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Abstract: This paper explores the combination of a classic mathematical function named “hyperbolic
tangent” with a metaheuristic algorithm, and proposes a novel hybrid genetic algorithm called NSGA-
II-BnF for multi-objective decision making. Recently, many metaheuristic evolutionary algorithms
have been proposed for tackling multi-objective optimization problems (MOPs). These algorithms
demonstrate excellent capabilities and offer available solutions to decision makers. However, their con-
vergence performance may be challenged by some MOPs with elaborate Pareto fronts such as CFs,
WFGs, and UFs, primarily due to the neglect of diversity. We solve this problem by proposing an
algorithm with elite exploitation strategy, which contains two parts: first, we design a biased elite
allocation strategy, which allocates computation resources appropriately to elites of the population
by crowding distance-based roulette. Second, we propose a self-guided fast individual exploitation
approach, which guides elites to generate neighbors by a symmetry exploitation operator, which
is based on mathematical hyperbolic tangent function. Furthermore, we designed a mechanism to
emphasize the algorithm’s applicability, which allows decision makers to adjust the exploitation
intensity with their preferences. We compare our proposed NSGA-II-BnF with four other improved
versions of NSGA-II (NSGA-IIconflict, rNSGA-II, RPDNSGA-II, and NSGA-II-SDR) and four com-
petitive and widely-used algorithms (MOEA/D-DE, dMOPSO, SPEA-II, and SMPSO) on 36 test
problems (DTLZ1–DTLZ7, WGF1–WFG9, UF1–UF10, and CF1–CF10), and measured using two
widely used indicators—inverted generational distance (IGD) and hypervolume (HV). Experiment
results demonstrate that NSGA-II-BnF exhibits superior performance to most of the algorithms on all
test problems.

Keywords: decision making; multi-objective optimization; resource allocation; genetic algorithm;
symmetry exploitation operator

1. Introduction

Compared to those with a single objective, multi-objective optimization problems
(MOPs) [1] always have greater complexity. Let us assume there is an engineer who wants
to build an ideal building: inexpensive, high-rise, novel architectural image, earthquake-
resistant, and energy-efficient. Isn’t that a great idea? Unfortunately, such a building cannot
be built as these goals cannot be met simultaneously. Thus, in real-world engineering,
we have a concept called multi-objective optimization problems (MOPs) with several
objectives that are conflicted with each other and can be modeled by

minF(x) = ( f1(x), f2(x), . . . , fm(x))T , (x ∈ Ω) (1)

where x = (x1, x2, . . . xn) is a decision vector within the search space Ω, n is the dimensions
of the decision vector, and m is the number of objective functions to be optimized. A set
of solutions generally solves them called Pareto optimal set (PS). The map of a PS in the
objective space is called a Pareto front (PF), and the goal of algorithms that aim to solve
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MOPs is to search a set of approximate solutions for the map that is the closest to the true
PF, meanwhile, with good diversity.

Recently, heuristic algorithms have been regarded as the primary method for solving
MOPs. These algorithms can be classified into three categories [2]: Pareto-based multi-
objective evolutionary algorithms (MOEAs) [3–12], indicator-based MOEAs [13–19], and
decomposi tion-based MOEAs [20–30].

Dominance-based MOEAs use the concept of dominance relation into the selection
of the evolutionary process, some wildly used algorithms such as SPEA2 [4], NSGA-II [5],
and some variations like NSGA-II-SDR [6], an adaptive niching technique based on the
angles between the candidate solutions is proposed. Meanwhile, some particle swarm
optimizations (PSO) like SMOPSO [9] are characterized by the use of a strategy to limit the
velocity of the particles. XPSO [7] transplants the multi-exemplar and forgetting ability to
particle swarm optimization, and TSLPSO [8] proposes a dimensional learning strategy for
discovering and integrating the promising information to improve the search efficiency.

Indicator-based MOEAs use different indicators to estimate their density and guide
the evolutionary process. Recently, an IGD indicator-based algorithm has been proposed in
Reference [18]. In Reference [19], an indicator called I-SDE(+), which combines the sum of
objectives and shift-based density, is proposed. What is more, in rNSGA-II [15], a variation
of Pareto dominance was proposed, which creates a strict partial order among Pareto
solutions and enables decision-makers to guide the search using a set of aspiration levels.

Decomposition-based MOEAs transform MOPs into a series of single-objective op-
timization subproblems and optimize them collaboratively. MOEA/D [27] is a famous
and widely used MOEA based on the decomposition framework, with variations like
MOEA/D-DE [23], which has a differential evolution operator and a polynomial mutation
operator. In some followed up works like dMOPSO [30] a memory reinitialization process
is used to provide diversity. In NSGA-IIconflict [29], they separate MOPs into several
subproblems, and use the conflict information to partition the objective space. Furthermore,
in RPDNSGA-II [24], they defined a decomposition-based dominance relation and a novel
diversity factor to create a strict partial order in a solution set. For more details of recent
MOEAs, please refer to Reference [31,32].

All these works obtained cheerful achievement in the past decades. However, the
global exploration’s outstanding performance also causes the neglect of individual exploita-
tion, leading to insufficient diversity and a lack of convergence performance in the PS when
facing MOP with complex PF. Thus, the hybrid algorithm frameworks [33,34] have been
proposed. These algorithms generally contain an individual exploitation operator, which
is usually performed by an existing search operator from another algorithm (i.e., a search
operator of an existing algorithm is nested inside another algorithm). However, we do not
recommend this structure because it may lead to the overconsumption of computational
resources. We can also learn from paper [35] that there are at least two basic requirements
for a competitive hybrid algorithm framework: (1) a resource allocation strategy and (2)
a simple and effective individual exploitation operator. Inspired by this conclusion, we
propose a hybrid genetic algorithm.

In this paper, we propose a variation of NSGA-II called NSGA-II-BnF with an elite
exploitation strategy, which mainly contains the following two parts: first, for maintaining
diversity, a biased resource allocation strategy is proposed, which selects elites into a subset
of the population by our proposed crowding distance-based roulette. Then, a self-guided
fast exploitation system is proposed to improve convergence performance that (1) use
elite to guide their own exploitation procedure and (2) use a hyperbolic tangent-based
exploitation operator that searches neighbors within an appropriate range. Moreover,
a manual intervention mechanism is also integrated into this algorithm to emphasize
the applicability.

We have organized this paper as follows. First, we review the NSGA-II framework and
some other versions of NSGA-II in Section 2. Then, we propose NSGA-II-BnF and describe
its pseudo-code and additional algorithm details in Section 3. In the first part of Section 4,



Symmetry 2021, 13, 136 3 of 26

we conduct simulations to compare the performance of four NSGA-II series algorithms
NSGA-IIconflict [21], rNSGA-II [11], RPDNSGA-II [24], and NSGA-II-SDR [6]—on 36 test
problems (DTLZ1–DTLZ7 [36], WFG1–WFG9 [37], UF1–UF10 [27] and CF1–CF10 [38]).
In the second part, we compare our proposed NSGA-II-BnF with four popular and classic
MOEAs (MOEA/D-DE [23], dMOPSO [30], SPEA-II [4], and SMPSO [9]). In the last part of
Section 4, we compare NSGA-II-BnF with the original NSGA-II on all maintained MOPs.
The simulation results demonstrate that NSGA-II-BnF exhibits diversity and convergence
performance superior to its peer algorithms. Finally, we discuss the conclusions and future
work in Section 5.

Our contributions in this paper are as follows:

• Inspired by classic Social Darwinism, we proposed an elite exploitation strategy:
1. For enhancing diversity, we design a crowd distance-based roulette.
2. For better applicability, we design a decision-makers’ preference-based mecha-

nism to control the exploitation intensity.
3. For improving the convergence performance, we propose a novel exploitation

system and a symmetry exploitation operator for local search (i.e., individual ex-
ploitation).

• We test our proposed algorithm with ten widely used algorithms on 36 test prob-
lems with different complexity, and the simulated experiment results proved the
effectiveness of our method.

2. Brief Review of NSGA-II Framework

NSGA-II [5] is an improved version of NSGA; the key of NSGA-II is a ranked individ-
ual in the population set using the non-dominated rank operator. It improves efficiency
using the elite strategy and ensures population diversity using the crowding distance
mechanism. The main steps of NSGA-II are as follows.

Step 1 (Initialization of algorithm) At first, users set the algorithm’s related parameters,
then, the population is initialized randomly (or with constraints, if any). After this step, we
obtain the first generation.

Step 2 (Non-dominated sort) The rank operator of NSGA-II classifies the population
into different levels, motivating population evolution.

Step 3 (Assignment of crowding distance) After the non-dominated sort is complete,
the crowding distance is assigned. Because the individuals are selected based on rank and
crowding distance, all individuals in the population are assigned a crowding distance value.

Step 4 (Selection) After the individuals are sorted based on non-domination, and with
crowding distance assigned, the selection is conducted that was indicated by using these
two indicators. After selection, we obtain a set of parents.

Step 5 (Genetic and mutation operation) Evolution operators generate offspring after
the parents are ready. In this paper, we use the Simulated Binary Crossover (SBX) [39]
operator for crossover and polynomial mutation [39].

Step 6 (Recombination and selection) The offspring population is combined with the
current generation population, and selection is performed to set the next generation’s
individuals. Elitism is ensured because all previous and current best individuals are added
to the population. The population is now sorted based on non-domination. The new
generation is filled by each front subsequently until the population size limit is reached.

3. Proposed NSGA-II-BnF Algorithm

Figure 1 illustrates the framework of NSGA-II-BnF, composed of initialization, genetic
population-based exploration, elitist exploitation intensity mechanism, crowding distance-
based allocation procedures, self-guided fast symmetry exploitation procedures. The
algorithm ends when the termination condition is satisfied.

As the pseudo-code depicted in Algorithm 1, we first set the necessary parameters at
the first line. The algorithm starts with initializing the population containing N individuals
at line 1 to line 6. We then perform the classic population-based exploration procedures
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(e.g., evaluation, non-dominated sorting, crowding distance calculation, genetic operation)
at line 9 to line 16.

These steps result in a population set P with approximately 2N individuals. At line
17, we apply our proposed crowding distance-based resource allocation strategy to elites
in the population P. There are two steps: (1) set the size of the candidate group using
our proposed mechanism and (2) allocate resources by individuals’ crowding distance
(the details of maintained steps will be shown in the following Sections). At line 18,
we obtain an archiveD composed of elites and the resources they were allocated. Next, at
line 19, we activate our proposed fast self-guided elite exploitation procedure based on the
information in archiveD, use the computational resources they were allocated to generate
their neighbors, and set the generated neighbors to set K at line 20. Finally, we combine
set K into set P at line 26, and select the best N individuals as the next generation of the
population from line 27 to line 29. The algorithm ends when the termination condition is
satisfied.

Algorithm 1 Main Loop of NSGA-II-BnF

Input: N, k, r, Genmax
Output: population set P Initialize: population set P

1: for each xi ∈ P do
2: Evaluation;
3: Non-Dominated sort;
4: Crowding distance;
5: end for
6: Gen=1;
7: while Gen ≤ Genmax do
8: genetic procedures to population P;
9: obtain an offspring set Q;

10: for each xi ∈ Q do
11: Evaluation;
12: Non-Dominated sort;
13: Crowding distance;
14: end for
15: P = P ∪Q;
16: do Non-dominated sort operate to set P;
17: biased resource allocation strategy; //(Algorithm 2);
18: obtain an archive D;
19: do self-guided fast symmetry individual exploitation to archive

D;//(Algorithm 3);
20: obtain a set K of generated neighbors;
21: for each xi ∈ K do
22: Evaluation;
23: Non-Dominated sort;
24: Crowding distance;
25: end for
26: P = P ∪ K;
27: do Non-dominated sort operate to set P;
28: do elite strategy to set P;
29: Gen=Gen+1;
30: end while
31: obtain a population set P;
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Figure 1. The flow chart of NSGA-II-BnF.

3.1. Biased Elite Allocation Strategy

Assume that individual exploitation is like a chance for reproduction. According to
classic Social Darwinism, the fittest survive. Maybe we can understand the theory in this
way: the fittest is expected to gain more resources in a resource-insufficient environment to
ensure the positive evolution of the population.

Inspired by this theory, we propose an “elite only” strategy called the elite exploita-
tion strategy. Which offer exploitation opportunity to a group of the best individuals in
the population.

The central concept of this strategy is two-fold. First, decision makers may adjust
the bias factor k value to control the candidate group’s size with their preference by our
designed mechanism, and control the total consumption of computational resources during
the exploitation procedures. Second, after we confirm the size of the candidate group,
we allocate the exploitation opportunities appropriately to individuals, by proposing a
crowding distance-based roulette, which also maintains diversity.

The pseudo-code of the biased elite allocation strategy is depicted in Algorithm 2.
In the first line, we have a population set with about 2N individuals, and a bias factor,
which is set at the beginning of Algorithm 1. From line 1 to line 5, we copy the best
individuals (i.e., elites), which are in the first level of Non-Dominated ranking, into a subset
T, called the candidate group. We then calculate crowding distance-based cumulative
probability of each individual in subset T at line 7 to line 9. From line 11 to line 19, the
crowding distance-based roulette procedures select the candidates from set T into archiveD,
according to their value of crowding distance-based cumulative probability, the larger the
crowding distance, the higher the probability of being selected. Note that individuals may
be selected repeatedly.
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Algorithm 2 Biased Elite Allocation Strategy

Input: set P, k
Output: archiveD

1: for each x ∈ P do
2: if Non-Dominated rank of xi==1 then
3: T ← xi;
4: end if
5: end for
6: for each xi ∈ T do
7: calculate the cumulative probability qi by Equations (2) and (3);
8: end for
9: m=1;

10: while m ≤ imax do
11: h=rand(1);
12: if h < q1 then
13: D ← x1;
14: else
15: find xi that makes qi−1 < h ≤ qi holds;
16: D ← xi;
17: end if
18: i = i+1;
19: end while
20: obtain an archiveD;

More details are defined in the following two subsections: (1) management of quota
and (2) quota allocation.

3.1.1. The Size of Candidate Group

In the first version of NSGA-II-BnF, the fast exploitation operator that was described in
Section 3.2 was applied to every non-dominated individual called “elite” in the population,
and a significant improvement of effectiveness was obtained.

However, with the progress of the evolutionary process, more and more individuals
in the population are non-dominated, the growing number of elites causes the exploitation
operator to consume significant computational resources, and the point is, sometimes
the algorithm might face some insufficient computational resource circumstances. So, for
a better applicability of the algorithm, management of the size of the candidate group
is required.

Thus, we propose a manual mechanism that allows decision makers to manage the
exploitation intensity with their preference. This mechanism functions by adjusting the
maximum candidate group size, and is defined as

imax = k× N, (k > 0) (2)

where k is a bias factor and input manually by decision makers at the beginning of Al-
gorithm 1, N is the size of the population, and this equation denotes there will be imax
members in the following exploitation procedure.

It is evident that the variable k has a positive correlation with the maximum candidate
size, and decision makers can set the k value according to their preference.

3.1.2. Allocation Procedure

Roulette is a classic probabilistic-based selection method. It uses the individual’s
proportion to the whole population to denote the probability of the individual being
selected. We maintain diversity by proposing crowding distance-based roulette, which
uses crowding distance as an indicator to calculate the selected probability of the elite from
the set T.
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In a word, the larger the crowding distance, the higher the probability of being selected.
The main steps are as follows.

(1) Apply crowding distance-based normalization calculated as below to individuals in
set T.

P(xi) =
crowd(xi)

∑t
c=1 crowd(xc)

(3)

where xi is the i-th individual of set T, P(xi) is the probability of an individual xi being
selected, crowd(xi) is the crowding distance of xi , and t is the number of individuals
of set T.

(2) Calculate the cumulative probability qi of each defined as

qi =
i

∑
c=1

P(xc) (4)

(3) Generate a random number h in [0,1].
(4) If h < q1, save individual x1 at archiveD; otherwise, find the individual xi, which

makes qi−1 < h ≤ qi holds, and save individual xi at archiveD.
(5) Repeat steps (3) and (4) until there are imax members in archiveD.

Note that individuals may be selected repeatedly. At the end of this part, we obtain
archiveD with imax members.

3.2. Self-Guided Fast Symmetry Individual Exploitation Approach

A widely-used individual exploitation system [40] in other hybrid algorithms is
as follows:

x′ij = xij + η (5)

where x′ij is the new j-th dimension generated by Equation (4), xij is the j-th dimension
of xi, and η is random turbulence. Equation (4) is a classic turbulence system, but with
a defect: with the progress of evolution, the data in each dimension will be minimal,
approximately in the range of 10−3–10−2. This randomly created η is always on another
order of magnitude, this is a necessary method of exploring the solution space for an
independent algorithm. However, as part of the individual exploitation procedure, it
produces many meaningless neighbors, which is generally seen as a waste of computational
resources.

We propose a self-guided fast symmetry individual exploitation strategy to solve
this problem. We introduce this strategy in two subsections: (1) self-guided individual
exploitation system and (2) tanh-based turbulence operator.

More details are described in Algorithm 3. At the first line, we obtain several variables
set at the beginning of the algorithm. Variable r is the number of generated neighbor(s) of
each member in archiveD. From line 6 to line 8, we calculate the turbulence v, and pick a
random j-th dimension of xi. If the j-th dimension value is not 0, then we calculate the new
value for j-th dimension at line 10, then we obtain a new neighbor of xi with a new j-th
dimension from line 11 to line 12. Then put the new neighbor into set K at line 13. At the
end of this part, we obtain a set K with imax × r neighbors.
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Algorithm 3 Self-guided fast symmetry individual exploitation

Input: n, archive D, a, b, r, imax
Output: set K

1: Initialize: variable s, i;
2: for each member in archiveD do;
3: s=1;
4: for s ≤ r do;
5: l=round(rand(1)*(b− a)−b));
6: calculate turbulence v by l and Equation (7);
7: j=randperm(n,1);
8: if xij 6= 0 then
9: calculate new jth dimension xij′ by Equation (5);

10: replace the xij by xij′ ;
11: obtain a neighbor xs

i of xi;
12: K ← xs

i ;
13: else
14: goto line 6;
15: end if
16: s = s + 1;
17: end for
18: end for
19: obtain a set K of neighbors;

3.2.1. Self-Guided Individual Exploitation System

This system uses the meme [35] that contains information on the evolution stage to
guide individual exploitation procedures. Our proposed approach is as follows.

x′ij = xij × (1 + v), (xij 6= 0, v ∈ (−1, 1)) (6)

where v is the turbulence introduced in Section 3.2.2. Equation (5) denotes that as the
evolution progresses, the data in each dimension xij decreases and the created turbulence
decreases, such that the newly generated neighbors are always in the proper range.

3.2.2. Tanh-Based Exploitation Operator

In mathematics, the hyperbolic tangent ’tanh’ [41] is derived from the classic hyper-
bolic function. It has a regular and opposite value interval within a specific symmetry
domain which is shown in Figure 2, and makes it suitable as a turbulence operator. Its
equation is as follows.

tanh(x) =
ex − e−x

ex + e−x (7)

The procedure of generating neighbors of a candidate xi is depicted as follows.

(1) Generate a set L with r random number(s), the value of which is in the interval
[a, b](a, b ∈ R); for an example, we set a = −3, b = 3;

(2) For each ls ∈ L, calculate vs as below, which results in the set of turbulence values
V = {v1, . . . , vs, . . . , vr}.

vs = tanh(ls) =
els − e−ls

els + e−ls
(8)

(3) Select j-th dimension of xi randomly .
(4) After obtaining the turbulence, we use Equation (5) to generate the new j-th dimension

x′ij, then, we generate neighbors of xi ∈ T defined as

xs
i = xi(xij ← x′ij) (9)
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where r is the number of neighbors and set in the beginning of the algorithm, xs
i is the

s-th neighbor of xi and vs is the s-th element of V. This equation denotes that the s-th
neighbor of xi is xi with a new j-th dimension.

Due to the features of tanh function, the intensity of turbulence is controlled by range
[a, b], because the values of l ∈ L are evenly distributed in [a, b], such that a broader range
of [a, b] indicates more l values far away from the origin, which makes the v value likely to
be larger, and cause a greater turbulence intensity.

Figure 2. Figure of hyperbolic tangent function.

4. Experiment
4.1. Test Problems

We selected 36 widely-used test problems to compare our proposed algorithm’s
performance with nine other competitive algorithms. The UF1–UF10 is proposed for a set
of CEC2009 benchmark problems, with a very complex true PF. Likewise, test problems CF1–
CF10, WFG1–WFG9, and DTLZ1–DTLZ7 are also challenging. We set WFGs, UF1–UF7,
and CF1–7 with two objectives and DTLZs, CF8–10, and UF8–UF10 with three objectives.

4.2. Indicators

We use the two most common performance indicators (i.e., inverted generational
distance (IGD) [42] and hypervolume (HV) [43]) to measure our proposed algorithm and
compare it with other algorithms.

IGD is a comprehensive performance evaluation index. It primarily evaluates the
algorithm’s convergence and distribution performance by calculating the sum of the mini-
mum distances between each point (individual) on the real PF and the set of individuals
obtained by the algorithm.

IGD(S, P) = ∑s∈S d(s, P)
|S| (10)

The HV indicator calculates the volume of the region that was bounded by the non-
dominated solution set and the reference points.

HV(S) = Volume(
⋃
x∈S

[ f1(x), zr
1]× . . .× [ fm(x), zr

m]) (11)

The value of HV is positively correlated with the performance of the algorithm. For
all problems with two objectives, the reference points are set as (2.0,2.0). For all problems
with three objectives, the reference points are set as (2.0,2.0,2.0).
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4.3. Experiment Settings

Four NSGA-IIs (NSGA-IIconflict , rNSGA-II , RPDNSGA-II [24] , NSGAII-SDR) and
four classic MOEAs (SMOPSO, SPEA-II, MOEA/D-DE, dMOPSO) are used for the perfor-
mance comparison.

The relative parameters of the algorithms are summarized in Table 1. The population
size N is set to 200, k is the bias factor set by users, and r is the number of neighbors of each
candidate. ηc and ηm are the crossover probability and mutation probability, respectively.
Sw is the number of set reference points, Sp is the number of set weight vectors for each
preferred point, and β is the non-r-dominance threshold. NS is the number of subspaces,
and NC is the number of cycles. T is the size of the neighborhood regarding the weight
vectors, δ and nr are the probability of selecting parents from T neighbors and the maximum
number of parent solutions replaced by each child solution, respectively. ω, c1, and c2 are
the parameters in the velocity update equation for MOPSOs.

Table 1. Parameter settings.

Algorithm Parameter Settings

NSGA-II-conflict N = 200, ηc = 20, ηm = 20, NC = 10, NS = 2
rNSGA-II N = 200, ηc = 20, ηm = 20, β = 0.1, Sw = 10, Sp = 3

RPDNSGA-II N = 200, ηc = 20, ηm = 20
NSGA-II-SDR N = 200, ηc = 20, ηm = 20
MOEA/D-DE N = 200, Pm = 1/η, ηm = 20, T = 20, δ = 0.9, nr = 2, CR = 1.0, F = 0.4

dMOPSO N = 200, ω = [0.1, 0.5], c1, c2 = [1.5, 2.5]
SMOPSO N = 200, ω = [0.1, 0.5], c1, c2 = [1.5, 2.5], Pm = 1/η, ηm = 20
SPEA-II N = 200, ηc = 20, ηm = 20

NSGA-II-BnF N = 200, ηc = 20, ηm = 20, k = 0.1, r = 10, a = b = 3

For test problems DTLZ1–DTLZ7 and WFG1-WFG9, we set the number of function
evaluations to 50,000. For test problems UF1-UF10 and CF1-CF10, we set the number of
function evaluations to 300,000. For fairness, we set the dimension of individuals to 20 for
each problem.

All algorithms executed 30 independent runs on each problem under the same hard-
ware environment. The mean values and standards deviations of IGD and HV after 30 runs
were collected for comparison. Moreover, Wilcoxon’s rank-sum test was calculated for a
statistically sound conclusion, with a significance level of α = 0.05. In the following tables,
the symbols “+”, “−”, and “=” indicate that the results of competitors are significantly
better than, worse than, and similar to, respectively, the results of NSGA-II-BnF, and the
best results on each test problems are shown in bold.

4.4. Comparison among NSGA-II-BnF and Four NSGA-II Series Algorithms

We selected four peer NSGA-II-BnF algorithms (NSGA-IIconflict, rNSGA-II, RPDNSGA
-II, NSGAII-SDR) to compare the performance on 36 challenging MOPs. The results of the
IGD indicator of each algorithm after 30 independent runs are depicted in Table 2.

In Table 2, it is evident that our proposed NSGA-II-BnF obtained high performance
based on the mean IGD values, with the best results in 18 of 36 cases. Furthermore, NSGA-
IIconflict, rNSGA-II, RPDNSGA-II, and NSGAII-SDR obtained 2, 3, 9, and 4 best results,
respectively. For WFG series problems, NSGA-II-BnF exhibited superior performance,
obtaining the best results in 7 of 9 cases, NSGAII-SDR obtained the best results on WFG8,
and NSGA-IIconflict obtained the best results on WFG6. On UF series MOPs, the perfor-
mance of NSGA-II-BnF was like its peer algorithms, where NSGA-II-BnF, NSGAII-SDR,
RPDNSGA-II, rNSGA-II, and NSGA-IIconflict obtained best results in 3, 2, 4, 1, and 0 of 10
cases, respectively. Peer algorithms experienced difficulties when facing CF-series prob-
lems, however, NSGA-II-BnF obtained the best results in 7 of 10 cases, which confirmed
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our proposed individual exploitation operator’s effectiveness and the necessity of the
individual-based exploitation strategy to maintain diversity when tackling complex MOPs.

The last row of Table 2 demonstrates the total number of problems in which NSGA-
II-BnF was better than (−), similar to (=), and worse than (+) the compared algorithms.
These statistics demonstrate that NSGA-II-BnF is superior to NSGA-IIconflict, rNSGA-II,
RPDNSGA-II, and NSGAII-SDR in 27, 28, 26, and 24 cases among 36 test problems, and
NSGA-II-BnF is only worse than NSGA-IIconflict, rNSGA-II, RPDNSGA-II, and NSGAII-
SDR on 1, 3, 8, and 3 test problems, respectively.

We can learn from Table 2 that our proposed NSGA-II-BnF is significantly superior
to its peer algorithms for the IGD indicator. Furthermore, we consider this superior
performance the result of our effective resource allocation strategy, enhancing convergence
performance when solving MOPs with usual complexity.

We support our conclusion by presenting several examples of obtained final approxi-
mated non-dominated solutions in Figures 3–7. These results indicate that NSGA-II-BnF
always has superior convergence performance and diversity, resulting in a smoother front
than its peer algorithms.

The results of the comparison among NSGA-II-BnF and its peers on the HV indicator
are depicted in Table 3. The comparison for HV value is similar to IGD values. NSGA-II-
BnF obtained 19 of 36 best results. Furthermore, NSGA-IIconflict, rNSGA-II, RPDNSGA-II,
and NSGAII-SDR obtained 1, 2, 7, and 7 best results, respectively. The last row of Table 3
presents NSGA-II-BnF outperforms NSGA-IIconflict, rNSGA-II, RPDNSGA-II, and NSGAII-
SDR for the Wilcoxon’s rank-sum test on 29, 28, 28, and 19 test problems, respectively. Thus,
we can conclude that our proposed NSGA-II-BnF has special competitiveness when facing
the MOPs with complex PF.

Figure 3. Scatter plots of final Pareto optimal sets (PSs) of NSGA-II-BnF and the compared algorithms
on WFG5.



Symmetry 2021, 13, 136 12 of 26

Table 2. Experimental results (mean and standard deviation) of inverted generational distance (IGD) values.

Problem NSGA-IIconflict rNSGA-II RPDNSGA-II NSGAII-SDR NSGA-II-BnF

DTLZ1 9.9524 × 10−1 (5.42 × 10−1) − 3.9329 × 10−3 (7.42 × 10−2) + 1.0742 × 10−1 (1.14 × 10−1) − 2.1962 × 10−1 (5.68 × 10−2) − 2.9848 × 10−2 (6.61 × 10−1)
DTLZ2 1.9853 × 10−3 (6.45 × 10−6) + 5.3578 × 10−1 (3.96 × 10−2) − 8.1904 × 10−2 (1.46 × 10−1) − 2.9394 × 10−1 (7.70 × 10−2) − 2.0754 × 10−3 (1.65 × 10−5)
DTLZ3 1.1864 × 10−1 (2.46 × 10−1) = 9.3469 × 10−3 (6.95 × 10−3) = 2.0767 × 10−1 (5.22 × 10−1) − 2.3742 × 10−1 (6.63 × 10−2) − 1.1138 × 10−2 (2.00 × 10−2)
DTLZ4 8.1915 × 10−2 (1.46 × 10−1) − 3.0173 × 10−1 (1.28 × 10−1) − 2.0380 × 10−3 (2.99 × 10−5) + 1.0502 × 10−1 (6.65 × 10−2) − 2.6736 × 10−2 (1.35 × 10−1)
DTLZ5 8.1929 × 10−2 (1.46 × 10−1) − 5.3366 × 10−1 (4.00 × 10−2) − 1.9831 × 10−3 (4.18 × 10−6) + 2.9406 × 10−1 (4.72 × 10−2) − 2.0743 × 10−3 (1.64 × 10−5)
DTLZ6 8.2086 × 10−2 (1.46 × 10−1) − 1.2965 × 10−1 (4.41 × 10−2) − 1.9733 × 10−3 (3.31 × 10−8) + 1.5183 × 10−1 (1.01 × 10−1) − 2.0435 × 10−3 (1.12 × 10−5)
DTLZ7 8.6756 × 10−2 (1.55 × 10−1) − 1.0854 × 10−2 (1.57 × 10−2) − 1.5021 × 10−1 (2.11 × 10−1) − 4.5382 × 10−3 (3.94 × 10−4) − 2.3606 × 10−3 (4.15 × 10−5)
WFG1 1.3503 × 10−1 (2.74 × 10−2) − 3.2202 × 10−1 (7.66 × 10−2) − 7.8765 × 10−1 (6.57 × 10−2) − 1.4982 × 10−2 (1.27 × 10−3) − 1.0636 × 10−1 (1.54 × 10−2)
WFG2 1.1640 × 10−2 (1.09 × 10−3) − 1.5311 × 10−2 (1.91 × 10−1) − 1.1444 × 10−2 (3.26 × 10−4) − 1.2612 × 10−2 (1.03 × 10−3) − 5.7147 × 10−3 (2.12 × 10−4)
WFG3 1.1179 × 10−1 (2.53 × 10−5) − 1.7132 × 10−1 (1.47 × 10−1) − 8.1188 × 10−3 (2.58 × 10−4) − 7.8637 × 10−3 (3.20 × 10−4) − 6.8337 × 10−3 (3.66 × 10−4)
WFG4 9.9711 × 10−1 (6.50 × 10−5) − 1.7631 × 10−1 (2.16 × 10−1) − 4.6756 × 10−2 (6.22 × 10−3) − 8.9396 × 10−3 (4.20 × 10−4) − 6.9378 × 10−3 (3.13 × 10−4)
WFG5 1.8178 × 10−1 (2.96 × 10−1) − 9.6963 × 10−1 (1.95 × 10−6) − 6.6504 × 10−2 (2.28 × 10−3) − 7.2977 × 10−2 (2.33 × 10−4) − 6.2467 × 10−2 (5.89 × 10−4)
WFG6 5.5716 × 10−2 (2.19 × 10−2) = 1.8242 × 10−1 (1.24 × 10−1) − 9.6338 × 10−1 (7.35 × 10−3) − 5.8111 × 10−2 (2.86 × 10−3) = 5.7762 × 10−2 (2.04 × 10−2)
WFG7 9.9728 × 10−1 (1.66 × 10−5) − 2.1395 × 10−1 (8.76 × 10−2) − 7.2479 × 10−3 (1.99 × 10−4) − 8.8962 × 10−3 (3.79 × 10−4) − 6.7597 × 10−3 (1.15 × 10−4)
WFG8 9.5071 × 10−1 (5.46 × 10−3) − 2.8398 × 10−1 (2.09 × 10−1) − 5.4962 × 10−1 (3.88 × 10−3) − 8.4982 × 10−2 (2.19 × 10−3) + 1.0804 × 10−1 (1.23 × 10−3)
WFG9 9.8125 × 10−1 (1.38 × 10−2) − 1.3394 × 10−1 (3.89 × 10−1) − 2.1992 × 10−2 (1.91 × 10−3) − 3.6133 × 10−2 (4.90 × 10−2) − 1.2492 × 10−2 (1.49 × 10−3)
UF1 1.9890 × 10−1 (1.85 × 10−1) − 2.7593 × 10−1 (1.64 × 10−1) − 1.1126 × 10−1 (3.24 × 10−2) − 1.1137 × 10−2 (4.32 × 10−3) + 7.7956 × 10−2 (2.01 × 10−2)
UF2 1.2273 × 10−1 (1.47 × 10−1) − 2.9076 × 10−1 (1.27 × 10−1) − 2.2006 × 10−2 (2.01 × 10−2) + 5.3241 × 10−2 (5.23 × 10−3) − 3.5607 × 10−2 (9.04 × 10−3)
UF3 6.6889 × 10−1 (2.62 × 10−1) − 3.0716 × 10−1 (1.14 × 10−1) − 5.4326 × 10−2 (5.56 × 10−2) + 2.0806 × 10−1 (5.23 × 10−2) − 6.5324 × 10−2 (4.05 × 10−2)
UF4 3.5123 × 10−1 (4.35 × 10−3) − 7.8673 × 10−1 (1.14 × 10−1) − 7.6674 × 10−2 (7.39 × 10−3) − 5.0782 × 10−2 (4.89 × 10−4) − 4.5008 × 10−2 (8.47 × 10−4)
UF5 1.9618 × 10−1 (7.81 × 10−1) − 3.9719 × 10−1 (1.20 × 10−1) − 6.0782 × 10−1 (1.05 × 10−1) − 2.2774 × 10−1 (4.22 × 10−2) = 2.7994 × 10−1 (6.08 × 10−2)
UF6 2.0294 × 10−2 (8.68 × 10−1) − 1.0257 × 10−2 (1.25 × 10−1) + 2.8153 × 10−1 (1.26 × 10−1) − 1.2945 × 10−1 (3.32 × 10−2) = 1.3067 × 10−1 (4.42 × 10−2)
UF7 5.7339 × 10−1 (2.80 × 10−1) − 4.6755 × 10−1 (1.44 × 10−1) − 1.2774 × 10−2 (5.33 × 10−3) + 4.9880 × 10−2 (6.35 × 10−2) = 5.3926 × 10−2 (5.20 × 10−2)
UF8 6.3153 × 10−1 (5.41 × 10−2) − 5.1939 × 10−1 (5.87 × 10−2) − 2.9302 × 10−1 (6.47 × 10−2) − 1.7459 × 10−1 (5.23 × 10−2) + 2.4502 × 10−1 (2.99 × 10−2)
UF9 1.3582 × 10−1 (3.21 × 10−1) − 9.7059 × 10−1 (4.32 × 10−1) − 2.0697 × 10−1 (6.09 × 10−2) = 1.9939 × 10−1 (8.01 × 10−2) = 2.4376 × 10−1 (9.82 × 10−2)

UF10 8.1630 × 10−1 (8.62 × 10−1) = 5.1885 × 10−1 (1.11 × 10−1) − 6.0368 × 10−1 (1.94 × 10−1) − 4.2669 × 10−1 (1.32 × 10−1) − 3.7576 × 10−1 (6.80 × 10−2)
CF1 5.7587 × 10−1 (2.58 × 10−1) = 6.7309 × 10−1 (4.07 × 10−1) − 7.0711 × 10−1 (3.40 × 10−1) − 6.1205 × 10−1 (1.53 × 10−1) − 4.4362 × 10−1 (1.40 × 10−1)
CF2 3.5805 × 10−1 (5.78 × 10−1) − 1.5013 × 10−1 (1.70 × 10−1) − 3.3864 × 10−3 (6.77 × 10−4) + 5.2987 × 10−2 (1.36 × 10−2) = 5.2831 × 10−2 (2.41 × 10−2)
CF3 5.9873 × 10−1 (7.02 × 10−1) = 2.7659 × 10−1 (9.23 × 10−2) = 2.0334 × 10−1 (7.01 × 10−2) + 2.6032 × 10−1 (8.42 × 10−2) = 2.9505 × 10−1 (8.98 × 10−2)
CF4 5.5640 × 10−1 (7.77 × 10−1) − 3.0471 × 10−1 (1.28 × 10−1) = 5.7237 × 10−1 (5.73 × 10−1) − 3.0751 × 10−1 (5.52 × 10−2) − 2.6903 × 10−1 (1.29 × 10−1)
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Table 2. Cont.

Problem NSGA-IIconflict rNSGA-II RPDNSGA-II NSGAII-SDR NSGA-II-BnF

CF5 9.3437 × 10−1 (1.08 × 10−1) = 3.6892 × 10−1 (1.26 × 10−1) = 4.0063 × 10−1 (1.41 × 10−1) − 4.0179 × 10−1 (1.33 × 10−1) − 2.5713 × 10−1(1.06 × 10−1)
CF6 3.3716 × 10−1 (3.30 × 10−1) = 3.3937 × 10−1 (1.18 × 10−1) − 3.3920 × 10−1 (1.08 × 10−1) − 1.7075 × 10−1 (5.98 × 10−2) = 1.6294 × 10−1 (4.72 × 10−2)
CF7 5.0530 × 10−1 (1.97 × 10−1) = 4.5555 × 10−1 (1.82 × 10−1) = 4.5549 × 10−1 (1.66 × 10−1) = 2.0868 × 10−1 (1.01 × 10−1) = 2.2834 × 10−1 (1.48 × 10−1)
CF8 5.9872 × 10−1 (5.33 × 10−1) − 5.5194 × 10−1 (2.07 × 10−1) − 3.6476 × 10−1 (9.91 × 10−2) − 4.2228 × 10−1 (1.92 × 10−1) − 3.1883 × 10−1 (1.86 × 10−1)
CF9 2.8537 × 10−1 (2.91 × 10−1) − 3.5133 × 10−1 (2.49 × 10−1) − 8.1477 × 10−2 (7.91 × 10−3) − 1.1444 × 10−1 (5.31 × 10−2) − 6.8918 × 10−2 (7.66 × 10−3)

CF10 7.3578 × 10−1 (2.58 × 10−1) − 6.5082 × 10−1 (2.96 × 10−1) − 4.5882 × 10−1 (2.12 × 10−1) − 4.6881 × 10−1 (2.11 × 10−1) − 3.0384 × 10−1 (9.50 × 10−2)
Best/All 2/36 3/36 9/36 4/36 18/36

Total 1+/27−/8= 3+/28−/5= 8+/26−/2= 3+/24−/9=

Table 3. Experimental results (mean and standard deviation) of hypervolume (HV) values.

Problem NSGA-IIconflict rNSGA-II RPDNSGA-II NSGAII-SDR NSGA-II-BnF

DTLZ1 3.7712 × 10−1 (1.04 × 100 ) = 3.4492 (6.51 × 10−1) + 2.3851 (3.63 × 10−1) − 2.4801 (4.61 × 10−1) − 3.0587 (8.44 × 10−1)
DTLZ2 3.3481 (1.09 × 10−3) − 3.3078 (7.53 × 10−2) − 2.1995 (3.63 × 10−2) − 3.3468 (1.65 × 10−3) − 3.3491 (3.88 × 10−5)
DTLZ3 1.0825 × 10−1 (5.93 × 10−1) − 3.3378 (1.01 × 10−2) = 2.5622 (1.44 × 100) − 3.2246 (6.09 × 10−1) = 3.3368 (2.16 × 10−2)
DTLZ4 3.3094 (2.13 × 10−1) − 3.3078 (7.54 × 10−2) − 2.2090 (9.61 × 10−2) − 3.2694 (2.96 × 10−1) − 3.3102 (2.13 × 10−1)
DTLZ5 3.3482 (9.79 × 10−4) − 3.3078 (7.53 × 10−2) − 3.6491 (3.82 × 10−2) + 3.3469 (1.46 × 10−3) − 3.4809 (4.74 × 10−2)
DTLZ6 3.3481 (1.03 × 10−3) − 3.3078 (7.53 × 10−2) − 3.3492 (1.87 × 10−5) + 3.3352 (1.15 × 10−2) − 2.5854 (1.47 × 10−1)
DTLZ7 1.8618 (1.62 × 10−1) − 2.6916 (5.04 × 10−2) − 1.6336 (1.11 × 10−2) − 2.7185 (4.25 × 10−4) − 2.7191 (1.36 × 10−5)
WFG1 3.2762 (8.87 × 10−2) − 2.9736 (3.43 × 10−1) − 2.5634 (6.28 × 10−2) − 2.6369 (4.18 × 10−2) − 3.6545 (1.33 × 10−2)
WFG2 3.4528 (1.47 × 10−3) − 3.1700 (1.27 × 10−3) − 2.2119 (1.96 × 10−2) − 3.6294 (1.20 × 10−3) − 3.6327 (5.74 × 10−4)
WFG3 3.3052 (1.89 × 10−3) − 3.1709 (1.07 × 10−3) − 2.3756 (5.82 × 10−2) − 3.5813 (2.68 × 10−3) = 3.5822 (6.15 × 10−4)
WFG4 2.6485 (8.73 × 10−4) − 3.1732 (1.25 × 10−4) − 2.2344 (2.66 × 10−2) − 2.9319 (1.25 × 10−4) − 3.3477 (4.45 × 10−4)
WFG5 2.5730 (1.13 × 10−4) − 3.1056 (2.13 × 10−6) − 2.1691 (3.93 × 10−2) − 3.0671 (2.26 × 10−2) − 3.2770 (9.93 × 10−3)
WFG6 3.2645 (2.25 × 10−2) = 3.0817 (2.68 × 10−2) − 2.1335 (2.29 × 10−2) − 2.6418 (2.04 × 10−2) − 3.2575 (2.14 × 10−2)
WFG7 2.6495 (4.66 × 10−4) − 3.1735 (3.24 × 10−5) − 2.1933 (8.03 × 10−3) − 2.8441 (5.03 × 10−4) − 3.3485 (9.65 × 10−5)
WFG8 2.5619 (4.72 × 10−3) − 2.9074 (3.37 × 10−1) − 2.0749 (3.12 × 10−2) − 3.2784 (1.56 × 10−3) = 3.2116 (2.90 × 10−3)
WFG9 2.6384 (2.97 × 10−3) − 3.1379 (6.04 × 10−2) − 2.2448 (7.91 × 10−2) − 3.0247 (8.72 × 10−2) − 3.3316 (6.90 × 10−3)
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Table 3. Cont.

Problem NSGA-IIconflict rNSGA-II RPDNSGA-II NSGAII-SDR NSGA-II-BnF

UF1 3.4232 (9.34 × 10−2) − 3.1300 (7.20 × 10−1) − 2.9551 (3.32 × 10−1) − 3.6875(7.01 × 10−2) = 3.5012 (7.38 × 10−2)
UF2 3.5905 (4.85 × 10−2) − 3.3841 (6.75 × 10−1) = 3.7253(1.82 × 10−2) + 3.3015 (3.89 × 10−2) − 3.6764 (3.90 × 10−2)
UF3 2.8036 (1.20 × 10−1) − 1.0183 (1.06 × 100) − 2.6401 (2.36 × 10−1) − 2.9422 (1.34 × 10−1) − 3.4258(2.46 × 10−1)
UF4 3.3174 (4.71 × 10−3) − 3.0821 (1.32 × 10−2) − 2.0890 (3.45 × 10−2) − 3.3040 (5.01 × 10−3) − 3.3392(4.48 × 10−3)
UF5 1.9536 (4.23 × 10−1) − 2.0312 (5.01 × 10−1) − 2.0308 (6.67 × 10−1) − 2.4934 (5.21 × 10−1) − 2.6272(3.04 × 10−1)
UF6 2.4747 (2.66 × 10−1) − 2.2823 (9.85 × 10−1) − 2.5927 (5.71 × 10−1) − 2.9404 (1.93 × 10−1) − 3.9261(1.91 × 10−1)
UF7 3.1689 (3.70 × 10−1) − 1.2877 (1.34 × 10−1) − 2.4342 (1.95 × 10−1) − 3.4557 (1.93 × 10−1) = 3.8660(1.50 × 10−1)
UF8 6.3935 (5.01 × 10−1) − 5.0769 (1.49 × 10−1) − 4.0548 (4.14 × 10−1) − 7.3592(2.57 × 10−1) + 6.6545 (1.04 × 10−1)
UF9 6.1791 (3.50 × 10−1) − 5.2490 (6.84 × 10−1) − 2.3559 (1.97 × 10−1) − 6.4564 (2.45 × 10−1) = 6.6664(4.23 × 10−1)

UF10 4.3613 (1.23 × 100) − 4.3784 (2.79 × 10−1) = 4.0399 (1.13 × 100) − 6.3649(1.21 × 10−2) = 6.2468 (1.04 × 10−2)
CF1 2.1443 (8.16 × 10−1) = 1.4097 (1.25 × 10−1) = 2.3516(2.08 × 10−2) + 1.7864 (1.33 × 10−1) = 1.7851 (1.04 × 10−1)
CF2 3.5107 (8.95 × 10−2) = 2.8016 (1.34 × 100) − 3.7366(6.78 × 10−2) + 3.4609 (7.78 × 10−2)= 3.6345 (3.17 × 10−2)
CF3 2.3274 (3.67 × 10−1) − 2.0198 (1.27 × 10−1) = 2.6283(3.46 × 10−1) = 2.5891 (3.51 × 10−1) = 2.5452 (3.44 × 10−1)
CF4 2.6564 (2.31 × 10−1) = 2.3161 (8.37 × 10−1) − 2.6001 (2.72 × 10−1) = 2.8676(1.94 × 10−1) = 2.7146 (2.21 × 10−1)
CF5 2.3162 (5.02 × 10−2) = 1.7184 (1.15 × 10−1) = 2.5445 (2.34 × 10−1) + 2.4368 (2.24 × 10−1) = 2.4547 (2.18 × 10−1)
CF6 3.2606 (1.18 × 10−1) = 2.8129 (1.07 × 10−1) = 2.8185 (1.89 × 10−1) − 2.9056 (1.01 × 10−1) = 3.3364 (8.51 × 10−2)
CF7 2.5986 (2.10 × 10−1) − 2.2178 (1.02 × 10−2) − 2.6330 (2.87 × 10−1) − 2.9407 (2.75 × 10−1) = 2.7709 (2.78 × 10−1)
CF8 4.8931 (9.42 × 10−1) − 4.0300 (2.02 × 10−2) − 3.4633 (1.43 × 10−1) − 4.8983 (1.12 × 100) − 5.4100 (1.33 × 10−1)
CF9 6.5983 (4.34 × 10−1) − 5.9069 (1.81 × 10−2) − 4.9510 (1.86 × 10−1) − 6.6085 (3.22 × 10−1) − 7.2925 (7.59 × 10−2)

CF10 4.5730 (1.00 × 100) − 3.4969 (2.28 × 10−1) − 2.6428 (1.87 × 10−1) − 5.6355 (9.36 × 10−1) + 5.2637 (8.00 × 10−1)
Best/All 1/36 2/36 7/36 7/36 19/36
+/−/= 0+/29−/7= 1+/28−/7= 6+/28−/2= 2+/19−/15=
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Figure 4. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on WFG6.

Figure 5. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on DTLZ7.

Figure 6. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on UF4.
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Figure 7. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on CF1.

4.5. Comparison Among NSGA-II-BnF and Four Classic Algorithms

We selected four widely-used and competitive algorithms (SPEA-II, MOEA/D-DE,
SMPSO, and dMOPSO) to compare with our proposed NAGS-II-BnF. Each algorithm
executed 30 independent runs on the test problems. We also selected IGD and HV as
the indicators.

The results of the comparison for the IGD value are depicted in Table 4. Our proposed
NSGA-II-BnF obtained 23 of 36 best cases, and SPEA-II, MOEA/D-DE, SMOPSO, and
dMOPSO obtained 7, 1, 2, and 3 best cases, respectively. For DTLZ series problems, NSGA-
II-BNF obtained 4 of 7 best results, compared with SPEA-II, MOEA/D-DE, SMOPSO, and
dMOPSO obtained 1, 1, 0, 1 best results. Especially, For UF series problems, NSGA-II-BNF
obtained 9 of 10 best results, compared with SPEA-II, which obtained one best result.

Furthermore, the last row reveals that NSGA-II-BnF had a better performance on 24, 27,
29, and 29 test problems for Wilcoxon’s rank-sum test compared to SPEA-II, MOEA/D-DE,
SMOPSO, and dMOPSO, respectively. We can see from Table 4, our proposed NSGA-II-BnF
shows better performance on IGD values than four competitive algorithms on most of the
test problems.

The results of the comparison with the HV value are depicted in Table 5. Our proposed
NSGA-II-BnF obtained 21 of 36 best cases, and SPEA-II, MOEA/D-DE, SMOPSO, and
dMOPSO obtained 7, 4, 1, and 3 best cases, respectively.

Moreover, the last row demonstrates that NSGA-II-BnF had the best performance
on 23, 24, 30, and 27 test problems for Wilcoxon’s rank-sum test compared to SPEA-II,
MOEA/D-DE, SMOPSO, and dMOPSO, respectively. We can see from Table 5, our pro-
posed NSGA-II-BnF shows better performance on HV values on most of the test problems
than four competitive algorithms. To visually show the advantage of NSGA-II-BnF, we plot-
ted the comparison of NSGA-II-BnF with SPEA-II, MOEA/D-DE, SMOPSO, and dMOPSO
on WGF1, WFG7, UF3, UF7 CF2, as shown in Figures 8–12. These figures demonstrate
that NSGA-II-BnF always obtained a smoother PF and greater convergence than the other
four algorithms.

Based on the discussions above, we can draw this conclusion that our proposed
NSGA-II-BnF always outperformed the compared algorithms reflected in the graphs as
smoother, more even, and closer to the true PF than the compared algorithms. We consider
these advantages and outstanding performance as the successful result of our proposed
resource allocation strategy and individual exploitation strategy.
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Table 4. Experimental results (mean and standard deviation) of IGD values.

Problem SPEA-II MOEA/D-DE SMPSO dMOPSO NSGA-II-BnF

DTLZ1 6.7230 × 10−3 (6.27 × 10−3) + 2.0908 × 10−2 (7.35 × 10−2) + 3.1412 × 10−1 (3.10 × 10−1) − 2.6104 × 10−1 (2.82 × 10−1) − 2.9848 × 10−2 (6.61 × 10−1)
DTLZ2 3.1727 × 10−3 (1.15 × 10−3) − 3.8207 × 10−3 (1.48 × 10−3) − 2.5700 × 10−3 (7.18 × 10−5) − 1.5720 × 10−2 (2.10 × 10−3) − 2.0754 × 10−3 (1.65 × 10−5)
DTLZ3 4.3689 × 10−2 (1.84 × 10−1) = 4.4424 × 10−2 (1.82 × 10−1) = 2.7614 × 10−1 (2.22 × 100) − 7.4083 × 10−2 (1.25 × 100) − 1.1138 × 10−2 (2.00 × 10−2)
DTLZ4 5.2903 × 10−2 (1.87 × 10−1) − 3.2116 × 10−3 (1.15 × 10−3) + 2.7214 × 10−2 (1.35 × 10−1) − 3.5010 × 10−2 (1.17 × 10−2) − 2.6736 × 10−2 (1.35 × 10−1)
DTLZ5 3.1777 × 10−3 (1.15 × 10−3) − 3.8175 × 10−3 (1.37 × 10−3) − 2.5513 × 10−3 (7.08 × 10−5) − 1.6313 × 10−2 (2.09 × 10−3) − 2.0743 × 10−3 (1.64 × 10−5)
DTLZ6 3.5986 × 10−3 (1.40 × 10−3) − 1.2863 × 10−2 (9.41 × 10−3) − 2.6028 × 10−3 (6.46 × 10−5) − 1.9753 × 10−3 (1.60 × 10−6) + 2.0435 × 10−3 (1.12 × 10−5)
DTLZ7 3.3198 × 10−3 (1.24 × 10−3) − 4.6229 × 10−3 (1.78 × 10−3) − 1.0526 × 10−1 (1.89 × 10−1) − 7.0221 × 10−3 (1.14 × 10−3) − 2.3606 × 10−3 (4.15 × 10−5)
WFG1 1.1825 × 10−1 (4.31 × 10−2) = 1.2013 × 10−1 (3.87 × 10−2) − 3.0616 × 10−1 (5.19 × 10−2) − 3.2701 × 10−1 (6.35 × 10−3) − 1.0636 × 10−1 (1.54 × 10−2)
WFG2 1.3261 × 10−2 (4.67 × 10−4) − 2.0696 × 10−2 (1.61 × 10−3) − 1.2621 × 10−2 (3.35 × 10−3) − 1.0709 × 10−1 (1.19 × 10−2) − 5.7147 × 10−3 (2.12 × 10−4)
WFG3 1.5488 × 10−2 (6.28 × 10−4) − 1.8273 × 10−2 (1.09 × 10−3) − 9.1467 × 10−3 (4.38 × 10−4) − 7.3244 × 10−2 (7.82 × 10−3) − 6.8337 × 10−3 (3.66 × 10−4)
WFG4 1.5626 × 10−2 (4.72 × 10−4) − 1.5094 × 10−2 (1.37 × 10−3) − 4.3881 × 10−2 (1.08 × 10−2) − 7.8283 × 10−2 (5.24 × 10−3) − 6.9378 × 10−3 (3.13 × 10−4)
WFG5 6.5280 × 10−2 (3.21 × 10−4) − 8.6818 × 10−2 (5.62 × 10−2) − 6.4034 × 10−2 (9.35 × 10−4) − 6.7354 × 10−2 (1.90 × 10−3) − 6.2467 × 10−2 (5.89 × 10−4)
WFG6 8.3295 × 10−2 (1.83 × 10−2) = 8.3809 × 10−2 (1.86 × 10−2) = 1.2642 × 10−2 (6.44 × 10−3) + 7.3127 × 10−2 (7.65 × 10−3) = 5.7762 × 10−2 (2.04 × 10−2)
WFG7 1.7341 × 10−2 (6.75 × 10−4) − 1.7456 × 10−2 (1.10 × 10−3) − 8.6719 × 10−3 (3.25 × 10−4) − 9.2887 × 10−2 (1.23 × 10−2) − 6.7597 × 10−3 (1.15 × 10−4)
WFG8 3.1152 × 10−1 (1.37 × 10−3) − 1.1629 × 10−1 (3.10 × 10−3) − 1.0225 × 10−1 (5.90 × 10−3) + 2.2204 × 10−1 (1.26 × 10−2) − 1.0804 × 10−1 (1.23 × 10−3)
WFG9 2.1794 × 10−2 (2.47 × 10−3) − 2.6441 × 10−2 (2.91 × 10−3) − 1.9328 × 10−2 (2.81 × 10−3) − 3.9316 × 10−2 (2.69 × 10−3) − 1.2492 × 10−2 (1.49 × 10−3)
UF1 1.1636 × 10−1 (3.39 × 10−2) − 1.0707 × 10−1 (2.68 × 10−2) − 1.1435 × 10−1 (2.14 × 10−2) − 2.9113 × 10−1 (6.49 × 10−2) − 7.7956 × 10−2 (2.01 × 10−2)
UF2 2.9583 × 10−2 (1.05 × 10−2) = 4.2089 × 10−2 (5.95 × 10−3) − 4.9176 × 10−2 (5.64 × 10−3) − 7.2812 × 10−2 (6.72 × 10−3) − 3.5607 × 10−2 (9.04 × 10−3)
UF3 2.2298 × 10−1 (5.15 × 10−2) − 2.6533 × 10−1 (3.64 × 10−2) − 2.2174 × 10−1 (7.07 × 10−2) − 3.1025 × 10−1 (9.37 × 10−3) − 6.5324 × 10−2 (4.05 × 10−2)
UF4 5.6202 × 10−2 (2.43 × 10−3) − 5.9946 × 10−2 (3.46 × 10−3) − 8.6831 × 10−2 (1.01 × 10−2) − 1.0842 × 10−1 (6.43 × 10−3) − 4.5008 × 10−2 (8.47 × 10−4)
UF5 3.9452 × 10−1 (1.02 × 10−1) − 3.7018 × 10−1 (1.10 × 10−1) − 1.7499 × 10−1 (6.55 × 10−1) − 3.9838 × 10−1 (3.23 × 10−1) − 2.7994 × 10−1 (6.08 × 10−2)
UF6 1.8429 × 10−1 (9.62 × 10−2) − 2.2601 × 10−1 (1.37 × 10−1) − 4.3435 × 10−1 (1.04 × 10−1) − 1.1734 × 100 (2.50 × 10−1) − 1.3067 × 10−1 (4.42 × 10−2)
UF7 1.5346 × 10−1 (1.33 × 10−1) − 1.7477 × 10−1 (1.50 × 10−1) − 1.3599 × 10−1 (1.36 × 10−1) − 2.6362 × 10−1 (5.64 × 10−2) − 5.3926 × 10−2 (5.20 × 10−2

UF8 2.8042 × 10−1 (2.43 × 10−2) − 2.6298 × 10−1 (3.34 × 10−3) − 3.2839 × 10−1 (3.65 × 10−2) − 3.0297 × 10−1 (3.50 × 10−2) − 2.4502 × 10−1 (2.99 × 10−2)
UF9 3.8984 × 10−1 (1.10 × 10−1) − 3.7162 × 10−1 (6.29 × 10−2) − 5.1409 × 10−1 (5.42 × 10−2) − 5.7529 × 10−1 (4.12 × 10−2) − 2.4376 × 10−1 (9.82 × 10−2)

UF10 4.1234 × 10−1 (1.23 × 10−1) = 3.7774 × 10−1 (1.38 × 10−1) = 5.9138 × 10−1 (4.54 × 10−1) − 8.9974 × 10−1 (1.68 × 10−1) − 3.7576 × 10−1 (6.80 × 10−2)
CF1 4.1331 × 10−2 (6.12 × 10−3) + 6.4683 × 10−1 (4.28 × 10−1) = 6.6559 × 10−1 (1.27 × 10−1) = 3.7872 × 10−1 (8.98 × 10−2) + 4.4362 × 10−1 (1.40 × 10−1)
CF2 5.4379 × 10−2 (1.64 × 10−2) = 5.0678 × 10−2 (1.56 × 10−2) = 5.6506 × 10−2 (1.43 × 10−2) = 9.5738 × 10−2 (1.52 × 10−2) − 5.2831 × 10−2 (2.41 × 10−2)
CF3 2.5161 × 10−1 (9.82 × 10−2) + 7.5678 × 10−1 (1.59 × 10−2) − 6.2263 × 10−1 (1.75 × 10−1) − 9.0378 × 10−1 (1.56 × 10−1) − 2.9505 × 10−1 (8.98 × 10−2)
CF4 1.1379 × 10−1 (4.78 × 10−2) + 6.1865 × 10−1 (8.50 × 10−1) − 1.9973 × 10−1 (7.84 × 10−2) + 1.9199 × 10−1 (3.08 × 10−2) + 2.6903 × 10−1 (1.29 × 10−1)
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Table 4. Cont.

Problem SPEA-II MOEA/D-DE SMPSO dMOPSO NSGA-II-BnF

CF5 2.7830 × 10−1 (1.11 × 10−1) + 3.0706 × 10−1 (1.07 × 10−1) + 5.6748 × 10−1 (4.01 × 10−1) = 6.1185 × 10−1 (4.80 × 10−2) − 2.5713 × 10−1 (1.06 × 10−1)
CF6 9.2758 × 10−2 (4.74 × 10−2) + 3.4417 × 10−1 (3.12 × 10−1) − 1.4726 × 10−1 (2.36 × 10−2) = 1.1346 × 10−1 (2.92 × 10−2) + 1.6294 × 10−1 (4.72 × 10−2)
CF7 2.5882 × 10−1 (1.20 × 10−1) − 3.1910 × 10−1 (1.35 × 10−1) − 1.1566 × 100 (1.65 × 100) − 1.0868 × 100 (3.73 × 10−1) − 2.2834 × 10−1 (1.48 × 10−1)
CF8 4.4212 × 10−1 (1.16 × 10−1) − 3.5190 × 10−1 (1.35 × 10−1) − 7.7144 × 10−1 (3.43 × 10−1) − 2.9175 × 10−1 (3.10 × 10−2) + 3.1883 × 10−1 (1.86 × 10−1)
CF9 1.2748 × 10−1 (4.72 × 10−2) − 1.1157 × 10−1 (4.22 × 10−2) − 1.8030 × 10−1 (5.46 × 10−2) − 1.2731 × 10−1 (1.85 × 10−2) − 6.8918 × 10−2 (7.66 × 10−3)
CF10 5.3578 × 10−1 (3.03 × 10−1) − 2.7349 × 10−1 (1.44 × 10−1) = 1.1643 (9.76 × 10−1) − 1.9763 × 10−1 (1.74 × 10−1) + 3.0384 × 10−1 (9.50 × 10−2)

Best/All 7/36 1/36 2/36 3/36 23/36
+/−/= 6+/24−/6= 3+/27−/6= 3+/29−/4= 6+/29−/1=

Table 5. Experimental results (mean and standard deviation) of HV values.

Problem SPEA2 MOEA/D-DE SMPSO dMOPSO NSGA-II-BnF

DTLZ1 3.5668 (1.80 × 10−2) + 3.0727 (1.09 × 10−1) = 3.1129 (1.08 × 10−1) = 3.2652 (9.32 × 10−1) = 3.0587 (8.44 × 10−1)
DTLZ2 3.3482 (9.72 × 10−4) − 3.3490 (1.06 × 10−5) − 3.3485 (8.73 × 10−5) − 3.3253 (1.26 × 10−2) − 3.3491 (3.88 × 10−5)
DTLZ3 3.0257 (6.09 × 10−1) = 3.4035 (8.24 × 10−1) = 2.0337 (1.54 × 100) − 2.5231 (5.88 × 10−1) − 3.3368 (2.16 × 10−2)
DTLZ4 3.1482 (2.55 × 10−2) − 3.3488 (2.74 × 10−5) + 3.3096 (2.13 × 10−1) − 3.3158 (1.16 × 10−2) + 3.3102 (2.13 × 10−1)
DTLZ5 3.3481 (1.04 × 10−3) − 2.3490 (1.37 × 10−3) − 3.3485 (8.56 × 10−5) − 3.0279 (3.21 × 10−3) − 3.4809 (4.74 × 10−2)
DTLZ6 3.3480 (1.09 × 10−3) − 3.3491 (2.77 × 10−8) − 3.3488 (7.50 × 10−5) − 3.5491 (5.61 × 10−7) + 2.5854 (1.47 × 10−1)
DTLZ7 2.7188 (2.78 × 10−4) − 2.5993 (1.70 × 10−1) − 2.6361 (1.53 × 10−1) − 2.7112 (2.53 × 10−3) − 2.7191 (1.36 × 10−5)
WFG1 3.6415 (4.83 × 10−2) = 2.7581 (1.03 × 10−1) − 2.2215 (4.60 × 10−2) − 2.2623 (2.10 × 10−2) − 3.6545 (1.33 × 10−2)
WFG2 3.6308 (1.15 × 10−3) − 3.6295 (1.19 × 10−3) − 3.6261 (3.20 × 10−3) − 3.4867 (1.93 × 10−2) − 3.6327 (5.74 × 10−4)
WFG3 3.5778 (1.09 × 10−3) − 3.5805 (4.52 × 10−4) − 3.5803 (7.52 × 10−4) − 3.4308 (3.36 × 10−2) − 3.5822 (6.15 × 10−4)
WFG4 3.3450 (5.96 × 10−4) − 3.3074 (6.73 × 10−3) − 3.2978 (1.13 × 10−2) − 3.2679 (6.24 × 10−3) − 3.3477 (4.45 × 10−4)
WFG5 3.3773 (1.83 × 10−3) + 3.2248 (2.78 × 10−2) − 3.2658 (1.51 × 10−2) − 3.2468 (2.03 × 10−2) − 3.2770 (9.93 × 10−3)
WFG6 3.2585 (2.06 × 10−2) = 3.1033 (9.09 × 10−3) − 3.3410 (8.69 × 10−3) + 3.2139 (9.94 × 10−3) − 3.2575 (2.14 × 10−2)
WFG7 3.3448 (3.82 × 10−4) − 3.3470 (3.11 × 10−4) − 3.3468 (2.68 × 10−4) − 3.1922 (3.16 × 10−2) − 3.3485 (9.65 × 10−5)
WFG8 3.2150 (2.30 × 10−3) − 3.2277 (1.10 × 10−3) + 3.2218 (4.27 × 10−3) + 2.8981 (5.36 × 10−2) − 3.2116 (2.90 × 10−3)
WFG9 3.3311 (6.00 × 10−3) = 3.2697 (2.29 × 10−2) − 3.3000 (2.44 × 10−2) − 3.2849 (1.82 × 10−2) − 3.3316 (6.90 × 10−3)
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Table 5. Cont.

Problem SPEA2 MOEA/D-DE SMPSO dMOPSO NSGA-II-BnF

UF1 3.3903 (1.41 × 10−1) − 3.2764 (3.90 × 10−2) − 3.3445 (1.08 × 10−1) − 2.8252 (2.07 × 10−1) − 3.5012 (7.38 × 10−2)
UF2 3.5968 (5.54 × 10−2) = 3.2189 (2.06 × 10−1) − 3.5392 (3.23 × 10−2) − 3.4756 (3.68 × 10−2) − 3.6764 (3.90 × 10−2)
UF3 2.8121 (1.10 × 10−1) − 3.0402 (1.24 × 10−1) − 3.0100 (1.64 × 10−1) − 3.3349 (1.02 × 10−2) + 3.4258 (2.46 × 10−1)
UF4 3.3183 (4.24 × 10−3) − 3.2459 (2.36 × 10−2) − 3.2028 (4.55 × 10−2) − 3.1858 (2.07 × 10−2) − 3.3392 (4.48 × 10−3)
UF5 2.0578 (3.40 × 10−1) − 1.1930 (8.16 × 10−1) − 2.1133 (3.21 × 10−1) − 2.3265 (2.43 × 10−1) − 2.6272 (3.04 × 10−1)
UF6 2.7684 (2.71 × 10−1) − 2.9268 (3.54 × 10−1) − 2.1249 (3.17 × 10−1) − 3.1916 (2.13 × 10−1) − 3.9261 (1.91 × 10−1)
UF7 3.1810 (3.91 × 10−1) − 3.2511 (2.12 × 10−1) − 3.0870 (3.91 × 10−1) − 2.7365 (2.25 × 10−1) − 3.8660 (1.50 × 10−1)
UF8 6.5547 (8.22 × 10−2) − 6.6528 (2.77 × 10−1) = 5.9756 (3.86 × 10−1) − 6.5491 (6.34 × 10−2) − 6.6545 (1.04 × 10−1)
UF9 6.0581 (5.52 × 10−1) − 6.4544 (4.23 × 10−1) − 5.1765 (3.21 × 10−1) − 5.0115 (1.92 × 10−1) − 6.6664 (4.23 × 10−1)

UF10 5.1681 (1.41 × 100) − 5.1526 (9.76 × 10−1) − 5.1054 (2.80 × 10−1) − 4.5182 (5.86 × 10−1) − 6.2468 (1.04 × 10−2)
CF1 3.4926 (3.65 × 10−2) + 2.1818 (1.36 × 10−1) + 2.2456 (1.95 × 10−1) = 2.4491 (1.96 × 10−1) + 1.7851 (1.04 × 10−1)
CF2 3.5280 (7.81 × 10−2) = 3.2719 (4.03 × 10−1) − 3.1092 (3.35 × 10−2) − 3.4295 (3.67 × 10−2) − 3.6345 (3.17 × 10−2)
CF3 2.6580 (2.52 × 10−1) = 2.6907 (2.67 × 10−1) = 1.0257 (7.72 × 10−1) − 2.1491 (1.89 × 10−1) − 2.5452 (3.44 × 10−1)
CF4 3.0569 (1.57 × 10−1) + 2.8807 (1.65 × 10−1) + 2.7404 (2.46 × 10−1) = 2.9011 (1.75 × 10−1) + 2.7146 (2.21 × 10−1)
CF5 2.6376 (2.74 × 10−1) + 2.2569 (2.11 × 10−1) − 1.5678 (1.03 × 100) − 2.2399 (2.23 × 10−2) − 2.4547 (2.18 × 10−1)
CF6 3.4461 (1.21 × 10−1) + 3.4019 (3.01 × 10−3) + 3.3404 (4.66 × 10−2) = 3.3584 (1.03 × 10−1) = 3.3364 (8.51 × 10−2)
CF7 2.9545 (2.63 × 10−1) + 2.8942 (2.90 × 10−1) = 1.4887 (1.14 × 100) − 2.0779 (8.00 × 10−1) − 2.7709 (2.78 × 10−1)
CF8 5.0308 (9.30 × 10−1) − 5.1941 (7.03 × 10−1) − 2.2787 (1.76 × 100) − 5.7027 (2.76 × 10−1) = 5.4100 (1.33 × 10−1)
CF9 6.9940 (4.21 × 10−1) − 7.0896 (1.12 × 10−1) − 6.3356 (6.19 × 10−1) − 6.7369 (2.74 × 10−1) − 7.2925 (7.59 × 10−2)

CF10 4.5674 (1.34 × 100) − 5.3088 (8.87 × 10−1) = 4.1674 (1.34 × 100) − 6.2201 (6.37 × 10−1) + 5.2637 (8.00 × 10−1)
Best/All 7/36 4/36 1/36 3/36 21/36

Total 6+/23−/7= 5+/24−/6= 2+/30−/4= 6+/27−/3=
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Figure 8. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on WFG1.

Figure 9. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on WFG7.

Figure 10. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on CF2.
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Figure 11. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on UF7.

Figure 12. Scatter plots of final PSs of NSGA-II-BnF and the compared algorithms on UF3.

4.6. Comparison between NSGA-II-BnF and NSGA-II

In this part, we compared the original NSGA-II and NSGA-II with the biased resource
allocation strategy and fast individual exploitation strategy to determine the extent to
which our proposed algorithm improved the original algorithm.

Each algorithm executed 30 independent runs on 36 test problems; the IGD and HV
values are depicted in Table 6.

Table 6 presents that on the IGD indicator, our proposed NSGA-II-BnF obtained 28 of
36 best cases compared with 8 of 36 cases that NSGA-II obtained, and the last row reveals
that NSGA-II-BnF obtained 17 of 36 best cases and 15 of 36 similar cases for Wilcoxon’s
rank-sum test.

The comparison of HV values is similar. We obtained 27 of 36 best cases, and NSGA-II
obtained 9 of 36 cases. The last row reveals that NSGA-II-BnF obtained 19 of 36 best cases
and 12 of 36 similar cases for Wilcoxon’s rank-sum test. Thus, we can conclude that our
two proposed strategies’ effectiveness has been confirmed from the above experiments.
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Table 6. Experimental results (mean and standard deviation) of IGD and HV values.

IGD Values HV Values

Problem NSGA-II NSGA-II-BnF NSGA-II NSGA-II-BnF

DTLZ1 3.2133 × 10−2 (3.86 × 10−1) − 2.9848 × 10−2 (6.61 × 10−1) 3.1379 (9.08 × 10−1) = 3.0587 (8.44 × 10−1)
DTLZ2 2.4654 × 10−3 (6.54 × 10−1) − 2.0754 × 10−3 (1.65 × 10−5) 3.7455 (8.73 × 10−5) − 3.3491 (3.88 × 10−5)
DTLZ3 3.9239 × 10−2 (1.79 × 10−1) = 1.1138 × 10−2 (2.00 × 10−2) 2.9587 (1.54 × 10−1) − 3.3368 (2.16 × 10−2)
DTLZ4 2.1368 × 10−3 (2.03 × 10−3) + 2.6736 × 10−2 (1.35 × 10−1) 3.6896 (2.13 × 10−1) + 3.3102 (2.13 × 10−1)
DTLZ5 3.0684 × 10−3 (1.53 × 10−3) − 2.0743 × 10−3 (1.64 × 10−5) 3.1995 (8.56 × 10−3) − 3.4809 (4.74 × 10−2)
DTLZ6 2.5132 × 10−3 (5.45 × 10−5) − 2.0435 × 10−3 (1.12 × 10−5) 3.3488 (7.50 × 10−5) + 2.5854 (1.47 × 10−1)
DTLZ7 2.7656 × 10−3 (1.04 × 10−3) − 2.3606 × 10−3 (4.15 × 10−5) 2.6361 (1.53 × 10−1) − 2.7191 (1.36 × 10−5)
WFG1 1.1681 × 10−1 (3.68 × 10−2) = 1.0636 × 10−1 (1.54 × 10−2) 3.3215 (9.60 × 10−1) = 3.6545 (1.33 × 10−2)
WFG2 4.4596 × 10−3 (1.98 × 10−4) + 5.7147 × 10−3 (2.12 × 10−4) 3.6261 (3.20 × 10−2) = 3.6327(5.74 × 10−4)
WFG3 7.3975 × 10−3 (3.89 × 10−4) − 6.8337 × 10−3 (3.66 × 10−4) 3.3843 (7.52 × 10−4) − 3.5822 (6.15 × 10−4)
WFG4 7.1386 × 10−3 (2.90 × 10−4) − 6.9378 × 10−3 (3.13 × 10−4) 3.1745 (1.13 × 10−2) − 3.3477 (4.45 × 10−4)
WFG5 6.0238 × 10−2 (2.49 × 10−5) + 6.2467 × 10−2 (5.89 × 10−4) 3.4658 (1.51 × 10−2) + 3.2770 (9.93 × 10−3)
WFG6 7.0127 × 10−2 (5.91 × 10−3) = 5.7762 × 10−2 (2.04 × 10−2) 3.3410 (8.69 × 10−3) + 3.2575 (2.14 × 10−2)
WFG7 7.2569 × 10−3 (1.69 × 10−4) − 6.7597 × 10−3 (1.15 × 10−4) 3.3431 (2.68 × 10−5) − 3.3485 (9.65 × 10−5)
WFG8 1.1429 × 10−1 (2.10 × 10−3) − 1.0804 × 10−1 (1.23 × 10−3) 3.1295 (4.27 × 10−3) − 3.2116 (2.90 × 10−3)
WFG9 1.7693 × 10−2 (2.91 × 10−3) − 1.2492 × 10−2 (1.49 × 10−3) 3.2381 (2.44 × 10−2) − 3.3316 (6.90 × 10−3)
UF1 1.0707 × 10−1 (1.08 × 10−3) = 7.7956 × 10−2 (2.01 × 10−2) 3.2445 (1.08 × 10−1) = 3.5012 (7.38 × 10−2)
UF2 2.8784 × 10−2 (1.14 × 10−2) = 3.5607 × 10−2 (9.04 × 10−3) 3.3352 (7.23 × 10−1) = 3.6764 (3.90 × 10−2)
UF3 2.0174 × 10−1 (5.07 × 10−2) − 6.5324 × 10−2 (4.05 × 10−2) 2.3658 (1.64 × 10−1) − 3.4258 (2.46 × 10−1)
UF4 5.2691 × 10−2 (2.01 × 10−3) − 4.5008 × 10−2 (8.47 × 10−4) 3.1755 (4.55 × 10−2) − 3.3392 (4.48 × 10−3)
UF5 3.0018 × 10−1 (5.90 × 10−2) − 2.7994 × 10−1 (6.08 × 10−2) 2.3644 (3.21 × 10−1) − 2.6272 (3.04 × 10−1)
UF6 1.6037 × 10−1 (3.32 × 10−2) = 1.3067 × 10−1 (4.42 × 10−2) 3.1465 (3.17 × 10−1) − 3.9261 (1.91 × 10−1)
UF7 6.9755 × 10−1 (1.34 × 10−2) − 5.3926 × 10−2 (5.20 × 10−2) 3.0990 (3.91 × 10−1) − 3.8660 (1.50 × 10−1)
UF8 2.9298 × 10−1 (2.94 × 10−3) − 2.4502 × 10−1 (2.99 × 10−2) 5.9756 (3.86 × 10−1) − 6.6545 (1.04 × 10−1)
UF9 2.2697 × 10−1 (7.39 × 10−2) = 2.4376 × 10−1 (9.82 × 10−2) 6.1765 (3.21 × 100) = 6.6664 (4.23 × 10−1)

UF10 4.0234 × 10−1 (1.60 × 10−1) = 3.7576 × 10−1 (6.80 × 10−2) 5.1054 (2.80 × 10−1) − 6.2468 (1.04 × 10−2)
CF1 4.7559 × 10−1 (2.39 × 10−1) = 4.4362 × 10−1 (1.40 × 10−1) 2.2858 (1.95 × 10−1) + 1.7851 (1.04 × 10−1)
CF2 4.9506 × 10−2 (2.43 × 10−2) = 5.2831 × 10−2 (2.41 × 10−2) 3.6832 (4.35 × 10−2) = 3.6345 (3.17 × 10−2)
CF3 2.4559 × 10−1 (8.23 × 10−2) = 2.9505 × 10−1 (8.98 × 10−2) 2.0635 (1.72 × 10−1) − 2.5452 (3.44 × 10−1)
CF4 3.1391 × 10−1 (1.18 × 10−1) = 2.6903 × 10−1 (1.29 × 10−1) 2.7486 (7.46 × 10−1) = 2.7146 (2.21 × 10−1)
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Table 6. Cont.

IGD Values HV Values

Problem NSGA-II NSGA-II-BnF NSGA-II NSGA-II-BnF

CF5 3.8348 × 10−1 (3.31 × 10−1) = 2.5713 × 10−1 (1.06 × 10−1) 2.3562 (1.03 × 100) = 2.4547 (2.18 × 10−1)
CF6 1.7726 × 10−1 (2.25 × 10−2) = 1.6294 × 10−1 (4.72 × 10−2) 3.3654 (7.66 × 10−2) = 3.3364 (8.51 × 10−2)
CF7 3.7845 × 10−1 (1.52 × 10−1) = 2.2834 × 10−1 (1.48 × 10−1) 2.3758 (1.14 × 100) = 2.7709 (2.78 × 10−1)
CF8 3.4990 × 10−1 (1.25 × 10−2) − 3.1883 × 10−1 (1.86 × 10−1) 4.2956 (1.76 × 100) − 5.4100 (1.33 × 10−1)
CF9 1.0561 × 10−1 (1.42 × 10−2) − 6.8918 × 10−2 (7.66 × 10−3) 5.4676 (6.19 × 10−1) − 7.2925 (7.59 × 10−2)

CF10 2.7349 × 10−1 (1.44 × 10−2) + 3.0384 × 10−1 (9.50 × 10−2) 4.7674 (1.34 × 100) = 5.2637 (8.00 × 10−1)
Best/All 8/36 28/36 9/36 27/36

Total 4+/17−/15= / 5+/19−/12= /
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5. Conclusions and Future Works

In this paper, we explore the combination of a mathematical method and EMO ap-
proach, and propose an improved version of NSGA-II with a biased elite exploitation
strategy, called NSGA-II-BnF. During the evolution process, the resource allocation strategy
selects candidates by our proposed crowd distance based roulette, which enhances our
algorithm’s diversity. Then, a novel exploitation system based on a self-guided approach
and the hyperbolic tangent function based local search operator is performed to improve
convergence performance. Meanwhile, for emphasizing the algorithm’s applicability, we
propose a mechanism that allows decision makers to control the exploitation intensity with
their preference.

The proposed NSGA-II-BnF demonstrated outstanding performance on convergence
and diversity in the simulation experiment when facing different MOPs compared with
other competitive algorithms. Meanwhile, there are still some areas that can be improved
in our work. For example, in this work, we apply elite exploitation in every generation, for
better efficiency, the elite exploitation strategy may be activated periodically; moreover,
for many-objective optimization problems, the proposed exploitation operator may not
give enough pressure of evolution, thus, a more targeted local search operator should
be proposed.

In the future, we will consider proposing an elite exploitation activation mechanism
to improve efficiency, learn from the experience of the existing works, design a better
exploitation operator for many-objective problems, and use our algorithm to solve real-
world problems.
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