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Abstract: The concept of Sombor index (SO) was recently introduced by Gutman in the chemical
graph theory. It is a vertex-degree-based topological index and is denoted by Sombor index SO:

SO = SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2, where dG(vi) is the degree of vertex vi in G. Here,

we present novel lower and upper bounds on the Sombor index of graphs by using some graph
parameters. Moreover, we obtain several relations on Sombor index with the first and second Zagreb
indices of graphs. Finally, we give some conclusions and propose future work.
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1. Introduction

Consider a simple graph G = (V, E) with vertex set V(G) = {v1, v2, . . . , vn} and edge
set E = E(G), where |V(G)| = n is the number of vertices and |E(G)| = m is the number
of edges. For i = 1, 2, . . . , n denote by dG(vi) the degree of vertex vi. For vi ∈ V(G), let
µG(vi) represent the average degree of the vertices adjacent to vertex vi. Let δ be the minimum
vertex degree and ∆ be the maximum vertex degree. It is known that any vertex v of degree 1
is a pendant vertex. Pendant vertex is also called leaf. A pendant edge is the edge incident
with a pendant vertex. We denote by vivj ∈ E(G) when vertices vi and vj are adjacent.

In graph theory, a number that is invariant under graph automorphisms is referred to
as a graphical invariant. It is often regarded as a structural invariant relevant to a graph.
The term topological index is often reserved for graphical invariant in molecular graph
theory. In the mathematical and chemical literature, several dozens of vertex-degree-based
graph invariants (usually referred to as “topological indices”) have been introduced and
extensively studied. Their general formula is

TI = TI(G) = ∑
vivj∈E(G)

F(dG(vi), dG(vj)), (1)

where F(x, y) is some function with the property F(x, y) = F(y, x). If F(dG(vi), dG(vj)) =
dG(vi) + dG(vj) or dG(vi) dG(vj), then TI is the first Zagreb index or the second Zagreb
index of graph G, respectively, which are put forward in [1] by Gutman and Trinajstić. They
studied the dependence of total π-electron energy related to molecular structure. Some
further development can be found for example in [2]. Given a molecular graph G, we have
the first Zagreb index M1(G) as

M1(G) = ∑
vivj∈E(G)

(
dG(vi) + dG(vj)

)
= ∑

vi∈V(G)

dG(vi)
2
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and the second Zagreb index M2(G) as

M2(G) = ∑
vivj∈E(G)

dG(vi) dG(vj).

Many fundamental mathematical properties such as lower and upper bounds involving
other important graphical invariants can be bound in, e.g., [3–15]. More recent results
are reported in [16–25]. Zagreb indices characterize the degree of branching in molecular
carbon-atom skeleton and are regarded as powerful molecular structure-descriptors [26,27].

Gutman mentioned a list of topological indices (26 indices including two Zagreb
indices) in [28]. In the same paper, Gutman presented a novel approach to the vertex-
degree-based topological index of (molecular) graphs. For this we need the following
definition:

Definition 1 ([28]). The ordered pair (x, y), where x = dG(vi), y = dG(vj), is the degree-
coordinate (or d-coordinate) of the edge vivj ∈ E(G). In the (2-dimensional) coordinate system,
it pertains to a point called the degree-point (or d-point) of the edge vivj ∈ E(G). The point with
coordinates (y, x) is the dual-degree-point (or dd-point) of the edge vivj ∈ E(G). The distance
between the d-point (x, y) and the origin of the coordinate system is the degree-radius (or d-radius)
of the edge vivj ∈ E(G), denoted by r(x, y). Based on elementary geometry (using Euclidean
metrics), we have r(x, y) =

√
x2 + y2. From this, we immediately see that a d-point and the

corresponding dd-point have equal degree-radii. One can easily see that for any molecular graphs
(dG(v) ≤ 4), two degree-points have equal degree-radii if and only if they coincide, that is, if
and only if both have the same degree-coordinates. Unfortunately, this property is not valid for
general graphs.

Since the function F(x, y) =
√

x2 + y2 has not been used before in the theory of
vertex-degree-based topological indices, from the above considerations motivated by the
author in [28], introduce a new such index defined as

SO = SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2

and called the Sombor index. In the same paper, several mathematical properties have
been discussed.

Given W ⊆ E(G), we denote by G −W the subgraph of G which is obtained by
removing any edge within W. If W = {vivj}, we will write G − vivj instead of the
subgraph G−W for ease of expression. For a pair of nonadjacent vertices vi and vj in G, we
write G + vivj for the graph obtained by adding the edge vivj to G. Let G[S] be the induced
subgraph of G by S ⊆ V(G). S is said to be an independent set of G if G[S] is formed by
|S| isolated vertices. The number of vertices in the largest independent set is called the
independence number of a given graph, which is denoted conventionally by α. If a graph on n
vertices contains a clique of n− α vertices and the rest α vertices is a stable set, where every
vertex within the clique is linked to every vertex in the stable set, then the graph is called
a complete split graph and is denoted by CS(n, α), 1 ≤ α ≤ n− 1. Another interesting
graph class is called (∆, δ)-semiregular bipartite graph, where G is a bipartite graph with a
bipartition U and W. Here, each vertex vi in U admits constant degree ∆ while each vertex
vj in W admits constant degree δ. Clearly, if ∆ = δ, G becomes regular. As usual, Kn is a
complete graph and Ka, b with (a + b = n) is a complete bipartite graph over n vertices. We
refer the reader to the book [29] for other standard graph theoretical notations.

The rest of the paper is organized as follows. In Section 2, we obtain some lower
and upper bounds on SO(G) in terms of graph parameters. In Section 3, we present some
relations between SO(G) and the Zagreb indices M1(G) and M2(G). In Section 4, we give
some conclusions and future work.
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2. Bounds on Sombor Index of Graphs

In this section, we give several lower and upper bounds on SO(G) building on some
useful graph parameters. From the definition of Sombor index, the following result can be
summarized.

Lemma 1. For a graph G, we have
(i) SO(G) > SO(G− e), where e = vivj is any edge in G,
(ii) SO(G + e) > SO(G), where e = vivj and vertices vi & vj are non-adjacent in G.

First we give the uppper and lower bounds on SO(G) building on n, ∆ and δ.

Theorem 1. Suppose that G is a graph over n vertices. If G has maximum degree ∆ and minimum
degree δ,

n δ2
√

2
≤ SO(G) ≤ n ∆2

√
2

with equality (left and right) if and only if G becomes a regular graph.

Proof. Recall that ∆ is the maximum degree of G and δ is the minimum degree of G. By
employing the Handshaking lemma, we obtain

n δ ≤ ∑
vi∈V(G)

dG(vi) = 2m ≤ n ∆

with equality holding (left and right) if and only if dG(vi) = ∆ for any vi ∈ V(G). It follows
from the definition of the Sombor index, we obtain

SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2

≤
√

2 ∆ m ≤ n ∆2
√

2
.

Moreover, the equality herein holds if and only if dG(vi) = ∆ for any vi ∈ V(G), i.e.,
G is regular. Similarly, we get the lower bound on Sombor index and equality holds if and
only if G becomes regular.

Since ∆ ≤ n− 1, we get the following corollary.

Corollary 1 ([28]). Let G be a graph of order n. Then

SO(G) ≤ n (n− 1)2
√

2

with equality if and only if G ∼= Kn.

For triangle-free graph G, we obtain an upper bound on SO(G) based on n, m, ∆
and δ.

Theorem 2. Let G be a triangle-free graph of order n with m edges and maximum degree ∆,
minimum degree δ. Then

SO(G) ≤

 m
√

δ2 + (n− δ)2 if ∆ + δ ≤ n,

m
√

∆2 + (n− ∆)2 if ∆ + δ ≥ n.

Proof. Let dG(vi) be the degree of the vertex vi in G. Since G is triangle-free graph,
we have dG(vi) + dG(vj) ≤ n for any edge vivj ∈ E(G). Let us consider a function
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h(x) = x2 + (n− x)2 for δ ≤ x ≤ ∆. Then one can easily see that h(x) is an increasing
function on n/2 ≤ x ≤ ∆ and a decreasing function on δ ≤ x ≤ n/2. Hence

dG(vi)
2 + (n− dG(vi))

2 ≤


√

δ2 + (n− δ)2 if ∆ + δ ≤ n,√
∆2 + (n− ∆)2 if ∆ + δ ≥ n.

With the results obtained above, we derive

SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2

≤ ∑
vivj∈E(G)

√
dG(vi)2 + (n− dG(vi))2

≤

 m
√

δ2 + (n− δ)2 if ∆ + δ ≤ n,

m
√

∆2 + (n− ∆)2 if ∆ + δ ≥ n.

Gutman [28] proved that the path Pn gives the minimum value of Sombor index for
any connected graph of order n. Therefore, the path Pn gives the minimum value of Sombor
index for any connected bipartite graph of order n. We now give an upper bound on the
Sombor index of bipartite graphs.

Theorem 3. Let G be a bipartite graph over n vertices. Then

SO(G) ≤


n3

4
√

2
if n is even,

(n2 − 1)
√

n2 + 1
4
√

2
if n is odd,

with equality if and only if G ∼= Kd n
2 e,b

n
2 c.

Proof. Let G be a bipartite graph of order n (n = p + q, p ≥ q) with two partite sets
having p and q vertices, respectively. Since G is bipartite graph, by Lemma 1, we obtain
SO(G) ≤ SO(Kp,q) with equality if and only if G ∼= Kp,q. Hence

SO(G) ≤ S(Kp,q) = pq
√

p2 + q2 = p(n− p)
√

p2 + (n− p)2.

Let us consider a function

f (x) = x(n− x)
√

x2 + (n− x)2,
⌈n

2

⌉
≤ x ≤ n− 1.

Then

f ′(x) = − (2x− n) [x2 + (n− x)2 − 1]√
x2 + (n− x)2

≤ 0 for
⌈n

2

⌉
≤ x ≤ n− 1.

Thus f (x) is a decreasing function on d n
2 e ≤ x ≤ n− 1, and hence

SO(G) ≤ p(n− p)
√

p2 + (n− p)2 ≤
⌈n

2

⌉ ⌊n
2

⌋√⌈n
2

⌉2
+
⌊n

2

⌋2
.
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The required inequality has been proved. Besides, the equality holds if and only if
G ∼= Kd n

2 e,b
n
2 c.

Next, we present an upper bound on SO(G) by using n and independence number α.

Theorem 4. Let G be a connected graph of order n with independence number α. Then SO(G) ≤√
2 (n−α

2 ) (n− 1) + α (n− α)
√
(n− 1)2 + (n− α)2 with equality if and only if G ∼= CS(n, α).

Proof. We obtain

SO(CS(n, α)) =
√

2
(

n− α

2

)
(n− 1) + α (n− α)

√
(n− 1)2 + (n− α)2.

Since G has order n and independence number α, by Lemma 1, we obtain

SO(G) ≤ SO(CS(n, α)) =
√

2
(

n− α

2

)
(n− 1) + α (n− α)

√
(n− 1)2 + (n− α)2

with equality if and only if G ∼= CS(n, α).

We now offer an additional upper bound on SO(G) in terms of m, δ and M1(G).

Theorem 5. Let G be a graph of size m and minimum degree δ. Then

SO(G) ≤ M1(G)− (2−
√

2) δ m,

where M1(G) is the first Zagreb index of graph G. Moreover, the equality holds if and only if G is a
regular graph.

Proof. For any edge vivj ∈ E(G) (dG(vi) ≥ dG(vj)), one can easily check that√
dG(vi)2 + dG(vj)2 ≤ dG(vi) + (

√
2− 1) dG(vj)

with equality if and only if dG(vi) = dG(vj). Now,

SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2

≤ ∑
vivj∈E(G)

dG(vi)≥dG(vj)

(
dG(vi) + (

√
2− 1) dG(vj)

)

= ∑
vivj∈E(G)

(
dG(vi) + dG(vj)

)
− ∑

vivj∈E(G)

dG(vi)≥dG(vj)

(2−
√

2) dG(vj)

≤ M1(G)− (2−
√

2) δ m.

Moreover, the above two inequalities are equalities if and only if G is a regular graph.

We give an upper bound on SO(G) + SO(G) by employing the number n only.

Theorem 6. Let G be a graph over n vertices. We have

SO(G) + SO(G) ≤ n(n− 1)2
√

2

with equality if and only if G ∼= Kn or G ∼= Kn.
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Proof. Since ∆ ≤ n− 1, it can be easily checked that√
dG(vi)2 + dG(vj)2 ≤

√
2 (n− 1) for any edge vivj ∈ E(G).

Since |E(G)|+ |E(G)| = n (n−1)
2 , we obtain

SO(G) + SO(G) = ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2 + ∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2

≤ n (n− 1)
2

×
√

2 (n− 1) =
n(n− 1)2
√

2
.

Moreover, the equality holds if and only if dG(vi)
2 + dG(vj)

2 = 2 (n− 1)2 for any edge
vivj ∈ E(G) or dG(vi)

2 + dG(vj)
2 = 2(n− 1)2 for any edge vivj ∈ E(G), that is, G ∼= Kn or

G ∼= Kn.

3. Relation between Sombor Index with Zagreb Indices of Graphs

Topological indices in mathematical chemistry are well studied in the literature. In par-
ticular we have seen several mathematical and chemical properties on topological indices
of graphs, some of them are very similar, but some of them are totally different. So it is
natural to ask how two topological indices are related or to find some relations between
two topological indices of graphs. In last 10 years several papers have been published on
this topic in the literature, see [23,25,30–37]. In this section we try to find some relations
between Sombor index and the (first & second) Zagreb indices of graphs. For this we need
the following result:

Lemma 2. [38] Let a1, a2, . . . , ak and b1, b2, . . . , bk be real numbers so that there are constants s
and t satisfying for any i, i = 1, 2, . . . , k we have s ai ≤ bi ≤ t ai. Then

k

∑
i=1

b2
i + s t

k

∑
i=1

a2
i ≤ (s + t)

k

∑
i=1

ai bi (2)

with equality if and only if for at least one i, 1 ≤ i ≤ k holds s ai = bi = t ai.

Next, we investigate the relation between Sombor index SO(G) and the first Zagreb
index M1(G) of graph G.

Theorem 7. Let G be a graph containing n vertices and m edges. The maximum degree is denoted
by ∆ and its minimum degree is δ > 0. Then(√

2(∆2 + δ2) + ∆ + δ
)

SO(G) ≥
√

∆2 + δ2 M1(G) +
√

2 (∆ + δ) δ m, (3)

where M1(G) is the first Zagreb index of graph G. Moreover, the equality holds if and only if G is a
regular graph.

Proof. One can easily see that√
dG(vi)2 + dG(vj)2

dG(vi) + dG(vj)
≥ 1√

2
, that is,

(
dG(vi)− dG(vj)

)2
≥ 0

with equality if and only if dG(vi) = dG(vj). Since 0 < δ ≤ dG(vi) ≤ ∆, for any vi ∈ V(G),
we have

δ

∆
≤ dG(vi)

dG(vj)
≤ ∆

δ
(4)
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with right (left) equality if and only if dG(vi) = ∆ and dG(vj) = δ (dG(vi) = δ and

dG(vj) = ∆). Let f (x) =

√
1 + x2

1 + x
, x ≥ 1. Then we have

f ′(x) =
x− 1√

1 + x2 (1 + x)2
, x ≥ 1.

Thus f (x) is an increasing function on x ≥ 1. Using the above results, we obtain

1√
2
≤

√
dG(vi)2 + dG(vj)2

dG(vi) + dG(vj)
=

√
1 +

dG(vi)
2

dG(vj)2

1 +
dG(vi)

dG(vj)

≤
√

∆2 + δ2

∆ + δ
.

For any edge vivj ∈ E(G), one can easily check that

dG(vi)
2 + dG(vj)

2

dG(vi) + dG(vj)
≥ δ

with equality if and only if dG(vi) = δ = dG(vj), that is,

∑
vivj∈E(G)

dG(vi)
2 + dG(vj)

2

dG(vi) + dG(vj)
≥ m δ (5)

with equality if and only if G is a regular graph.

Setting s = 1√
2

, t =

√
∆2 + δ2

∆ + δ
, ai →

√
dG(vi) + dG(vj) and bi →

√
dG(vi)2 + dG(vj)2

dG(vi) + dG(vj)
in Lemma 2, we obtain

∑
vivj∈E(G)

dG(vi)
2 + dG(vj)

2

dG(vi) + dG(vj)
+

√
∆2 + δ2

√
2(∆ + δ)

∑
vivj∈E(G)

(
dG(vi) + dG(vj)

)

≤
(√

∆2 + δ2

∆ + δ
+

1√
2

)
∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2, (6)

that is,

m δ +

√
∆2 + δ2

√
2(∆ + δ)

M1(G) ≤
(√

∆2 + δ2

∆ + δ
+

1√
2

)
SO(G),

that is, (√
2(∆2 + δ2) + ∆ + δ

)
SO(G) ≥

√
∆2 + δ2 M1(G) +

√
2 (∆ + δ) δ m,

by (5). The first part of the proof is done.

Suppose that equality holds in (3). Then all the above inequalities must be equalities.
By Lemma 2, from the equality in (6), we obtain

1√
2
=

√
∆2 + δ2

∆ + δ
, that is, (∆− δ)2 = 0, that is, ∆ = δ.
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Moreover, from the equality in (5), we obtain that G is a regular graph.

Conversely, let G be an r-regualr graph. Then we have(√
2(∆2 + δ2) + ∆ + δ

)
SO(G) = 2

√
2 n∆3 =

√
∆2 + δ2 M1(G) +

√
2 (∆ + δ) δ m,

We now obtain another relation between Sombor index SO(G) and the second Zagreb
index M2(G) of graph G.

Theorem 8. Let G be a graph over n vertices. Suppose it has maximum degree ∆ and minimum
degree δ > 0. We obtain

√
2(∆ + δ) SO(G) ≥ 2 M2(G) + n ∆ δ2, (7)

where M2(G) is the second Zagreb index of graph G. Moreover, the equality holds in (7) if and
only if G is a regular graph.

Proof. Since 0 < δ ≤ dG(vi) ≤ ∆ (vi ∈ V(G)), for any edge vivj ∈ E(G), we obtain

√
2

∆
≤

√
dG(vi)2 + dG(vj)2

dG(vi) dG(vj)
=

√
1

dG(vi)2 +
1

dG(vj)2 ≤
√

2
δ

.

Let µG(vi) be the average degree of the adjacent vertices of vertex vi in G. Then

µG(vi) =

∑
vj : vivj∈E(G)

dG(vj)

dG(vi)
, that is, dG(vi) µG(vi) = ∑

vj : vivj∈E(G)

dG(vj).

From the definition of the average degree of vertex vi, we have δ ≤ µG(vi) ≤ ∆. Now,

∑
vivj∈E(G)

(
dG(vi)

dG(vj)
+

dG(vj)

dG(vi)

)
= ∑

vi∈V(G)
∑

vj :vivj∈E(G)

dG(vj)

dG(vi)

= ∑
vi∈V(G)

µG(vi)

≥ n δ (8)

with equality holding if and only if dG(vi) = δ for any vi ∈ V(G).

Setting s =

√
2

∆
, t =

√
2

δ
, ai →

√
dG(vi) dG(vj) and bi →

√
dG(vi)2 + dG(vj)2

dG(vi) dG(vj)
in

Lemma 2, we obtain

∑
vivj∈E(G)

dG(vi)
2 + dG(vj)

2

dG(vi) dG(vj)
+

2
∆ δ ∑

vivj∈E(G)

dG(vi) dG(vj)

≤
√

2 (∆ + δ)

∆ δ ∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2,
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that is,

∑
vivj∈E(G)

( dG(vi)

dG(vj)
+

dG(vj)

dG(vi)

)
+

2
∆ δ

M2(G) ≤
√

2 (∆ + δ)

∆ δ
SO(G),

that is, √
2(∆ + δ) SO(G) ≥ 2 M2(G) + n ∆ δ2,

by (8). The first part of the proof is done.

Similarly, the proof of the Theorem 7, we conclude that the equality holds in (7) if and
only if G is a regular graph.

The following inequality is due to Radon [39].

Lemma 3. (Radon’s inequality) If ak, xk > 0, p > 0, k ∈ {1, 2, . . . , r}, then the following
inequality holds:

r

∑
k=1

xp+1
k

ap
k
≥

(
r
∑

k=1
xk

)p+1

(
r
∑

k=1
ak

)p

with equality holding
x1

a1
=

x2

a2
= · · · = xr

ar
.

We now present a relation between Sombor index SO(G) and the second Zagreb index
M2(G).

Theorem 9. Let G be a graph over n vertices. Suppose G has maximum degree ∆ and minimum
degree δ > 0. We have

SO(G)2 ≤
(

∆
δ
+

δ

∆

)
m M2(G), (9)

with equality if and only if G is a bipartite semiregular graph or G is a regular graph.

Proof. For any edge vivj ∈ E(G) (dG(vi) ≥ dG(vj)) and δ > 0, by (4), we obtain(
dG(vi)

dG(vj)
+

dG(vj)

dG(vi)

)2

=

(
dG(vi)

dG(vj)
−

dG(vj)

dG(vi)

)2

+ 4

≤
(

∆
δ
− δ

∆

)2
+ 4 =

(
∆
δ
+

δ

∆

)2
,

that is,
dG(vi)

dG(vj)
+

dG(vj)

dG(vi)
≤ ∆

δ
+

δ

∆
(10)
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with equality if and only if dG(vi) = ∆, dG(vj) = δ, or dG(vi) = δ, dG(vj) = ∆.

Setting p = 1, xk →
√

dG(vi)2 + dG(vj)2 and ak → dG(vj) dG(vj) in Lemma 3 and
using the above result, we obtain

SO(G)2

M2(G)
=

(
∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2

)2

∑
vivj∈E(G)

dG(vi) dG(vj)
≤ ∑

vivj∈E(G)

dG(vi)
2 + dG(vj)

2

dG(vi) dG(vj)
(11)

= ∑
vivj∈E(G)

(
dG(vi)

dG(vj)
+

dG(vj)

dG(vi)

)

≤
(

∆
δ
+

δ

∆

)
m. (12)

The first part of the proof is done.

Suppose that equality holds in (9). Then all the above inequalities must be equalities.
By Lemma 3, from the equality in (11), for any edges vivj, vkv` ∈ E(G), we obtain√

dG(vi)2 + dG(vj)2

dG(vi) dG(vj)
=

√
dG(vk)2 + dG(v`)2

dG(vk) dG(v`)
,

that is,
1

dG(vi)2 +
1

dG(vj)2 =
1

dG(vk)2 +
1

dG(v`)2 .

From the equality in (12), we obtain dG(vi) = ∆, dG(vj) = δ for any edge vivj ∈ E(G),
by (10). Using the above results, we conclude that G is a (∆, δ)-semiregular bipartite graph
(when G is bipartite) or G is a regular graph (when G is non-bipartite).

Conversely, let G be an r-regular graph. Then

SO(G)2 = 2m2r2 =

(
∆
δ
+

δ

∆

)
m M2(G).

Let G be a (∆, δ)-semiregular bipartite graph. Then

SO(G)2 = m2(∆2 + δ2) =

(
∆
δ
+

δ

∆

)
m M2(G).

The proof is then complete.

4. Conclusions

Topological indices are graph invariants and are used for quantitative structure - activ-
ity relationship (QSAR) and quantitative structure - property relationship (QSPR) studies.
Many topological indices have been defined in the literature and several of them have found
applications as a means to model physical, chemical, pharmaceutical, and other properties
of molecules. Gutman introduced the SO index as a new topological index in mathematical
chemistry. In this paper, we presented some upper and lower bounds on the SO index and
characterized extremal graphs. Moreover, we obtained some relations between the Sombor
index and the (first & second) Zagreb indices of graphs. The minimal and the maximal
Sombor index (SO), in the case of unicyclic graphs and bicyclic graphs, remains an open
problem. Motivation to better understand the Sombor index has been mentioned in the
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literature [28]. Finding the chemical applications of this Sombor index is an attractive task
for the near future.
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