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Abstract: This paper presents a feature selection model based on mean impact value (MIV) to solve
induction motor (IM) fault diagnosis on the current signal. In this paper, particle swarm optimization
(PSO) is combined with back propagation neural network (BPNN) to classify the current signal of
IM. First, the purpose of this study is to establish IM fault diagnosis system. Additionally, this study
proposes a feature selection process that is composed of MIV, whose objective is to reduce the number
of classifier input features. Secondly, the features are extracted as a feature database after analyzing
the current signal of IM, and the fault diagnosis is established through the model of PSO-BPNN.
Finally, redundant features are deleted through this feature selection process and a classifier is built.
The result shows that the feature selection model based on MIV can filter the features effectively at a
signal to noise ratio of 30 dB and 20 dB for the IM fault detection problem. In addition, the computing
time of BPNN is also reduced which is helpful for online detection.

Keywords: induction motor; fault diagnosis; back propagation neural network; S-transform

1. Introduction

In the industry age, machinery is inseparable from our lives, and the core of machinery
is divided into motors and engines. With the increasing awareness of environmental
protection and the imminent exhaustion of fossil fuels, more and more applications of
motors also indicate that industries have increased their dependence on motors. Thus, the
losses caused by motor failures and shutdowns will also increase. Therefore, fault detection
and diagnosis are important to avoid unexpected shutdowns and degraded efficiency [1].
If the fault of a motor can be identified before shutdown, more time can be arranged for
maintenance or replacement, and the loss or danger caused by sudden shutdown can be
reduced. Therefore, this paper proposes a feature selection model to delete redundant
features of classifier. Moreover, the computing time of classifier can be reduced. Hence,
this classifier can be used to detect the fault of the IM faster and more accurately [2].

In another research [3], due to the robustness, low cost, and versatility of motors,
they are the electric equipment used in the most various projects in the factory. The motor
accounts for 85% of the global energy consumption. The motor is not expected to be
subjected to excessive pressure and use. Therefore, the fault diagnosis of the motor has
received great attention. According to [3], the most common fault condition is bearing
damage, accounting for 41%; followed by stator failure, accounting for 37%; and finally,
rotor failure, accounting for 10%. When the motor fails, the running cost will increase.
Therefore, fault identification has always been one of the most-discussed topics in industrial
applications. The most common technologies associated with motors are temperature
measurement, vibration, electrical signal, and sound measurement [4,5]. The current signal
used in this paper as a basis for identification is a type of electrical signal. When measuring
electrical signals, no additional sensors are needed, and the environmental influence
during measurement is also smaller than temperature, vibration, and sound signal. In this
study, fault identification is performed for bearing damage, stator short-circuits, and rotor

Symmetry 2021, 13, 104. https://doi.org/10.3390/sym13010104 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13010104
https://doi.org/10.3390/sym13010104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010104
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/104?type=check_update&version=1


Symmetry 2021, 13, 104 2 of 17

drilling. This study uses IM current signals for analysis. Because additional sensors for
measurement are not required for current signals, and are less affected by environmental
noise, they can be used for online real-time monitoring. On-line health monitoring systems
play an important role in avoiding unexpected fault and obtaining a higher accuracy for
maintenance. Stator current spectra has been well documented on different techniques [6].
In addition, there are noise signals due to working environment of motor is complicated.
These noises are mainly Gaussian noise [7].

It has been a challenge for researchers to detect faults of motors [8]. The current signal
is regarded as an important detection basis for fault identification. In [8], the current signal
was successfully used to detect the broken rotor bar and the bearing failure. The current
signal is also used to identify the motors in four conditions in this study. The accuracy of
the classifier can be improved through feature engineering [9]. Feature construction, feature
extraction, and feature selection are common feature engineering. Feature selection can be
divided into two categories, filter and wrapper [10]. The filter involves the correlation of
features to select the feature. The time cost of calculation is higher. The wrapper is based
on evaluation function to select feature. The time cost of calculation is lower. These tasks
can be divided into three directions: data acquisition, feature extraction, and classification.
It is the fault detection and diagnosis (FDD) [11].

Time-frequency analysis has greatly developed in the past few decades, which is
mostly applied in earth science. Short time Fourier transform (STFT), wavelet transform
(WT), and S-transform (ST) are common T-F transformers. Those are the common methods
for spectral decomposition [12]. The development of S-transform is based on STFT and
WT. S-transform uses a frequency-dependent variable Gaussian function as the window
function to overcome the fixed frequency analysis problem of STFT. S-transform also has
a phase factor, which is a characteristic not found in wavelet transform [13].ST has the
advantages of STFT and WT, so it is a good choice for time-frequency analysis. Although ST
is mainly used in geophysics, it is also used in other fields such as gearbox fault diagnosis,
signal recognition and recovery [14–18]. Therefore, in this paper, ST is used to analyze the
current signal of the IM in order to find the identification features.

Principal component analysis (PCA) is considered as a method of feature extraction in
dimensional reduction for machine learning. Many applications use PCA to extract feature.
PCA is characterized by its self-learning ability [19]. However, PCA is sensitive to outliers
and missing data. It requires a lot of calculation for calculating the covariance matrix [20].
The mean impact value (MIV) can show the importance of features, and the operation
time cost is low. In terms of feature processing, MIV is a more suitable choice considering
time cost.

MIV can effectively show the relationship between the input features and output of
back propagation neural network (BPNN) [21]. The feature is added to the input features of
the neural network in order from the small MIV to the large MIV in [21]. Choosing the best
combination of features has good results in predicting blood pressure. PNN-based feature
selection (PFS) is a systematic way to select features [22], and the research results in [22]
also show the reliability of this process. This study combines the above characteristics to
analyze the IM current signal. It is evident that MIV can effectively show the importance of
features. In [22], we noticed that the recognition of BPNN is the best. The concept of PFS
feature selection is used to build a feature selection model base on MIV and take BPNN
as the classifier in this study. This study builds a new feature selection model to simplify
the classifier and it can be effectively applied to the fault identification of IM. This feature
selection model is backward sequential selection (BSS). In [23], forward sequential selection
(FSS) and BSS can improve the detection rate.

This paper proposes a feature selection model to filter out irrelevant features. BPNN
is used to detect the fault of IM. First, we get the current signal of IM, and analyze the
current signal by S-transform. Second, the feature is extracted in order to detect the fault of
IM. Finally, we use the feature selection model which is proposed in this paper to delete
irrelevant feature, then the input features and compute time of BPNN can be reduced.
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2. Signal Analysis Method and Classifier
2.1. S-Transform (ST)

S-transform is a time-frequency analysis method published in 1994 [24]. The main
concept is the extension of continuous wavelet transform, and the operation method
is based on Fourier transform. The S-transform analysis method is based on Gaussian
window function. This window function will have different window widths due to different
frequency. The window width at high frequency becomes smaller and the resolution in the
time domain is higher; at a low frequency, the width of the window becomes larger and the
resolution in the frequency domain is higher, so it can show the local characteristics of the
signal. S-transform compares with the wavelet transform and the Fourier transform, it has a
better resolution for the non-steady-state signal and the applicable fields of S-transform are
extensive, including high-altitude wind direction monitoring, the detection of gravitational
waves, the detection of power transmission network interference, etc [25]. The S-transform
formula is shown in Equation (1):

Sx(t, f ) =
∫ ∞

−∞
x(τ)| f |e−π(t−τ)2 f 2

e−j2π f τdτ (1)

The window function is a Gaussian window function as shown in Formula (2):

w(t, f ) = | f |e−πt2 f 2
(2)

2.2. Neural Network

In the machine learning, a neural network is a mathematical model created by imi-
tating the biological nervous system. By mimicking the way that the biological nervous
system transmits signals, different activation functions are used to transmit the signal to
the next neuron; the concept of the computing direction is as following: input the feature
vector to the first layer. After calculating the activation function of the first layer, output to
the second layer as the input vector of the second layer, and after calculating the activation
function of the second layer, output to the third layer as the input vector, which is passed
to the output layer and outputs the result.

The calculation method of each neuron is to give the corresponding weights and biases
to all input features. After adding the bias and the product of the input features and the
weights, the output is performed through the activation function. The simplest activation
function is to set a threshold. If the operation result is larger than the threshold, it outputs
1; if the operation result is less than the threshold, it outputs 0. This is used to solve the
dichotomy problem. The activation function used in this study is the sigmoid function,
which refines the output only 0 and 1 to any real number between 0 and 1.

The core of machine learning is to find the mathematical relationship between the
input features and the output through these neurons and modify the weight and the bias
from multiple data in the database to optimize the output error. The methods of machine
learning are divided into two categories: forward propagation and backward propagation.
This paper uses a backward propagation neural network, which is called a BPNN. The
BPNN used in this paper has three layers. The activation function between the input layer
and the hidden layer is sigmoid function, and the activation function between the hidden
layer and output layer is linear function (purelin). We use least squares method to modify
the weight. This step is called neural network training. The last layer is the output layer,
and there are four neurons in the output layer. These four neurons represent the four
types of motors. After the BPNN calculation, the four neurons are used for classification,
and the input data will be classified into the category with the largest value among the
four neurons.

3. Methodology

Many feature selection methods have been proposed in previous studies. These
methods can be divided into two types: filter methods and wrapper methods [26]. The
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wrapper method evaluates the importance of the feature set through the results of the
classifier. Generally, the effect is better than the filtering method [27]. The feature selection
based on MIV used in this study is a wrapper method.

In this study, BPNN is used as the classifier. There are 50 features extracted from the
motor current signal after S-transform as identification features. However, some of the 50
features have no positive effect on the fault identification, so these 50 features need to be
selected. This section will introduce the feature selection process and method used in this
study, which can select several key features from the original 50 features to achieve the
effect of simplifying BPNN and computing time.

3.1. Mean Impact Value

In the study [21], the mean impact value (MIV) can effectively show the importance of
the feature to the classifier; if MIV of the feature is large, it means that the feature is impor-
tant for the classification model, and that the feature is more important for classification.
This study analyzes the relationship between each feature and the classification result by
calculating the MIV of 50 feature values, and uses this analysis result as the basis for the
process of feature selection. The process of MIV is shown in Figure 1, and the calculation
process steps are as follows:

Step (1) Select all features as feature set F =
{

F1, F2, . . . , Fj
}

Step (2) Train the model of PSO-BPNN.
Step (3) Assume adjustment rate ±R and adjust Fi, get Fi1 =

{
F1, F2, . . . , Fi(1 + R), . . . , Fj

}
and Fi2 =

{
F1, F2, . . . , Fi(1− R), . . . , Fj

}
.

Step (4) Respectively input Fi1 and Fi2 to BPNN.
Step (5) Get the output Yi1 and Yi2.
Step (6) Calculate impact value of Fi, IVi = Yi1 −Yi2.
Step (7) Calculate mean impact value, MIVi = mean(IVi).
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3.2. Particle Swarm Optimization-BP Neural Network

Particle swarm optimization (PSO) is used to optimize the initial weights and bias
of BPNN in this paper. This algorithm is a mathematical model developed by graphi-
cally representing bird behavior. The principle is to use two concepts of bird foraging:
determining the direction according to its own experience and determining the direction
by referring to the experience of others. Through these two concepts, the particles are
randomly distributed in space. When the particles move, they refer to their best direction
and the best direction of the group to determine the direction of the last movement, and
iteratively find the optimal solution of the group [28]. The process of PSO-BP is shown in
Figure 2. The detailed steps are as follows:

Step (1) Set number of particles i, number of iterations t, the maximum number of iterations
tmax, the acceleration constants c1 and c2, and the inertia weights w.

Step (2) Assume that the coordinates of each particle in space Xi = (X1i, X2i, . . . , XDi), and
the speed of each particle in space Vi = (V1i, V2i, . . . , VDi).

Step (3) Calculate the fitness values of all particles by BPNN, and obtain the best solution
Pbest for individuals and the best solution Gbest for groups.

Step (4) Correct flight speed of the particle Vi_new= wVi+c1r1(Pbest−Xi)+c2r2(Gbest−Xi)
Step (5) Correct the particle position Xi_new= Xi+Vi_new.
Step (6) if t < tmax, t = t + 1 and repeat step (3) to step (5).
Step (7) Obtain the best position of the groups as the best solution.
Step (8) Get PSO-BP model.

Symmetry 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

3.2. Particle Swarm Optimization-BP Neural Network 
Particle swarm optimization (PSO) is used to optimize the initial weights and bias of 

BPNN in this paper. This algorithm is a mathematical model developed by graphically 
representing bird behavior. The principle is to use two concepts of bird foraging: deter-
mining the direction according to its own experience and determining the direction by 
referring to the experience of others. Through these two concepts, the particles are ran-
domly distributed in space. When the particles move, they refer to their best direction and 
the best direction of the group to determine the direction of the last movement, and itera-
tively find the optimal solution of the group [28]. The process of PSO-BP is shown in Fig-
ure 2. The detailed steps are as follows: 

Step (1) Set number of particles i, number of iterations t, the maximum number of 
iterations tmax, the acceleration constants c1 and c2, and the inertia weights w. 

Step (2) Assume that the coordinates of each particle in space = ( , , . . . , ), 
and the speed of each particle in space = ( 1i,V2i,...,VDi). 

Step (3) Calculate the fitness values of all particles by BPNN, and obtain the best so-
lution Pbest for individuals and the best solution Gbest for groups. 

Step (4) Correct flight speed of the particle i_new=wV +c ( best-X )+c ( best-X ) 
Step (5) Correct the particle position i_new=X +Vi_new. 
Step (6) if t<tmax, t=t+1and repeat step (3) to step (5). 
Step (7) Obtain the best position of the groups as the best solution. 
Step (8) Get PSO-BP model. 

 
Figure 2. Flowchart of particle swarm optimization-back propagation (PSO-BP). 

3.3. Feature Selection 
In this study, the analysis result of the fault motor current signal contains 50 candi-

date features. According to the research in [14], it can be known that MIV reflects the in-
fluence of each feature on the classifier. Based on MIV, determining how to delete unim-
portant features is the key. In this study, MIV is combined with the PFS proposed in [22] 
to obtain a feature filtering process based on the MIV. The features corresponding to the 
smaller MIV are preferentially removed, and new feature vectors are established from the 

Figure 2. Flowchart of particle swarm optimization-back propagation (PSO-BP).

3.3. Feature Selection

In this study, the analysis result of the fault motor current signal contains 50 candidate
features. According to the research in [14], it can be known that MIV reflects the influence
of each feature on the classifier. Based on MIV, determining how to delete unimportant
features is the key. In this study, MIV is combined with the PFS proposed in [22] to
obtain a feature filtering process based on the MIV. The features corresponding to the
smaller MIV are preferentially removed, and new feature vectors are established from the
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remaining features. The goal is to optimize the initial weight and bias of BPNN, estimate
the accuracy and ensure that it does not reduce the accuracy. Repeat the above process
to delete unimportant features. The process of feature selection base on MIV is shown in
Figure 3. The detailed steps are as follows:

Step (1) Select all features to establish feature vector Forigin and set dimension D = 50.
Step (2) Use PSO to optimize the initial weights worigin and bias borigin of BPNN.
Step (3) Record the optimized result and evaluate the accuracy Accremove of BPNN.
Step (4) Calculate MIV of all features.
Step (5) Arrange MIV from the minimum to the maximum and remove a feature corre-

sponding to the smallest MIV. D = D − 1.
Step (6) Select unremoved features to create a new feature vector Fnew, and evaluate the

accuracy Accremove. If Accremove > Accorigon, go back to Step (5).
Step (7) Select the features that have not been removed to create a new feature vector Fnew,

and use PSO to optimize the initial weight wnew and bnew bias of BPNN. To evaluate
the accuracy Accnew.

Step (8) If Accnew > Accorigin, go back to Step (5).
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4. Experimental Measurements and Analysis of IM

This section introduces the experimental equipment, experimental architecture, motor
samples, and actual analysis methods of this study. After measuring the motors in four
different conditions, using S-transform to analyze the current data. The motor characteristic
curves of the four conditions are discussed in this section and introduce the four conditions
of the motor and its characteristic curve in sequence.
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4.1. Experiment Device

In this study, a four-pole IM (60 Hz/1.5 kW/1764 rpm) is used to drive a power
platform composed of a servo motor (69 Hz/11 kW/2000 rpm) and a torque sensor. The
data acquisition system (NI PXI-1033) captures the current signal and stores the data in a
personal computer. The power meter platform, power meter platform control panel and
data acquisition system are shown in Figure 4a–c:
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4.2. Experiment Structure

In this experiment, the IM is used to drive the servo motor of the power meter platform,
and the power platform generates the torque opposite to the IM as the load. The motor
current signal of one phase is captured by the NI PXI-1033. The signal acquisition frequency
is 1000 Hz, and each measurement time is 100 s. The healthy motor current signal, bearing
damage motor current signal, stator layer short circuit current signal, and rotor drilling
current signal are measured 200 s separately. The current signal is used to train the neural
network and test the neural network. After S-transform, feature extraction is performed
and input to a neural network for training and testing, and finally obtains the recognition
rate. The schematic diagram of the experimental architecture is shown in Figure 5.
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4.3. Analysis Current of IM

According to IEEE-IAS, the types of faulty motors are bearings (44%), windings (26%),
and rotors (8%). This study analyzes these types of faulty motors, and selects four types of
motors: normal motors, bearing failure motors, stator short circuit fault motors, and rotor
drilling fault motors.

This study analyzes the motor current signal through S-transform to obtain the ST
matrix. From this, the ST matrix can obtain more characteristic curves in the time domain
and the frequency domain. The steps show as follows: the maximum, minimum, average,
mean square deviation, and standard deviation are extracted from each column of the ST
matrix to establish 5 characteristic curves in time domain. The characteristic curves are: (1)
Tmax; (2) Tmin; (3) Tmean; (4) Tmse; (5) Tstd; the maximum, minimum, average, mean
square deviation and standard deviation are extracted from each row of the ST matrix to
establish 5 characteristic curves in frequency domain. The characteristic curves are: (1)
Fmax; (2) Fmin; (3) Fmean; (4) Fmse; (5) Fstd. In this section, the analysis results of the four
status motors will be collated.

4.3.1. Healthy Motor

After the S-transform analysis of current signal of the healthy motor, the spectrum
is shown in Figure 6a. The maximum amplitude is 0.3441, and the frequency is 121 Hz.
The time domain characteristic curves Tmax, Tmin, Tmean, Tmse, and Tstd are shown in
Figure 6b; the frequency domain characteristic curves Fmax, Fmin, Fmean, Fmse, and Fstd
are shown in Figure 6c.
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4.3.2. Bearing Failure Motor

After the S-transform analysis of current signal of the bearing failure motor, the
spectrum is shown in Figure 7a. The maximum amplitude is 0.3312, and the frequency is
121 Hz. The time domain characteristic curves Tmax, Tmin, Tmean, Tmse, and Tstd are
shown in Figure 7b; the frequency domain characteristic curves Fmax, Fmin, Fmean, Fmse,
and Fstd are shown in Figure 7c. It can be found that the Tmax characteristic curve of the
bearing failure fault motor is mainly distributed at 0.33, which is slightly different from
the Tmax distribution of the healthy motor; most of the values on the Tmin characteristic
curve are close to 0; in the frequency domain characteristic curve, it is not much different
from the healthy motor.
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4.3.3. Stator Short Circuit Fault Motor

After S-transform analysis of current signal of the stator short circuit fault motor, the
spectrum is shown in Figure 8a. The maximum amplitude is 0.3441, and the frequency is
121 Hz. The time domain characteristic curves Tmax, Tmin, Tmean, Tmse, and Tstd are
shown in Figure 8b; the frequency domain characteristic curves Fmax, Fmin, Fmean, Fmse,
and Fstd are shown in Figure 8c. It can be found that stator short circuit fault motor is less
stable on the Tmax characteristic curve; in the frequency domain characteristic curve, it is
not much different from the healthy motor.
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4.3.4. Rotor Drilling Fault Motor

After S-transform analysis of current signal of the rotor drilling fault motor, the
spectrum is shown in Figure 9a. The maximum amplitude is 0.3436, and the frequency is
121 Hz. The time domain characteristic curves Tmax, Tmin, Tmean, Tmse, and Tstd are
shown in Figure 9b; the frequency domain characteristic curves Fmax, Fmin, Fmean, Fmse,
and Fstd are shown in Figure 9c. It can be found that the rotor drilling fault motor is less
stable on the Tmax characteristic curve; most of the values on the Tmin characteristic curve
are close to 0; it is less stable on the Tstd characteristic curve; in the frequency domain
characteristic curve, it is not much different from the healthy motor.

4.4. Feature Extraction

The 10 characteristic curves obtained from the ST matrix from the time domain and
the frequency domain in this study are as follows:

(1) Tmax: maximum value of each column of ST matrix.
(2) Tmin: minimum value of each column of ST matrix.
(3) Tmean: average value of each column of ST matrix.
(4) Tmse: mean square error of each column of ST matrix.
(5) Tstd: standard deviation of each column of ST matrix.
(6) Fmax: maximum value of each row of ST matrix.
(7) Fmin: minimum value of each row of ST matrix.
(8) Fmean: average value of each row of ST matrix.
(9) Fmse: mean square error of each row of ST matrix.
(10) Fstd: standard deviation of each row of ST matrix.

Then, the features are extracted from these 10 characteristic curves: (1) the sum of the
maximum value and the minimum value; (2) the difference between the maximum value
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and the minimum value; (3) the average value; (4) the mean square error; (5) the standard
deviation, as shown in Table 1.
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Then, the features are extracted from these 10 characteristic curves: (1) the sum of the
maximum value and the minimum value; (2) the difference between the maximum value
and the minimum value; (3) the average value; (4) the mean square error; (5) the standard
deviation, as shown in Table 1.

Table 1. Feature extraction.

Tmax Tmin Tmean Tmse Tstd Fmax Fmin Fmean Fmse Fstd

MAX + MIN F1 F6 F11 F16 F21 F26 F31 F36 F41 F46

MAX −MIN F2 F7 F12 F17 F22 F27 F32 F37 F42 F47

Mean F3 F8 F13 F18 F23 F28 F33 F38 F43 F48

Mse F4 F9 F14 F19 F24 F29 F34 F39 F44 F49

Std F5 F10 F15 F20 F25 F30 F35 F40 F45 F50

In this study, a data acquisition system (NI PXI-1033) is used to record the IM current
signal, and record 100 data for each fault condition, then the MATLAB compiler is used for
S-transform analysis. Features are extracted from the analyzed data. Feature extraction
is shown in Table 1. Then, the features are normalized. Therefore, the value is between
0 and 1, improving the efficiency of neural network training. The sample number is an
even number selected as training data, and the sample number is an odd number selected
as the test data, and input into BPNN for training and testing. Finally, the recognition
success rate is calculated. The features of the time domain and the frequency domain after
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S-transform are extracted according to Table 1, which are 50 characteristic values of F1, F2,
F3, . . . F50. The process of feature extraction is shown in Figure 10. The feature distribution
is shown in Figure 11, where the horizontal axis is the sample number, and the vertical
axis is the feature number. It can be observed from Figure 11 that there are differences in
the feature distribution of different fault conditions after the IM current signal analyzed
by S-transform.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

feature distribution of different fault conditions after the IM current signal analyzed by S-
transform. 

 
Figure 10. The process of feature extraction. 

 
Figure 11. The distribution of features. 

  

Figure 10. The process of feature extraction.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

feature distribution of different fault conditions after the IM current signal analyzed by S-
transform. 

 
Figure 10. The process of feature extraction. 

 
Figure 11. The distribution of features. 

  

Figure 11. The distribution of features.



Symmetry 2021, 13, 104 13 of 17

4.5. Classifier

In this study, it can be seen from the results of [12] that BPNN has a better effect
on fault identification, so BPNN is chosen as classifier. We test the classification effect
of different classifiers on noise-free current signals. It shows the accuracy of BPNN and
probabilistic neural network (PNN) in Table 2. It can be seen that the accuracy of BPNN is
better than PNN 10%. We use PSO to optimize the initial weights and bias of BPNN. We
can see the classifier, PSO-BPNN, is the best model in of the three. As such, we use this
model as a classifier. There are three layers of neurons in BPNN that we establish in this
paper. The three layers are the input layer, hidden layer, and output layer. The number of
neurons in the input layer is determined based on the identification features. The number
of neurons in the hidden layer is 50. The number of neurons in the output layer is 4. These
4 neurons represent 4 different states of motors, healthy motor, bearing failure motor, stator
short circuit fault motor, and rotor drilling fault motor. We conduct a multiclass prediction,
and the ratio of training to testing data is 1:1. We measured 100 samples of motor current
signals. From the 100 samples, it is cut according to the 1:1 ratio of training and testing.

Table 2. Accuracy of different classifier.

Classfier Accuaracy

PNN 86.12%

BPNN 96.3%

PSO-BPNN 100%

5. Results

The types of motors discussed in this study are normal motors, bearing failure motors,
interlayer short circuit fault motors, and rotor drilling fault motors. In this section, the
feature selection method in this study is used to select a new feature vector from the 50
identified features, and input to BPNN. We also test the effect of this method of feature
selection on the accuracy in different noise ratios.

5.1. Motor Current Signal Measurement

This research measures the current signals of motors in various conditions according
to the experimental structure in section IV. The signal sampling frequency is 1000 Hz,
the sampling time is 100 s, a total of 100,000 sample points, and the captured signals are
divided into 50 periods, and each period is 2000 sample points, each period is regarded
as a sample of data. Each situation motor has a total of 50 training samples and 50 test
samples. Using S-transform to analyze these samples to obtain the time characteristic
curve and frequency characteristic curve, and then extract 50 identification features to
normalize to establish a database of identification features. Considering that the current
signals recorded in different measurement environments are affected by noise, this paper
adds white gaussian noise (WGN), where the signal-to-noise ratio (SNR) is equal to 30 dB
and 20 dB, Finally, a total of three kinds of databases are established, which are noise-free,
SNR = 30 dB, and SNR = 20 dB.

5.2. Feature Selection Results

In this study, feature selection is performed on the features extracted after S-transform.
The feature selection results of the three databases aew shown in Tables 3–5. The selection
process is use PFS combined with MIV. The noise-free database screening process is divided
into four parts: feature number 50, feature number 16, feature number 10, and feature
number 9, and the nine features after filtering are: F24, F31, F32, F24, F31, F32, F40, F43, F46,
F47, F49, F50, the total recognition rate result is 99.4%. The result of BPNN computing time
is 19.07 s, as shown in Table 3. The database selection process with SNR = 30 dB is divided
into 4 parts: feature number 50, feature number 16, feature number 7, and feature number 6,
after filtering the six features are: F38, F39, F40, F44, F46, F50, the total recognition rate
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result is 86.2%, and the result of BPNN computing time is 18.90 s, as shown in Table 4. The
database selection process with SNR = 20 dB is divided into four parts, namely feature
number 50, feature number 27, feature number 3, and feature number 2, and the two
features after filtering are: F42, F45. The total recognition rate result is 63.2%, the result of
BPNN computing time is 18.76 s, as shown in Table 5. From Table 6, we can see that the
selection features have a slight decrease in the identification effect of normal motors and
short-circuit motors.

Table 3. Result of feature selection in the condition of signal-to-noise ratio (SNR) = ∞.

Feature Number Number of Features Accuracy Computing Time

F1, F2, F3, . . . , F48, F49, F50 50 100% 21.03

F11, F13, F24, F27, F31, F32, F34, F35, F39, F40, F42, F43, F46, F47,
F49, F50 16 100% 19.43

F24, F31, F32, F39, F40, F43, F46, F47, F49, F50 10 100% 19.11

F24, F31, F32, F40, F43, F46, F47, F49, F50 9 99.4% 19.07

Table 4. Result of feature selection in the condition of SNR = 30 dB.

Feature Number Number of Features Accuracy Computing Time

F1, F2, F3, . . . , F48, F49, F50 50 86.5% 21.09

F9, F20, F24, F26, F27, F30, F32, F36, F38, F39, F40, F44, F45, F46,
F47, F50 16 88.6% 19.43

F36, F38, F39, F40, F44, F46, F50 7 86.5% 19.08

F38, F39, F40, F44, F46, F50 6 86.2% 18.90

Table 5. Result of feature selection in the condition of SNR = 20 dB.

Feature Number Number of Features Accuracy Computing Time

F1, F2, F3, . . . , F48, F49, F50 50 64.0% 21.07

F1, F3, F5, F7, F8, F9, F11, F12, F13, F14, F20, F23, F24, F25, F26, F28,
F32, F35, F36, F37, F38, F39, F42, F43, F45, F49, F50 27 71% 19.95

F42, F43, F45 3 67.3% 18.71

F42, F45 2 63.2% 18.76

Table 6. Motor identification rate under different fault conditions in SNR = ∞.

Feature
Selection
Methods

Number
of

Features

Accuaracy of
Healthy Motor

Accuaracy of
Bearing

Failure Motor

Accuaracy of Stator
Short Circuit Fault

Motor

Accuaracy of
Rotor Drilling

Fault Motor

Total
Accuaracy

All features 50 100% 100% 100% 100% 100%

MIV base on
PSO-BPNN 9 97.7% 100% 99.9% 100% 99.4%

We can see the process of feature selection from Tables 3–5. During the screening
process, the recognition rate will increase. Under SNR = 30 dB, the recognition rate will
increase from 86.5% to 88.6% during the feature screening process; under the condition of
20 dB, the recognition rate is increased from 64% to 71% during the feature selection process.
in the selection result, the accuracy will be slightly reduced, but the feature will be the best
combination. In the case of SNR = ∞ the accuracy is reduced from 100% to 99.4%, and the
calculation time is reduced from 21.03 s to 19.07 s; under the condition of SNR = 30 dB, the
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accuracy is reduced from 86.5% to 86.2%, and the calculation time is 21.09 s is reduced to
18.09 s; under the condition of SNR = 20 dB, the accuracy is reduced from 64% to 63.2%,
and the calculation time is reduced from 21.07 s to 18.76 s. From these results, it can be seen
that the feature selection used in this paper can reduce most of the recognition features
and reduce the BPNN computing time while maintaining the recognition rate. We tested
the effect of different selection methods on noise-free current signal. The result show in
Table 7. We selected two feature selection methods, genetic algorithm (GA) and reliefF, for
comparison. It can be seen that the method proposed in this paper has the same as relief
in terms of the number of features. MIV base on PSO-BPNN has 19 fewer features than
GA selection method in feature number. In terms of recognition rate, there is still a 99.4%
recognition success rate. It can see that the feature selection method proposed in this paper
is better than the other two. Table 8 shows the confusion matrix of classification result
in SNR = ∞. This table is the average of 20 executions. The number of test data is 50. In
20 running times, a total of 2 healthy motor signals are classified as stator short circuit fault
motor signals. A total of 4 healthy motor signals are classified as rotor drilling fault motor
signals. A total of 1 stator short circuit fault motor signal is classified as healthy.

Table 7. Results of different feature selection methods.

Feature Selection Methods Number of Features Accuracy

All features 50 100%

GA 28 100%

ReliefF 9 98.5%

MIV base on PSO-BPNN 9 99.4%

Table 8. Confusion matrix of classification result in SNR = ∞.

Healthy Motor Bearing Failure
Motor

Stator Short Circuit
Fault Motor

Rotor Drilling
Fault Motor Total

Healthy motor 48.85 0 0.05 0 99.8%
0.2%

Bearing failure motor 0 50 0 0 100%
0%

Stator short circuit
fault motor 0.1 0 49.9 0 100%

0%

Rotor drilling fault
motor 0.2 0 0 50 97.8%

2.2%

Total 97.7%
2.3%

100%
0%

99.8%
0.2%

100%
0%

99.4%
0.6%

6. Conclusions

This paper discusses the identification and classification of IM bearing damage, stator
interlayer short circuit, and rotor drilling. It includes the analysis method, the calculation
MIV of each feature, the optimization of the classification model, and the combination of
PFS and MIV in features selection can achieve a certain effect. After the IM current signal
is converted by S-transform, a total of 50 features are extracted from these data. After the
selection process of PFS combined with MIV, 50 features can be reduced to 9 features, and
the accuracy can reach 99.4%, which is almost the same as the recognition rate of other large
numbers of features. Therefore, this method can not only reduce the number of features,
but also achieve a similar recognition rate; in terms of computing time, it is also reduced
from 21.03 s to 19.07 s, reducing the computing time by 9%. The 9 features after selection
are better than 50 features under the comprehensive consideration of recognition rate and
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computing time. It is shown that the method of filtering features is helpful to classify IM
faults in BPNN.
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