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Abstract: The recent Coronavirus Disease 2019 (COVID-19) pandemic has put a tremendous burden
on global health systems. Medical practitioners are under great pressure for reliable screening of
suspected cases employing adjunct diagnostic tools to standard point-of-care testing methodology.
Chest X-rays (CXRs) are appearing as a prospective diagnostic tool with easy-to-acquire, low-cost and
less cross-contamination risk features. Artificial intelligence (AI)-attributed CXR evaluation has
shown great potential for distinguishing COVID-19-induced pneumonia from other associated
clinical instances. However, one of the associated challenges with diagnostic imaging-based mod-
eling is incorrect feature attribution, which leads the model to learn misguiding disease patterns,
causing wrong predictions. Here, we demonstrate an effective deep learning-based methodology to
mitigate the problem, thereby allowing the classification algorithm to learn from relevant features.
The proposed deep-learning framework consists of an ensemble of convolutional neural network
(CNN) models focusing on both global and local pathological features from CXR lung images,
while the latter is extracted using a multi-instance learning scheme and a local attention mechanism.
An inspection of a series of backbone CNN models using global and local features, and an ensemble
of both features, trained from high-quality CXR images of 1311 patients, further augmented for
achieving the symmetry in class distribution, to localize lung pathological features followed by the
classification of COVID-19 and other related pneumonia, shows that a DenseNet161 architecture
outperforms all other models, as evaluated on an independent test set of 159 patients with confirmed
cases. Specifically, an ensemble of DenseNet161 models with global and local attention-based features
achieve an average balanced accuracy of 91.2%, average precision of 92.4%, and F1-score of 91.9%
in a multi-label classification framework comprising COVID-19, pneumonia, and control classes.
The DenseNet161 ensembles were also found to be statistically significant from all other models
in a comprehensive statistical analysis. The current study demonstrated that the proposed deep
learning-based algorithm can accurately identify the COVID-19-related pneumonia in CXR images,
along with differentiating non-COVID-19-associated pneumonia with high specificity, by effectively
alleviating the incorrect feature attribution problem, and exploiting an enhanced feature descriptor.

Keywords: COVID-19 detection; pneumonia diagnosis; convolutional neural network; multi-instance
learning; wrong feature attribution; multi-label classification

1. Introduction

Commencing from early 2020, Coronavirus Disease 2019 (COVID-19) has become a
global pandemic causing a serious health crisis all around the world. COVID-19 is induced
by a novel coronavirus called SARS-CoV-2 (Severe Acute Respiratory Syndrome Coro-
navirus 2), which is considered a novel strain in the family of coronaviruses previously
unidentified in humans [1]. The exponential growth rate and rapid transmission of this

Symmetry 2021, 13, 113. https://doi.org/10.3390/sym13010113 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8434-8578
https://orcid.org/0000-0002-8288-1782
https://orcid.org/0000-0002-2192-3504
https://doi.org/10.3390/sym13010113
https://doi.org/10.3390/sym13010113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010113
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/113?type=check_update&version=1


Symmetry 2021, 13, 113 2 of 25

infectious disease over many territories in multiple continents led the World Health Organi-
zation (WHO) to declare it as a global outbreak on 11 March 2020. As of the time of writing
this manuscript, over 44 million COVID-19 cases have been confirmed worldwide with
more than 1 million reported deaths [2]. The rapid growth rate of SARS-CoV-2 has imposed
a substantial pressure on healthcare systems worldwide mainly due to the shortage of key
personal protective equipment and qualified health-care providers. Furthermore, SARS-
CoV-2 infection poses some unique challenges in terms of peak infectiousness, i.e., the time
when the virus is most transmissible and preceding onset of symptoms, which make the
exact prevalence and transmission dynamics of COVID-19 partly unclear [3]. The overall
poorly defined infectiousness and transmission process make it particularly important to
identify the infected cases at early stages and to isolate the subjects from the healthy popu-
lation in order to avoid the risk of human-to-human transmission at the community level.
Moreover, a significant number of COVID-19 cases admitted to intensive care units (ICU)
suffer from respiratory distress and hypoxemia and require treatments like endotracheal
intubation and ventilation [4]. Until this point, COVID-19 screening is primarily conducted
by a viral nucleic acid detection technique known as reverse transcriptase polymerase chain
reaction (RT-PCR). Although rapid RT-PCR is considered the golden reference point-of-care
testing methodology for COVID-19 detection [4,5], this method associates several clinical
problems: (1) High false-negative rate leading to underdiagnosing COVID-19-infected
cases; (2) time-consuming test procedure and delays in processing; (3) variabilities in test
techniques; and (4) sensitivities reported as low as 60–70% [5–7].

On the contrary, medical diagnostic imaging has arisen to be promising and a feasible
alternative for many decision-making processes related to COVID-19 including diagno-
sis, complication assessment, prognosis, and triage decisions for hospitalization, because
chest imaging of COVID-19 patients typically manifest abnormalities in most cases [5–8].
Specifically, chest radiography (CXR) and computed tomography (CT) are two imaging
modalities that are being extensively employed by the forefront hospitals in outbreak
sites for making clinical decisions related to COVID-19 [9–11]. Several studies reported
the higher sensitivity of CT findings compared to RT-PCR, and highlighted that in some
incidents, the CT findings could detect the lung abnormalities in the setting of a false
negative RT-PCR test [9,10]. As CT imaging can most capture the respiratory distress syn-
dromes, the most common representations of COVID-19, this is indicated for patients with
moderate-severe clinical features and worsening respiratory status, and even for patients
with mild clinical symptoms at the presence of risk for disease progression, according to
the Fleischner1 Society consensus statement published on 7 April 2020 [11]. Furthermore,
the chest CT findings are used as a substitute diagnostic test by some studies [12–14] and
demonstrate high potential as a rapid diagnostic method of COVID-19 infection on an
evaluation of 51 confirmed cases [4].

Providing that the chest CT imaging is more sensitive and indicated, recent COVID-19
radiology literature primarily focuses on the CT findings [4,8–15]. However, performing
CT routinely for a large population is not feasible and carries further risks, mainly due to
limited personal protective equipment (PPE) resources, increased risk of viral transmission
due to the proximity of patients and radiology technicians, and exposure to additional
ionizing radiation [14]. On the other hand, CXR imaging is associated with less expense,
ease of carrying out, and less ionization exposure than CT [11]. Furthermore, the X-ray
machines are much more accessible than CT scanners in resource-constrained environments.
In addition, CXR imaging can be performed in the isolation rooms using portable X-ray
machines, reducing the risk of viral contamination to staff, patients, and care givers, as well
as saving the time and resources required to disinfect the equipment in the radiology
department [3,16].

Typical radiographical appearances for COVID-19-infected cases include ground glass
opacities (GGO) and air space consolidation. However, differential diagnosis from the simi-
lar radiography findings could possibly pose a challenge for the radiologists to discriminate
between COVID-19-induced pneumonia and other kinds of viral and bacterial pneumonia
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including some inflammatory pulmonary infections [4]. In such cases, expert radiolo-
gists with several years of experience could make reliable diagnostics with high precision,
resulting in a relatively longer screening time due to the limited availability and large
workload. Under the current pandemic situation, this manual screening/diagnosis could
be largely unproductive, undermining the efficacy of the imaging data. Moreover, the pa-
tients waiting for screening in hospitals may carry additional risks of viral transmission.
In this aspect, artificial intelligence (AI) could play a pivotal role for the more effective
use of the imaging tools in combating the COVID-19 outbreak. Advanced AI technologies
with appropriate image processing could be successfully applied on imaging data for
rapid COVID-19 screening, and quantifying the level of infections to assess the disease
progression. The high predictive power of AI could not only expedite and automate these
clinical decision processes, but could also help to achieve radiologist-level performances
in the case of COVID-19 screening. Along the same line, the AI predictive models could
serve as decision support systems to guide and assist the novice radiologists for COVID-19
identification in the imaging data.

A substantial amount of research was carried out on AI-assisted diagnostics using
CXR imaging data, which will be briefly highlighted later in this article. The efforts were
consolidated mainly into the classification of CXR images into COVID-19 and other types
of pneumonia exploiting different deep learning architectures. Due to the limitation of
imaging data sources with expert-labelled data sets, most methods relied on deep learning
experiments in a ‘Transfer Learning’ (TL) setting, as an alternative to training a very deep
model from scratch on a small dataset. In these works, either feature extraction or fine-
tuning the network weights based on the new COVID-19 samples was used in customizing
the pre-trained model in the TL setup. It is important to note that all the baseline models
used were pre-trained on the ImageNet database, which is primarily a collection of over
one million natural images [17]. For this medical image classification task, the TL using
ImageNet pre-trained models may be suboptimal due to several factors: (1) The natural
images are largely different than medical imaging data in terms of visual appearance
and class labels; (2) the feature extraction network could be biased to the source data,
leading to a less generalized model on the new target data [18]. Most of the proposed
techniques use raw X-rays, which may lead to the wrong attribution in pathological
images, eventually causing false predictions for both COVID-19-positive and -negative
cases. However, this issue is either neglected or unaddressed in the majority of previous
studies. Another important concern is the proper setting of the COVID-19 diagnosis
framework. As other bacterial and viral pneumonia including some pulmonary infections
may co-exist with COVID-19-induced pneumonia, the most suitable learning setup would
be multi-label classification to handle the associated challenges of differential diagnosis.
However, the multi-class classification formulation can be predominantly observed in the
current COVID-19 automated diagnosis studies, which may not be the appropriate learning
framework to tackle this problem.

In the present study, we proposed an ensemble of deep learning models, which
combines both global and local deep features in a multi-label classification framework.
We thoroughly investigated the wrong attribution in CXR images by extracting and ana-
lyzing the deep features from the deep learning models. We then addressed the problem
by performing a region of interest localization followed by a lung segmentation in CXR
images. A set of deep learning models were examined for this multi-label classification
problem, and finally, the DenseNet161 models enriched with global and local attention
deep features was found to be the best performing model.

The major contributions of this study are highlighted as follows.

1. A thorough investigation and mitigation of the incorrect attribution problem in
CXR images during the deep learning process through consecutive lung localization
and segmentation.

2. Identification of the best performing model for classifying COVID-19 through a com-
prehensive examination of multiple deep learning models with various combinations
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of global and local attention features using the state-of-the-art training technique of
deep learning methods.

3. Presentation of an ensemble of DenseNet161 models coupled with global and lo-
cal attention-based features for COVID-19 identification in a three-label classifica-
tion framework.

4. Evaluation of the performances of deep learning models using state-of-the-art perfor-
mance measures for multi-label classification problem.

5. Testing the efficacy of data augmentation and class balancing techniques on the
performance of deep learning models.

2. Related Work

The outbreak of COVID-19 has witnessed myriads of research efforts developing
AI-based diagnostic and screening methods utilizing chest CXR imaging data. We aim to
shed light on a set of literature focusing on CXR-based AI and deep learning methods in
the following paragraphs.

Pham and his co-researchers described a deep convolutional neural network (CNN)
based supervised multi-label classification framework for predicting the 14 common tho-
racic diseases on CXR images [19]. Trained on the large CXR dataset called ChexPert [20],
the method utilized hierarchical dependencies among abnormality labels to achieve a
competing AUC score of 0.94 in predicting five selected pathologies from the validation set.
Gabruseva et al. proposed an automatic pneumonia detection technique using CXR images
based on SSD RetinaNet with the SE-ResNext101 encoder pre-trained on ImageNet [21].
They developed a model to classify lung images into ‘Normal,’ ‘Lung Opacity,’ and ‘No
Lung Opacity/Not Normal’ using a modified RetinaNet, heavy augmentation with cus-
tom rotations, and NMS thresholded postprocessing. Bansal et al. described a Deep TL
approach using pre-trained Deep CNN models to classify CXR images to detect COVID-
19 [22]. Bassi et al. applied transfer learning on CheXNet [23] to detect COVID-19 from CXR
images. Specifically, a deep neural network model was built by using the initial weights
of CheXNet, and then training the network by fine-tuning the weight decay and learning
rate parameters with a variable number of training epochs [24]. Benbrahim et al. in his
study [25] used the Deep Transfer Learning technique with a combination of DeepImage-
Featurizer available in Apache Spark [26] and logistic regression to COVID-19 identification
in CXR images. Chowdhury et al. employed CNN to identify COVID-19 patients based on
chest X-ray images [27]. De Moura et al. utilized a customized DenseNet161 architecture,
initialized with weights pre-trained on ImageNet [18], to classify the CXR images into
healthy, pneumonia, and COVID-19 cases [28]. In a study by Ghoshal et al. [29], the uncer-
tainty of the deep learning prediction for COVID-19 was estimated using a Bayesian CNN,
which reports the high or low confidence score of its decision as a predictive posterior
distribution. The authors reported a performance improvement of the image classification
via the uncertainty-aware Bayesian model and observed an increase in prediction accuracy
as the model uncertainty declines. Chatterjee et al. utilized an ensemble of five different
pre-trained deep learning models, ResNet18, ResNet34, InceptionV3, InceptionResNetV2,
and DenseNet16, to classify COVID-19, pneumonia, and healthy subjects using CXR [30].
The interpretability of each of the models was studied using different techniques and
the ResNets were found to be the most interpretable model in terms of explaining the
prediction outcomes through a qualitative analysis. Khan et al. proposed a CNN-based
architecture, COVID-REnet, which incorporates edge- and region-based dynamic features
extracted from a CNN with a SVM classifier to classify X-ray images into COVID-19 and
healthy cases [31].

In a study by Lv et al. [32], COVID-19 and other kinds of pneumonia in chest ra-
diography are examined using a Cascade-SEMEnet composed of SEME-ResNet50 for
differentiating between bacterial and viral pneumonia, and DenseNet169 for distinguish-
ing between COVID-19 and other types of viral pneumonia. They introduced various
components to the custom network, such as Global Average Pooling (GAP), Squeeze-
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Excitation structure, and Attention mechanisms for its characteristics channel to emphasize
on the pathological details of the image. Moreover, U-Net segmentation of the lung regions,
CLAHE for image enhancement, and MoEx for rapid convergence of the network were also
included to increase the effectivity of the proposed custom model. Three pre-trained Deep
Transfer Learning models were investigated in a study by Narin et al. [33], in which the
ResNet50 model achieved the highest performance in classifying chest X-ray radiograph
images. Oh et al. proposed a patch-based CNN approach that can be manageable with a
small number of training parameters for COVID-19 diagnosis [34]. The proposed model
consists of a segmentation network extracting lung and heart contours from the CXR
images using fully convolutional DenseNet103, and a classification network to classify
the chest X-ray images into four classes: Normal, bacterial pneumonia, tuberculosis, and
viral COVID-19 pneumonia using a Deep Transfer learning technique adapted on a base
model called ResNet18. Rajaraman et al. described an iteratively pruned customized
CNN with a linear stack of convolutional layers, GAP, and a dense layer for COVID-19
detection in chest X-rays [35]. They reported that Deep Learning Ensembles combined with
Transfer learning and iterative model pruning demonstrated superior performances when
compared to individual models. An adapted deep learning architecture from MobileNetV2
and ResNext, called CovIDNet, was proposed by Ramadhan et al. [36]. With a lesser
number of hyperparameters, CovIDNet was trained with a two-class model (COVID-19 vs.
non-COVID-19) with Softmax activations at the classification layer. In a retrospective study
conducted by Duchesne et al., they utilized CXR deep learning features for classifying the
disease trajectory categorized as ‘worse,’ ‘stable,’ and ‘improved’ [37]. A DenseNet121
architecture was trained on the CheXpert dataset, that was previously mapped to radio-
logical labels. This trained network was used in two different ways: (1) To compute the
difference in finding probabilities between sequential CXRs in each pair between three
outcome groups; (2) to extract deep learning features from the last convolutional layer to
feed into a logistic regression model after dimensionality reduction.

A deep Bayesian optimization-inspired SqueezeNet architecture-based rapid COVID-
19 diagnosis was proposed in a study conducted by Ucar et al. [38]. The hyperparameters
of the Deep-SqueezeNet model was fine-tuned using a Bayesian-based optimization tech-
nique on an augmented image dataset for a three-class classification of normal, pneumonia,
and COVID-19. On the other hand, Ezzat et al. [39] applied a Gravitational Search optimiza-
tion to fine-tune the hyperparameters of a pre-trained DenseNet-121 architecture on a CXR
dataset. Rajaraman et al. examined various combinations of weakly labeled CXR images
showing pathological signs for non-COVID-19 pneumonia from RSN, CheXpert, and NIH
databases with a baseline Pediatric CXR dataset to train wide residual network-based cus-
tom CNN models [40]. As a preprocessing step, the lung ROI was cropped using a trained
dilated dropout U-Net model to extract the relevant feature representation from the lung
images. The objective of the weakly labeled augmentation in this study was to increase
the deep learning model generalizability by expanding the learned feature space for an
enhanced inter-class discrimination, through incorporating diversified training samples.
Finally, Wang et al. presented a tailored Deep CNN design for CXR-based COVID-19
detection, called COVID-Net, which was the first open-source network design at the time
of its initial release [41]. The authors largely introduced a lightweight residual projection-
expansion-projection-extension (PEPX) design pattern, along with selective long-range
connectivity, and a heterogeneous mix of convolution layers with a diversity of kernel
sizes and grouping configuration, in their custom CNN architecture to classify the CXTR
images into three classes, namely normal, non-COVID-19 pneumonia, and COVID-19
viral pneumonia. In a quantitative analysis, COVID-Net exhibited 95%, 94%, and 91%
of sensitivity, and 90.5%, 91.3%, and 98.9% of positive predictive value for each infection
type, respectively. Another interesting CXR image classification study was conducted by
Sahlol et al., which focused on developing a hybrid approach coupling a CNN model with
fractional order marine predator algorithms (FO-MPAs) [42]. In this approach, the CNN-
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extracted deep features were further reduced by FO-MPAs to utilize only relevant features
for an accurate and computationally economic COVID-19 classification on CXR images.

3. Materials and Methods
3.1. COVID-19 Diagnosis Dataset

In order to build a reliable medical-imaging-based diagnostic support system ex-
ploiting deep-learning algorithms, it is important to utilize a sufficiently large image
database that comes with a diverse set of good-quality medical images. Therefore, in this
study, we used one of the largest currently available COVID-19 CXR datasets, released
by Valencian Region Medical Image Bank, BIMCV COVID-19 dataset [43]. The dataset
contains 1380 CXR images and 855 digital X-ray images from 1311 COVID19-positive
patients. The images were collected from 11 different departments at the Valencian region
for confirmed positive patients during the period between 26 February and 18 April 2020.
The collection method provides the source of data diversity to some extent. The image data
were anonymized by removing all patient-related data from the DICOM images, as well
as the radiological reports. The dataset includes high-resolution CXR images with 16-bit
format and dynamic range rescaled to window center and width.

Radiological reports were utilized for data labeling using a pre-trained natural lan-
guage processing. There are several labels associated with each image including COVID-19,
pneumonia, and infiltrates, which we utilize in our multi-label CXR image classification
scheme. For COVID-19-negative cases, images with other pulmonary disease labels are
extracted from the PadChest dataset [44]. Specifically, the images that are labeled as either
pneumonia or infiltrates or both are considered as non-COVID-19 pneumonia, and a similar
number of normal and other pulmonary disease categories are added to the control group.
We hypothesize that this formulation is more realistic and resembles the real clinical sce-
nario. After performing necessary pre-processing, such as noisy image removal, cropping,
and segmentation, the dataset finally contains a total of 11,197 CXR images, of which 1056
belong to COVID-19 positive, 5451 correspond to pneumonia, and 7217 are labeled as Con-
trol (normal and other pulmonary diseases). After the lung localization and segmentation,
all images are resized to 320× 320 pixels. In the current study, to facilitate developing
and appropriately evaluating an unbiased model, the deep learning experiments were re-
peated three times as suggested in ChexPert article [20]. On every iteration, we performed
stratified splitting of the data into 70% of training, 15% of validation, and 15% of testing
for each class, as shown in Table 1. The top five checkpoints for each model, according to
the validation loss, are saved each time. These models are then used to calculate the final
evaluation metrics.

Table 1. Number of samples in each class for training, validation, and independent test folds.

Class Training Validation Test

Control 5009 1076 1133
Pneumonia 3934 822 785
COVID19 739 158 159

3.2. COVID-19 Diagnosis Using Lung CXR Classification

In the present study, we aim to develop a deep learning-based lung CXR image clas-
sification method that can be utilized to overcome the hurdle of differential diagnosis
of similar pathological findings associated with other non-COVID-19 pneumonia and
pulmonary infections in CXR images. Accordingly, we investigated the performances of
various deep learning approaches to choose the best setup for this multi-label classification
problem. The proposed end-to-end framework that was proposed in this work is shown in
Figure 1. As a preliminary step, the lung region is localized in the input CXR image and
the image is then cropped and resized to a predefined size. This stage helps the algorithm
to alleviate the effect of the irrelevant external lung area that may cause classifier bias.
Following that, a lung segmentation is performed to segment the region of interest from
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CXR images to remove any non-interesting tissue around the lung. The purpose of the lung
segmentation is to facilitate the model learning pertinent features from the lung tissues.
Additionally, lung segmentation helps to alleviate the wrong feature attribution prob-
lem reported in previous studies [45]. An example of such feature attribution is shown in
Figure 2. The details of the localization and segmentation stages are presented in
Sections 3.2.1 and 3.2.2. For the multi-label classification task, an ensemble of CNN models
equipped with global and local feature heads is utilized.
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3.2.1. Lung Localization

A Retina-net [46] deep learning model is used to perform the lung localization in
the current study. The Retina-net is a single-stage object detector consisting of multiple
networks. Among those, there is a backbone network for feature extraction, one subnet-
work for classification, and another subnetwork for bounding box regression. While any
convolutional neural network (CNN) can be used as a backbone network, feature pyramid
network (FPN) [47] is used to enhance multiscale object detection. Specifically, we exploited
a ReseNet50 [48] network to build the FPN, which allows us to extract multiscale features
from a single resolution image. Both classification and regression subnetworks are a simple
fully convolutional network (FCN) attached to each pyramid level. The Retina-net detector
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uses the ∝-balanced focal loss to handle the large imbalance between background and
foreground objects. The focal loss reduces the effect of the easy sample and is defined as in
Equation (1):

FL(pt) = − ∝ (1− pt)
γ log(pt),

pt =

{
p i f y = 1
1− p otherwise,

(1)

where p ∈ [0, 1] is the predicted class probability, γ is a tunable parameter, and ∝ is a
balancing parameter.

To train the Retina-net detector for lung localization on CXR images, a set of 2000 images
is selected from the ChexPert data set [20] as a training data set. We then manually draw a
bounding box around the lung area in each of these images. To increase the robustness of the
detector, we have explicitly chosen images containing pathological signs from different pul-
monary diseases. The detection results of several test samples from the COVID-19 Diagnosis
Dataset produced by the localization algorithm are depicted in Figure 3. The localization
can remove several artifacts outside the lung and, at the same time, assist in normalizing the
lung size, which can be observed in Figure 3.
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3.2.2. Lung Segmentation

Earlier, Comelli et al. focused on employing customized UNet and ENet architectures
for segmenting the parenchyma region in high-resolution CT images with pulmonary
fibrosis [49], whereas an automated segmentation of ascending thoracic aortic aneurysm
was investigated by the same authors using UNet, ENet, and ERFNet techniques in CT
angiography images [50]. In our study, we implement an FPN network using Resnext50 [51]
as a backbone model for lung tissue segmentation. A feature pyramid is constructed using
different scales with the following methodology. First, a set of feature maps Fi, i = 2, . . . , 5
is extracted by applying 1× 1 followed by 3× 3 convolutional kernels to the outputs of
stages 2–5. These maps have special dimensions of 1

4 , 1
8 , 1

16 , and 1
32 with respect to the
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original image size, and all these are reduced to 128 channels. Afterward, a pyramid of
features {P2, P3, P4, P5} is constructed according to Equation (2),

Pi = (Pi+1) ↑ 2 + Fi,
P5 = F5

(2)

where (.) ↑ 2 is a nearest neighbor sampling by a factor of 2. Accordingly, the final pyramid
is formed by up-sampling higher-level features and combining them with the low-level
features via element-wise addition. Finally, the segmentation mask is extracted from the
feature pyramid and upscaled to the original image size.

A large CXR lung segmentation dataset is utilized to train the segmentation model [52].
This dataset has 6500 images, among which 570 cases are COVID-19-positive. With pixel-
level lung segmentation, the model is trained using Adam optimizer [53] for 40 epochs.
An initial learning rate of 1.0× 10−4 is used and reduced by a factor of 10 after 20 epochs.
We used Dice loss for training as defined by Equation (3).

DL(y, p̂) = 1− 2yp̂ + 1
y + p̂ + 1

, (3)

where y is the ground truth segmentation mask and p̂ is the extracted segmentation mask.
Sample segmentation results are presented in Figure 4.
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3.2.3. Multi-Label Lung CXR Classification with Attention-Based Local Features

As COVID-19 and pneumonia have both general symptoms that may occur at the
entire lung and local markers that may affect specific parts of the lung [54], we build
classification models that use both global and local features. We have utilized three
different backbone convolutional neural networks (CNNs) with varying architectures and
complexities, namely a small Residual neural network (ReseNet18) [50], Inception v4.0 [55],
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and Densely Connected Convolutional Networks (DenseNet161) [56]. An attention head,
based on multi-instance polling (MIL) able to extract localized features, is implemented
and attached to these backbone models. A brief description of these backbone models and
the MIL-based attention head are presented in the following subsections.

Deep Residual Learning (ResNet)

The main idea behind Residual learning is the usage of identity shortcut connections.
These connections skip several consecutive layers and concatenate the input and the output
of these skipped layers via element-wise addition. The use of residual learning helps to
alleviate the problem of the vanishing gradient for deep architectures and make the training
more stable. Furthermore, the skip connections are parameter-less and therefore do not
contribute to the complexity of the model. There are many different Rese-Net architectures
with varying complexity. Interestingly, all Rese-Net models share the same overall structure
of a steam, i.e., four stages with various numbers of residual blocks and a SoftMax classifier.
Specifically, the Rese-Net18 architecture has two residual blocks in each stage with each
residual block having two layers. The total number of trainable parameters of this model is
around 12 million.

Inception V4.0

The idea of the inception network is to make the network deeper and wider while
maintaining the computational complexity of the model at the moderate level. The in-
ception block is the basic building block of the inception network, which utilizes several
branches with different kernels to process visual information at various scales and aggre-
gates them at the end of the block. Similarly, the next bock can simultaneously extract
features from different scales. It uses 1× 1 convolutions and polling layers to reduce
the model complexity. The early versions of the inception network utilized an auxiliary
classifier to alleviate the vanishing gradient problem, which is replaced by dropout in
the later versions. Inception V4.0 improves the network steam to make it more uniform
and uses a memory optimization to reduce the memory requirement for model training.
This architecture uses different types of inception blocks stacked together. The number of
trainable parameters for the inception V4.0 model is about 43 million parameters.

Densely Connected Convolutional Networks (DenseNet)

Dense-Net uses a different strategy for resolving the vanishing gradients problem and
enhancing the information flow through the deep architecture. It uses a dense connection,
which connects any layer to all consequent layers in the same block. Layers are divided into
a group of blocks called dense blocks. The features within the same block are aggregated
by concatenation. A transition layer is added after each block except the last one to reduce
feature dimension. All Dense-Net architectures share a steam, which has four dense blocks,
three transition layers after the first three blocks, followed by a SoftMax classifier. The steam
applies a 7× 7 convolution for noise reduction and feature enhancement. The Dense-Net-
161 has 6, 12, 36, and 24 layers in the four dense blocks involving a total of around 29 million
parameters.

Attention-Based Local Feature Extraction

For the purpose of COVID-19 and other pneumonia identification, we may consider
the CXR image as a bag of instance, in which each part of the lung represents one in-
stance. In this way, if at least one instance has the symptoms of COVID-19 or pneumonia,
the whole image will be classified accordingly. To achieve this goal, we use a permutation-
invariant MIL model. One obvious choice for this model is taking the maximum over
the labels of all instances or label aggregation via multiplications as described in [57].
However, these formulations may not be suitable in the present scenario, due to the pos-
sible vanishing gradient problem, and accordingly, the instance-based classifier may not
be suitable here. Therefore, a weighted average modeling approach is used to aggre-
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gate the labels of instances as proposed by Ilse et al. [58]. Note that this modeling is
permutation-invariant and does not affect the information flow.

If we consider the embeddings of K instances using a backbone network as
H = {h1, . . . , hk}, the MIL average pooling can be calculated as in Equation (4)

z =
K

∑
k=1

ak Hk (4)

where ak are the weights of the instances that can be estimated using different neural
networks as in Equation (5).

ak =
exp

(
wT(tanh

(
VhT

k
)
� sigm

(
UhT

k
)))

∑K
j=1 exp

(
wT
(

tanh
(

VhT
j

)
� sigm

(
UhT

j

))) (5)

where w, V, and U are learnable parameters that we want to estimate, � is an element-
wise multiplication, sigm(.) is the sigmoid function, and tanh(.) is the hyperbolic tangent
function. Both sigmoid and tanh functions allow the model to estimate well the relationship
between the parameters.

In our study, to estimate ak, a small network with two parallel branches is connected
to the feature extractor of the backbone network. As shown in Figure 5, the layer output
before the average polling layer is scaled up to a spatial resolution of 20× 20. Both first
and second branches used to estimate V and U, respectively, use a 1× 1 convolutional
kernel to create 512 feature maps. The tanh activation function is applied to the first branch
while the sigmoid activation function is applied to the second one. The outputs of the two
branches are merged via element-wise multiplication and an additional convolutional layer
with SoftMax activation is used to produce the final weight.
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All models were trained for 40 epochs using Adam optimizer with an initial learning
rate of 0.001, which is reduced by a factor of 10 in case the validation loss does not
improve during three subsequent epochs. We applied an early stopping mechanism to
alleviate overfitting during the training, if there is no observed improvement in validation
loss during five subsequent epochs. A series of data augmentations including horizonal
flipping, rotation (within a range of −15◦ to 15◦), and brightness variation (within a range
of 0.9 to 1.1) was applied followed by an image normalization step using the mean and
standard deviation of the segmented lung. To reduce the effect of the data imbalance issue,
mini-batches were balanced out both by oversampling the COVID-19 cases and applying a
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random augmentation during the training. Finally, a weighted binary cross entropy with
a logit function was employed in this study that assigns higher importance to positive
COVID-19 cases, as shown in Equation (6).

BCEW(ŷ, y) =
1
N

n

∑
n=1

C

∑
c=1
−wn,c(yn,c· log(sigm(ŷn,c)) + (1− yn,c)· log(sigm(1− ŷn,c))), (6)

where N is the number of samples, C is the number of labels for each example, wn,c is the
sample weight according to its true label, yn,c is the true label, and ŷn,c is the network-
predicted label.

4. Results

In the present study, lung segmentation is an auxiliary stage to alleviate the impact
of wrong attribution. The segmentation model was evaluated using 1478 CXR images
and it achieved a Dice Score Coefficient (DSC) of 95%± 2.7. The COVID-19 diagnosis
problem is formulated as a multi-label classification problem as CXR images may contain
simultaneous manifestations from multiple pathologies. We use the AUC (area under
the curve) score using the receiver operating characteristics (ROC) curve to evaluate the
performance of our multi-label classification approaches. The ROC curves represent the
classification performance at various thresholds by plotting the True Positive Rates (TPR)
against the False Positive Rates (FPR), as provided in Equations (7) and (8), and the integral
area under the ROC curve from (0, 0) to (1, 1) is calculated as AUC scores.

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

The AUC scores of the validation dataset are utilized to determine the optimal thresh-
old for each class maximizing the TPR and minimizing the FPR. For obtaining this optimal
value, a Geometric mean (G-mean), as defined in Equation (9), is calculated for all thresholds
used to form the ROC curve, and the one corresponding to the maximum G-mean is selected.
This process gives some unbiased measure to indicate the classification performance of the
models for under-representative classes, such as COVID-19.

G−mean =
√

TPR(1− FPR) (9)

Additionally, the performances of the models are assessed using evaluation met-
rics including balanced accuracy, average precision score, and F1-score, as shown in
Equations (10)–(12).

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(10)

Average Precision = ∑
tr
(Recalltr − Recalltr−1)Precisiontr, (11)

F1− Score = 2× Precision× Recall
Precision + Recall

(12)

The Recalltr and Precisiontr are the precision and recall of the classification model at
a certain threshold tr. The average precision (AP) calculates the weighted average of the
precisions achieved at different thresholds and consequently summarizes the precision-
recall curve. The F1− Score is the weighted average of the precision and recall.

For each backbone CNN model, ResNet18, DeneseNet161, and Inception V4.0, the de-
tailed performances (AUC score, balanced accuracy, average precision, and F1-score along
the 95% confidence interval) of the models using global features, local attention and
MIL pooling-derived features, and ensembles of features are presented in Tables 2–4.
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Table 2 shows the performance statistics for the control group, while Tables 3 and 4 show
those for pneumonia and COVID-19 classes, respectively. Finally, the average performance
of the classification models is calculated using the micro-averaging (microavg), defined in
Equation (13).

microavg = Metric

(
C

∑
c=1

TPc,
C

∑
c=1

FPc,
C

∑
c=1

TNc,
C

∑
c=1

FNc

)
(13)

Table 2. Evaluation results of all models for the control group.

CNN Model Evaluation Metric Global Only Local Attention Ensemble

ReseNet18

AUC 0.903 (0.883, 0.927) 0.917 (0.890, 0.943) 0.927 (0.902, 0.955)
Balanced Accuracy 83.8% (81.3, 86.7) 84.9% (81.4, 88.4) 85.5% (82.0, 89.4)
Average Precession 87.8% (85.6, 90.5) 90.2% (87.4, 93.0) 91.3% (88.6, 94.3)

F1 Score 83.6% (81.0, 86.7) 84.9% (81.4, 88.4) 85.3% (81.8, 89.2)

DenseNet161

AUC 0.926 (0.908, 0.947) 0.934 (0.910, 0.959) 0.943 (0.921, 0.967)
Balanced Accuracy 86.0% (83.6, 88.8) 87.3% (84.1, 90.4) 87.8% (84.6, 91.3)
Average Precession 91.0% (89.0, 93.3) 92.2% (89.5, 94.8) 93.1% (90.6, 95.9)

F1 Score 86.0% (83.6, 88.8) 87.3% (84.1, 90.4) 87.8% (84.6, 91.3)

Inception V4.0

AUC 0.896 (0.875, 0.921) 0.906 (0.878, 0.934) 0.923 (0.896, 0.853)
Balanced Accuracy 82.1% (79.5, 85.1) 83.5% (79.8, 87.1) 84.7% (81.2, 88.6)
Average Precession 87.4% (85.2, 90.1) 88.5% (85.3, 91.6) 90.9% (88.0, 94.1)

F1 Score 82.3% (79.7, 85.4) 83.6% (79.9, 87.2) 84.5% (81.0, 88.4)

Table 3. Evaluation results of all models for pneumonia.

CNN Model Evaluation Metric Global Only Local Attention Ensemble

ReseNet18

AUC 0.891 (0.865, 0.922) 0.907 (0.873, 0.940) 0.911 (0.877, 0.948)
Balanced Accuracy 82.3% (79.1, 86.1) 83.2% (78.8, 87.5) 83.8% (79.4, 88.6)
Average Precession 89.2% (86.6, 92.3) 90.8% (87.4, 94.1) 91.5% (88.1, 95.2)

F1 Score 82.4% (79.2, 86.2) 83.0% (78.6, 87.3) 83.6% (79.2, 88.4)

DenseNet161

AUC 0.914 (0.890, 0.942) 0.922 (0.890, 0.953) 0.923 (0.890, 0.958)
Balanced Accuracy 84.5% (81.5, 88.0) 85.5% (81.3, 89.6) 86.4% (82.4, 90.9)
Average Precession 91.5% (89.1, 94.3) 92.1% (88.9, 95.2) 92.1% (88.9, 95.6)

F1 Score 85.0% (82.0, 88.5) 85.6% (81.4, 89.7) 86.5% (82.5, 91.0)

Inception V4.0

AUC 0.883 (0.857, 0.914) 0.895 (0.860, 0.930) 0.906 (0.872, 0.943)
Balanced Accuracy 80.6% (77.3, 84.4) 82.0% (77.5, 86.5) 83.3% (78.9, 88.1)
Average Precession 88.8% (86.2, 91.9) 89.7% (86.2, 93.2) 90.5% (87.0, 94.4)

F1 Score 80.4% (77.1, 84.3) 81.9% (77.4, 86.4) 83.3% (78.9, 88.1)

Table 4. Evaluation results of all models for COVID-19.

CNN Model Evaluation Metric Global Only Local Attention Ensemble

ReseNet18

AUC 0.989 (0.976, 1.00) 0.989 (0.971, 1.00) 0.994 (0.983, 1.00)
Balanced Accuracy 95.2% (91.3, 99.8) 95.7% (90.3, 100) 96.0% (90.9, 100)
Average Precession 90.1% (85.0, 96.5) 92.0% (85.0, 99.0) 94.3% (88.2, 100)

F1 Score 95.7% (91.9, 100) 97.4% (93.2, 100) 98.1% (94.6, 100)

DenseNet161

AUC 0.997 (0.993, 1.00) 0.995 (0.987, 1.00) 0.998 (0.993, 1.00)
Balanced Accuracy 96.8% (93.6, 99.5) 97.1% (92.7, 99.7) 98.5% (95.7, 100)
Average Precession 95.7% (91.9, 100) 95.5% (90.1, 100) 97.5% (93.5, 100)

F1 Score 98.4% (96.5, 100) 97.7% (94.1, 100) 98.9% (96.9, 100)

Inception V4.0

AUC 0.983 (0.965, 1.00) 0.987 (0.967, 1.00) 0.991 (0.969, 1.00)
Balanced Accuracy 95.0% (91.0, 99.7) 95.1% (89.7, 100) 96.6% (91.9, 100)
Average Precession 90.0% (84.4, 96.6) 90.3% (83.0, 97.8) 93.5% (86.8, 100)

F1 Score 96.2% (92.7, 100) 96.5% (91.9, 100) 96.4% (91.2, 100)
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Table 5 presents the summarized performances of all models for all three classes
by micro-averaging the balanced accuracy, average precision score, and F1-score metrics.
These results, in consistency with the results presented in Tables 2–4, indicate the superiority
of the DenseNet161-based models. The ROC curves and confusion matrices of these modes
are shown in Figures 6–8. Additionally, the training performances of these models as
weighted cross-entropy loss plots are shown in Figure 9. A statistical analysis of the
prediction models is performed to investigate whether there exists a significant difference
between different models. To accomplish this task, we compared the models using the
Friedman test followed by the post-Hoc Nemenyi test [59–61]. Two different tests were
carried out; the first one was comparing the models of the same backbone, while the
second test was the comparison of the best models obtained from the previous round.
These statistical analysis results are depicted in Figure 10.

In order to perform a detailed investigation of the learning models, the feature attri-
bution of the DenseNet161-based models is calculated using the occlusion technique [62].
In this technique, a sliding window is utilized masking the rectangular parts of the input
image and computing the difference in outputs. This technique can be considered as a
feature importance analysis with respect to a specific label. In this work, a 15× 15 window
and a stride of 8 was used to calculate the feature attribution for both COVID-19 and
pneumonia cases. We implemented the occlusion technique for CXR images using the
Captum framework [63]. Sample occlusion results for COVID-19 and pneumonia-labeled
images are presented in Figures 11 and 12, respectively.

The computational complexity of all stages and models are presented in Table 6.
These analyses were performed using a Nvidia Titan X GPU machine and an AMD Ryzen7
2700X CPU platform. Finally, we performed an experiment to examine the impact of data
augmentation and mini-batch balancing used during the training on the performances of
the reported best model. Specifically, we trained DenseNet161-based models including
both data augmentation and mini-batch balancing, while another set of models were
trained excluding both steps. Table 7 shows comparisons between these two types of
models for COVID-19, pneumonia, and Control Group classes in terms of four different
evaluation metrics.

Table 5. Summary of the evaluation results of all models using Micro-average.

CNN
Model Evaluation Metric Global Only Local Attention Ensemble

ReseNet18
Balanced Accuracy 86.8% (85.0, 88.9) 87.2% (84.9, 89.5) 88.7% (88.8, 91.3)
Average Precession 87.9% (86.2, 89.9) 87.3% (85.0, 89.6) 88.8% (86.4, 91.4)

F1 Score 87.3% (85.6, 89.3) 88.5% (86.2, 90.8) 89.3% (87.1, 91.7)

DenseNet161
Balanced Accuracy 88.9% (87.2, 90.9) 89.4% (87.2, 91.6) 91.2% (89.2, 93.4)
Average Precession 90.7% (89.3, 92.4) 91.3% (89.3, 93.3) 92.4% (90.5, 94.6)

F1 Score 89.6% (88.1, 91.4) 90.2% (88.0, 92.4) 91.9% (89.9, 94.1)

Inception
V4.0

Balanced Accuracy 84.7% (82.9, 86.8) 86.2% (83.7, 88.7) 87.5% (85.1, 90.1)
Average Precession 85.5% (83.7, 87.6) 88.7% (86.4, 91.0) 88.9% (86.5, 91.5)

F1 Score 86.3% (84.5, 88.4) 87.3% (85.0, 89.6) 88.2% (85.8, 90.8)
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Table 6. Comparison of the computation complexity of all tasks and models.

Task/Backbone Model GPU (Time in Seconds) CPU (Time in Seconds)

Localization + segmentation 0.61 1.36

ResNet18
Global 0.02 0.06
Local 0.02 0.06
Ensemble 0.04 0.12

DenseNet161
Global 0.03 0.38
Local 0.04 0.38
Ensemble 0.07 0.76

Inception V4.0
Global 0.03 0.23
Local 0.03 0.24
Ensemble 0.06 0.47

Table 7. DenseNet161 ensemble performance comparisons in- and excluding data augmentation (Aug) and mini-batch
balancing (Bal).

Evaluation Metric
Control Group Pneumonia COVID-19

No Aug or Bal Aug + Bal No Aug or Bal Aug + Bal No Aug or Bal Aug + Bal

AUC 0.933
(0.916, 0.954)

0.943
(0.921, 0.965)

0.921
(0.900, 0.948)

0.923
(0.892, 0.954)

0.991
(0.975, 1.00)

0.998
(0.988, 1.00)

Balanced Accuracy 87.3%
(85.2, 90.0)

87.8%
(84.7, 90.9)

85.5%
(82.7, 89.0)

86.4%
(82.4, 90.4)

96.2%
(92.8, 100)

98.5%
(95.5, 100)

Average Precession 91.5%
(89.7, 93.7)

93.1%
(90.6, 95.6)

92.6%
(90.6, 95.1)

92.1%
(89.0, 95.2)

90.5%
(85.3, 97.0)

97.5%
(93.5, 100)

F1 Score 87.2%
(85.1, 89.9)

87.8%
(84.7, 90.9)

85.5%
(82.7, 89.0)

86.5%
(82.5, 90.5)

97.2%
(94.3, 100)

98.9%
(96.4, 100)

5. Discussion

In the current study, a large and a comparatively challenging dataset was chosen
in which CXR images were collected from multiple clinical sites in Valencia, Spain [43].
The challenging part comes from the fact that all COVID-19 cases, including the suspected
patients, were confirmed by RT-PCR test, even when the patients are asymptotic at the
radiological level. The chosen dataset therefore contains COVID-19 examples with both
visible and obscured symptoms, unlike other datasets available in the literature. Another
challenge is that the normal control groups may include patients with nonpneumonia-
related pulmonary diseases. Therefore, the proposed approach is designed not only to
distinguish between pneumonia (either COVID-19 or bacterial) and healthy cases, but also
the cases with pulmonary abnormalities nonrelated to pneumonia.

In terms of defining the learning problem setup, the majority of previous studies
identified the diagnostic problem as a multi-class classification instance in which each case
is assumed to exclusively have either a bacterial pneumonia or a COVID-19-induced pneu-
monia. However, COVID-19 infection may have a high association with other pulmonary
diseases and may manifest mutually inclusive pathological features corresponding to
bacterial pneumonia or infiltrates [51]. This can also be observed in the current CXR image-
base, where many instances of COVID-19 were also diagnosed with bacterial pneumonia.
Consistently, we proposed a multi-label classification framework for the simultaneous
detection of pneumonia and COVID-19 infections using a joint probability distribution
involving the normal (control group), pneumonia, and COVID-19 classes. The average
precisions reported by the best performing DenseNet161 CNN model for COVID-19 and
pneumonia classes (97.5% and 92.1%, respectively) demonstrated the appropriateness of
the proposed learning framework.

An extensive literature analysis on imaging-based COVID-19 diagnostic studies re-
veals several research challenges. The foremost among those is learning on a limited
training dataset, which leads the model to learn ‘shortcuts’ rather than actual features from
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the images. These shortcuts usually include lung size and position, and artifacts present
outside the lung area. We also encountered the same problem in the current study. This hin-
ders the process of training models exclusively on true pathological features. To overcome
this challenge, the CNN models were trained using segmented lung regions instead of
entire X-ray images. Specifically, the current approach uses a lung segmentation procedure
preceded by a localization operation on CXR images. The lung localization helped in
standardizing both lung size and position, while the segmentation process removed all
irrelevant tissues.

The micro-averaging-based performance summary presented in Table 5 indicates
that the model using an ensemble of global and local attention features showed the best
performance among all backbone CNN models. Specifically, the models based on the
DenseNet161 network outperform all other models, whereas the Inception V4.0-based
models demonstrate worst performances. The results indicated that DenseNet161 CNN
surpassed the more complex Inception V4.0 model, which also suggested the efficacy of us-
ing local features along with global features. Test results of the ensemble approach indicate
its higher capability of diagnosing COVID-19 cases, achieving a balanced accuracy of 98.5%,
average precision of 97.5%, and F1-score of 98.9%. Figure 9 shows the weighted binary
cross-entropy loss for all the models during a single experiment. This figure illustrates that
all the models converged around the same time except for the global Inception v4.0 model,
for which the convergence was slightly faster. Models based on DenseNet161 experienced
higher training losses, making them candidates for further improvement with additional
training data. These results, in accordance with the metrics presented in Tables 2–5 and
the statistical analysis, indicate the superiority of the DenseNet161 over other models. It is
important to note that the current dataset and the problem formulation mostly differ from
the previous studies, which make a fair comparison with existing methods a bit difficult.
However, we attempt to provide an overview of the accuracy of these studies to determine
the efficiency of the proposed approach. The current method outperformed the techniques
proposed by Ahsan et al. [64] and Khan et al. [65], which achieved an accuracy of 89.6 and
95.38, respectively. Furthermore, our approach showed a comparable performance to the
COVID-Net method [41], which achieved a precision (positive predictive value) of 98.9 for
COVID-19 cases.

The statistical analysis of the models in the current study was found to be useful
in detecting differences in the prediction models across multiple test attempts. For the
ResNet18 backbone, as shown in Figure 10a, the analysis indicates that there is no sig-
nificant difference between the local and global models, while the ensemble model and
the other models differ from each other in a significant manner. Specifically, the mean
rank of the ensemble model, local, and global models resulted as 1.0, 2.125, and 2.875,
respectively. Figure 10b manifests that in the case of DenseNet161-based models, the model
ensemble occupied the best rank followed by the local model and the global model, which
further indicates that there is a significant difference between the model ensemble and
the other models. For Inception V4.0 models, as shown in Figure 10c, there were signif-
icant differences between all models, and the model ensemble ranked the best position
among all models. The model ensemble turned out to be the winner in the first round of
statistical tests. Based on that outcome, the second test was then used to compare among
the ensembles of ResNet18, DenseNet161, and Inception V4.0 models. The results of the
latter test indicated that there was a significant difference between all models, as shown in
Figure 10d. In particular, the DenseNet161-based ensemble held the best rank followed by
ResNet18 ensemble, while the Inception v4.0-based ensemble occupied the worst position.

The occlusion technique-based model investigation (Figures 9 and 10) demonstrated
that the global feature-based model and the model with local attention features empha-
sized on distinct parts of the image. The local attention head and MIL pooling focused
on some detailed features while suppressing some general global features. Accordingly,
we hypothesize that the latter process could enhance the feature descriptions extracted
from CXR images with complex pathological signs or disease structures.
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The run-time complexities reported in Table 6 demonstrate that the ResNet18 backbone
was the fastest and the DenseNet161 was the slowest among three models tested on both
GPU and CPU computing platforms. However, in the case of all three models, the diagnosis
of a single case can be performed in less than a second on the GPU machine, whereas
it takes approximately two seconds on the CPU, including the combined run-times of
localization, segmentation, and classification. Therefore, all the models are reported to
have an economical diagnostic time irrespective of their classification performances in the
present study.

The comparative analysis of the DenseNet161 ensemble model performances in- and
excluding data augmentation and balancing shows that there were observable differences
in classification performances in the case of COVID-19. When handling the low samples
and class imbalance issues during the training, it enhanced the model performances in
terms of all evaluation metrics, particularly for COVID-19 cases. Modest improvements
were also observed for the other two classes (pneumonia and control groups). This analysis
therefore exemplifies the necessity of enriching the low-representing class through data
augmentation and resolving the class imbalance issue by adopting suitable balancing tech-
niques to ensure a reliable and a bias-free training of the prediction models. The statistical
analysis using the Wilcoxon signed rank test [61,66] shows a significant difference these
models. The p-values are 0.008 in the case of the control group, 0.001 for pneumonia class,
and 0.0002 for COVID-19 cases. Finally, the model ensemble with data augmentation has a
higher mean rank in the case of all classes.

6. Conclusions

In the current study, we presented an ensemble approach of deep learning models
utilizing both global and local attention-based features for COVID-19 detection on CXR im-
ages. The proposed approach attempts to alleviate several research challenges; for instance,
incorrect feature attribution was addressed by consecutive localization and segmentation
of the lung region from the whole CXR images prior to feature extraction, whereas class
imbalance issues were resolved by effective data augmentation and mini-batch balancing
techniques. Furthermore, an enhanced feature descriptor was built using a combination
of global and local attention-based features. After inspecting a series of backbone CNN
models, an ensemble of DenseNet161 models using these two levels of features was found
to be the best model for classifying CXR images in a multi-label classification framework.
This ensemble model achieves an average balanced accuracy of 91.2%, precision of 92.4%,
and F1-score of 91.9% considering all three classes, on the independent test set, with an
estimated response time of around two (2) seconds on a typical CPU setup on a single
CXR image. A comprehensive statistical analysis further establishes the superiority of the
DenseNet161-based ensembles over other models. The highly accurate and prompt perfor-
mance indicates the effectivity of the proposed model even when multiple pathologies are
intertwined in a single CXR image. A potential research avenue could be to incorporate
radiological reports as NLP features to further augment the prediction performances of the
proposed models.
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