bayes estimator of a GMM was proposed and was shown
to improve the high-dimensional Gaussian mixture data recognition rate. In addition,
a procedure for calculating the generalized Bayes estimator was provided. In this study,
due to the complexity of GMMs, we only provided the simulation results instead of
a theoretical inference to compare these two methods. Nevertheless, the generalized
Bayes approach was shown to be an admissible estimator or a minimax estimator in
other distributions [12,14]. Although it remains unknown whether the generalized Bayes
estimator is an admissible estimator in GMM, the simulation and the real data case studies
both show that the generalized Bayes approach is a method that is competitive with the
MLE method.

Funding: This work was supported by the Ministry of Science and Technology 107-2118-M-009 -002
-MY2, Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The author declares no competing interests.

Abbreviations
The following abbreviations are used in this manuscript:



Symmetry 2021, 13, 19 11 of 11

GMMs Gaussian Mixture Models
EM expectation-maximization
MLE maximum likelihood estimator
AIC Akaike information criterion
CPU central processing unit
MFCCs Mel-frequency cepstral coefficients
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