
symmetryS S

Article

Neutral Delay Differential Equations: Oscillation Conditions
for the Solutions

Omar Bazighifan 1,2,*,† , Hammad Alotaibi 3,*,† and Abd Allaah A. Mousa 3,†

����������
�������

Citation: Bazighifan, O.; Alotaibi, H.;

Mousa, A.A. Neutral Delay

Differential Equations: Oscillation

Conditions for the Solutions.

Symmetry 2021, 13, 101. https://doi.

org/10.3390/sym13010101

Received: 20 December 2020

Accepted: 6 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
2 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
3 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,

Taif 21944, Saudi Arabia; a.mousa@tu.edu.sa
* Correspondence: o.bazighifan@gmail.com (O.B.); hm.alotaibi@tu.edu.sa (H.A.)
† These authors contributed equally to this work.

Abstract: The purpose of this article is to explore the asymptotic properties for a class of fourth-order
neutral differential equations. Based on a comparison with the differential inequality of the first-order,
we have provided new oscillation conditions for the solutions of fourth-order neutral differential
equations. The obtained results can be used to develop and provide theoretical support for and
to further develop the study of oscillation for a class of fourth-order neutral differential equations.
Finally, we provide an illustrated example to demonstrate the effectiveness of our new criteria.

Keywords: oscillation; neutral differential equations; fourth-order

1. Introduction

In recent years, there has been growing interest in exploring neutral differential
equations, with applications in many areas, including fluid dynamics, physics, chemistry,
and biology. Problems in these areas have often guided researchers and physicists to
expend great efforts to investigate interesting phenomena, such as the effect of vibrating
systems fixed to an elastic bar. Examples of such problems can be found in the Euler
equations and the Taylor–Goldstein equation in fluid dynamics, and the perturbed vertical
velocity in stratified flow with the effect of viscosity.

The oscillatory properties of neutral differential equations also play crucial roles in
mechanical engineering, civil engineering, and application-oriented research—which can
support research with the potential of developing the ship building, airplane, and rocket
industries—along with the fabrication of microelectromechanical systems (MEMS) and
gyroscopes; see [1–3]. In this paper, we aim to effectively study the oscillation criteria of
the following equation.

L′x + q(x)w(p2−1)(z(x)) = 0, x ≥ x0, (1)

where
Lx := ξ(x)

(
y′′′(x)

)(p1−1), so that y(x) := w(x) + r(x)w(δ(x)). (2)

The operator Lx is the canonical form if
∫ ∞

x0
1

ξ1/(p1−1)(s)
ds = ∞; otherwise, it represents

the noncanonical form.
Here, our significant novel outcomes are obtained by considering the following condi-

tions:

S1: r ∈ C[x0, ∞), 0 ≤ r(x) < r0 < ∞,
S2: δ, z, q ∈ C[x0, ∞), q(x) > 0, δ(x) ≤ x, limx→∞ δ(x) = limx→∞ z(x) = ∞,
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S3: ξ ∈ C[x0, ∞), ξ(x) > 0, ξ ′(x) ≥ 0, and∫ ∞

x0

1
ξ1/(p1−1)(s)

ds = ∞, (3)

S4: pi > 1, i = 1, 2 are constants and

p1 :=
{

2 if p2 ≤ 2;
1 + 2β−1 if p2 > 2.

By a solution of Equation (1) we mean a function w ∈ C3[x, ∞), x ≥ x0, which has the
property ξ(x)(y′′′(x))α ∈ C1[x0, ∞), and satisfies Equation (1) on [x0, ∞).

Definition 1. A solution of Equation (1) represents oscillatory behavior if it has arbitrarily large
zeros on [x0, ∞). Otherwise, a solution can be known as nonoscillatory.

Definition 2. Equation (1) is known as oscillatory if each solution of it is oscillatory.

Definition 3. If the highest-order derivative of the unknown function occurs with and without
delay, then the differential equation is defined as neutral.

Over the past few years, the asymptotic behavior of solutions of differential equations
has become a key research area in different disciplines. In particular, in mathematics, many
researchers investigated the oscillatory properties of solutions to neutral differential equa-
tions; see [4–12]. For differential equations of neutral type, we present the following results
that are closely related to our work. For example, Bazighifan [13], obtained oscillation
conditions for solutions of Equation (1). In [14], the authors considered the equation(

ξ(x)F
(

y(n−1)(x)
))′

+ p(x)F
(

y(n−1)(x)
)
+ q(x)F(y(z(x))) = 0,

where F = |s|p−2s and obtained some new oscillation conditions.
In [6,15] the authors studied oscillation for equations of Emden–Fowler neutral type

where a criterion of Kamenev-type oscillation was found.
The authors in [16,17] considered the equation

y(r)(x) + q(x)w(z(x)) = 0,

and proved that it is oscillatory if

lim inf
x→∞

∫ x

σ(x)
K(s)ds > 2(r−1)(r−2) (r− 1)

e
, (4)

and

lim inf
x→∞

∫ x

σ(x)
K(s)ds >

(r− 1)!
e

, (5)

where K(t) := zr−1(x)(1− b(z(x)))q(x) and r is an even number.
In [18,19], the authors considered the equation(

ξ(x)
(

y(n−1)(x)
)α)′

+ q(x)wα(z(x)) = 0,

and it was found to be oscillatory if

lim inf
x→∞

∫ x

δ−1(z(x))

q(s)
ξ(s)

(
sn−1

)α
ds >

(
1
z0

+
pα

0
z0δ0

)
((n− 1)!)α

e
, (6)
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and

lim inf
x→∞

∫ x

δ−1(η(x))

( (
τ−1(η(s))

)n−1

ξ1/α(δ−1(η(s)))

)α

q(s)Pα
n (z(s))ds >

((n− 1)!)α

e
, (7)

where η ∈ C1([x0, ∞),R) and q̂(x) := min
{

q
(
z−1(x)

)
, q
(
z−1(δ(x))

)}
.

Inspired by the work of [16–18], we concentrate on establishing the oscillatory proper-
ties of solutions of (1). We aim also to provide some examples that can ensure the validity
of the proposed criteria.

2. Main Results

This section aims to present the main contribution in this article which lies in its
potential to empower systematic analysis and understanding the oscillatory properties of
solutions of (1).

Lemma 1 ([15]). If u satisfies u(i)(x) > 0, i = 0, 1, ..., j, and u(j+1)(x) < 0 eventually, then for
every ε1 ∈ (0, 1), u(x)/u′(x) ≥ ε1x/j eventually.

Lemma 2 ([20] (Lemma 1 and 2)). Let m1, m2 ≥ 0; then

(m1 + m2)
β ≤

{
2β−1

(
mβ

1 + mβ
2

)
for β ≥ 1;

mβ
1 + mβ

2 for β ≤ 1.

Lemma 3 (([21] Lemma 2.2.3)). Let u ∈ Cj([x0, ∞), (0, ∞)) and u(j−1)(x)u(j)(x) ≤ 0. If
limx→∞ u(x) 6= 0, then

u(x) ≥ µ

(j− 1)!
xj−1

∣∣∣u(j−1)(x)
∣∣∣ for x ≥ xµ,

for every µ ∈ (0, 1).

These are some of the important hypotheses of Equation (1):

Hypothesis 1. w is an eventually positive solution of Equation (1).

Hypothesis 2. The inequality

η′(x) +
1

(p1 − 1)

(
µx3

6ξ1/(p1−1)(x)

)(p2−1)( z0δ0

δ0 + r(p2−1)
0

)(p2−1)/(p1−1)

q̂(x)η(p2−1)/(p1−1)
(

δ−1(z(x))
)
≤ 0, (8)

is oscillatory where
q̂(x) := min

{
q
(

z−1(x)
)

, q
(

z−1(δ(x))
)}

.

Hypothesis 3. The inequality

ϑ′(x) +
1

(p1 − 1)

(
µx3

6ξ1/(p1−1)(x)

)(p2−1)( z0δ0

δ0 + r(p2−1)
0

)
q̂(x)ϑ(p2−1)/(p1−1)(z(x)) ≤ 0 (9)

is oscillatory.

It can be noted that the first order of equations (H2) and (H3) has been discussed pre-
viously by different authors—for example, [10,22,23], and they proved that these equations
are oscillatory. In our current study, we use them as a point of comparison so that (H2) and
(H3) can be assumed to be oscillatory.
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Theorem 1. Let us assume that(
z−1(x)

)′
≥ z0 > 0 and δ′(x) ≥ δ0 > 0. (10)

If (H2) holds, then Equation (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of Equation (1) on [x0, ∞); we get x > 0. Then,
there exists a x1 ≥ x0 such that w(x) > 0, w(δ(x)) > 0 and w(z(x)) > 0 for x ≥ x1. Since
ξ ′(x) > 0, we have

y(x) > 0, y′(x) > 0, y′′′(x) > 0, y(4)(x) < 0 and
(

ξ(x)
(
y′′′(x)

)(p1−1)
)′
≤ 0, (11)

for x ≥ x1. From Equation (1), we get

1

(z−1(x))′

(
ξ
(

z−1(x)
)(

y′′′
(

z−1(x)
))(p1−1)

)′
+ q
(

z−1(x)
)

w(p2−1)(x) = 0. (12)

By using Lemma 2 and the definition of y in (2), we get

y(p2−1)(x) = (w(x) + r(x)w(δ(x)))(p2−1)

≤ (p1 − 1)
(

w(p2−1)(x) + r(p2−1)
0 w(p2−1)(δ(x))

)
. (13)

From Equations (12) and (13), we obtain

0 =
1

(z−1(x))′

(
ξ
(

z−1(x)
)(

y′′′
(

z−1
j (x)

))(p1−1)
)′

+ q
(

z−1(x)
)

w(p2−1)(x)

+r(p2−1)
0

(
1

(z−1(δ(x)))′

(
ξ
(

z−1(δ(x))
)(

y′′′
(

z−1(δ(x))
))(p1−1)

)′
+ q
(

z−1(δ(x))
)

w(p2−1)(δ(x))

)

=

(
ξ
(
z−1(x)

)(
y′′′
(
z−1(x)

))(p1−1)
)′

(z−1(x))′
+ r(p2−1)

0

(
ξ
(
z−1(δ(x))

)(
y′′′
(
z−1(δ(x))

))(p1−1)
)′

(z−1(δ(x)))′

+q
(

z−1(x)
)

w(p2−1)(x) + r(p2−1)
0 q

(
z−1(δ(x))

)
w(p2−1)(δ(x))

≥

(
ξ
(
z−1(x)

)(
y′′′
(
z−1(x)

))(p1−1)
)′

(z−1(x))′
+ r(p2−1)

0

(
ξ
(
z−1(δ(x))

)(
y′′′
(
z−1(δ(x))

))(p1−1)
)′

(z−1(δ(x)))′

+
1

(p1 − 1)
q̂(x)y(p2−1)(x),

which with (10) gives

1
z0

(
ξ
(

z−1(x)
)(

y′′′
(

z−1
j (x)

))(p1−1)
)′

+
r(p2−1)

0
z0δ0

(
ξ
(

z−1(δ(x))
)(

y′′′
(

z−1(δ(x))
))(p1−1)

)′
+

1
(p1 − 1)

q̂(x)y(p2−1)(x) ≤ 0. (14)

Since y′(x) > 0, we find limx→∞ y(x) 6= 0, and by Lemma 3 we obtain

y(x) ≥ µ

6
x3y′′′(x). (15)

Combining (14) and (15), we obtain
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1
z0

(
ξ
(

z−1(x)
)(

y′′′
(

z−1
j (x)

))(p1−1)
)′

+
r(p2−1)

0
z0δ0

(
ξ
(

z−1(δ(x))
)(

y′′′
(

z−1(δ(x))
))(p1−1)

)′
+

1
(p1 − 1)

q̂(x)
(µ

6
x3
)(p2−1)(

y′′′(x)
)(p2−1) ≤ 0. (16)

If we set

η(x) :=
1
z0

ξ
(

z−1(x)
)(

y′′′
(

z−1
j (x)

))(p1−1)
+

r(p2−1)
0
z0δ0

ξ
(

z−1(δ(x))
)(

y′′′
(

z−1(δ(x))
))(p1−1)

,

then it is easy to see that

η
(

δ−1(z(x))
)
≤
(

δ0 + r(p2−1)
0

z0δ0

)
ξ(x)

(
y′′′(x)

)(p1−1).

From (16), we find

η′(x) +
1

(p1 − 1)

(
µx3

6ξ1/(p1−1)(x)

)(p2−1)( z0δ0

δ0 + r(p2−1)
0

)(p2−1)/(p1−1)

q̂(x)η(p2−1)/(p1−1)
(

δ−1(z(x))
)
≤ 0,

which is a contradiction. Therefore, this contradiction completes the proof.

Theorem 2. Let (10) and (H3) hold; then (1) is oscillatory.

Proof. It is known that (16) holds in the proof of Theorem 1. If we set ϑ(x) := ξ
(
z−1(x)

)(
y′′′
(
z−1(x)

))(p1−1), then ϑ is a positive solution of (9), which is a contradiction. This
completes the proof.

Corollary 1. Let p1 = p2 and (10) hold. If ξ(x) ≤ x and

lim inf
x→∞

∫ x

ξ(x)

s3(p1−1)

ξ(s)
q̂(s)ds >

(
δ0 + r(p1−1)

0
z0δ0

)
(p1 − 1)6(p1−1)

e
, (17)

where ξ(x) = δ−1(z(x)) or z(x), then Equation (1) is oscillatory.

Theorem 3. Let r0 < 1 and z(x) ≤ x. For some µ ∈ (0, 1) if

ψ′(x) + (1− r0)
(p2−1)

(
µz3(x)

6ξ1/(p1−1)(z(x))

)(p2−1)

q(x)ψ(p2−1)/(p1−1)(z(x)) = 0 (18)

is oscillatory, then Equation (1) is oscillatory.

Proof. It is known that (11) holds in the proof of Theorem 1. By the definition of y in (2),
we find

w(x) ≥ y(x)− r0w(δ(x)) ≥ y(x)− r0y(δ(x))
≥ (1− r0)y(x),

which with Equation (1) gives(
ξ(x)

(
y′′′(x)

)(p1−1)
)′

+ q(x)(1− r0)
(p2−1)y(p2−1)(z(x)) ≤ 0. (19)
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From Lemma 3, we obtain

y(x) ≥ µ

6
x3y′′′(x). (20)

Combining (19) and (20), we get(
ξ(x)

(
y′′′(x)

)(p1−1)
)′

+ q(x)(1− r0)
(p2−1)

(µ

6
z3(x)

)(p2−1)(
y′′′(z(x))

)(p2−1) ≤ 0.

If we set ψ := ξ(y′′′)(p1−1), then the inequality

ψ′(x) + (1− r0)
(p2−1)

(
µz3(x)

6ξ1/(p1−1)(z(x))

)(p2−1)

q(x)ψ(p2−1)/(p1−1)(z(x)) ≤ 0.

In view of ([10] Corollary 1), Equation (18) has a positive solution, which is a contra-
diction. This completes the proof.

Corollary 2. Let p1 = p2, r0 < 1 and z(x) ≤ x. If

lim inf
x→∞

∫ x

zj(x)

z3(p1−1)(s)
ξ(z(s))

q(s)ds >
6(p1−1)

(1− r0)
(p1−1)e

, (21)

then Equation (1) is oscillatory.

Lemma 4. If (H1) holds, then

φ′1(x) ≤
v′1(x)
v1(x)

φ1(x)−v1(x)q(x)(1− r0)
(p2−1)yp2−p2(x)ε1

( zj(x)
x

)3(p2−1)

−(p1 − 1)µ1
x2

2ξ1/(p1−1)(x)v1/(p1−1)
1 (x)

φ

p1
(p1−1)
1 (x), (22)

for some µ1, ε1 ∈ (0, 1) and every M1 > 0, where

Ψ(x) := Mp2−p1
1 v1(x)q(x)(1− r0)

(p2−1)
(

z(x)
x

)3(p2−1)
.

Proof. Let (H1) hold. In the case where y′′(x) > 0, let

φ1(x) := v1(x)
ξ(x)(y′′′(x))(p1−1)

y(p1−1)(x)
> 0.

From (19), we find

φ′1(x) ≤
v′1(x)
v1(x)

φ1(x)−v1(x)q(x)(1− r0)
(p2−1) y(p2−1)(z(x))

y(p1−1)(x)
(23)

−(p1 − 1)v1(x)
ξ(x)(y′′′(x))(p1−1)

yp1(x)
y′(x).

Using Lemma 1, we obtain y(x) ≥ x
3 y′(x), and hence,

y
(
zj(x)

)
y(x)

≥ ε1
z3(x)

x3 . (24)
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Using Lemma 3, we get

y′(x) ≥ µ1

2
x2y′′′(x), (25)

for all µ1 ∈ (0, 1). Thus, by (23)–(25), we obtain

φ′1(x) ≤
v′1(x)
v1(x)

φ1(x)−v1(x)q(x)(1− r0)
(p2−1)yp2−p2(x)ε1

( zj(x)
x

)3(p2−1)

−(p1 − 1)µ1
x2

2ξ1/(p1−1)(x)v1/(p1−1)
1 (x)

φ

p1
(p1−1)
1 (x).

This completes the proof.

Lemma 5. If (H1) holds, then

φ′2(x) ≤ −Ψ1(x) +
v′(x)
v(x)

ϑ(x)− 1
v(x)

φ2
2(x), (26)

for some ε1 ∈ (0, 1) and every M2 > 0, where

Ψ1(x) := ((1− r0)ε1)
(p2−1)/(p1−1)v(x)M(p2−p1)/(p1−1)

2

∫ ∞

x

(
1

ξ(t)

∫ ∞

t
q(s)

z(p2−1)(s)
s(p2−1)

ds

)1/(p1−1)

dt.

Proof. Let (H1) hold.In the case where y′′(x) < 0, by integrating (19) from x to t, we find

ξ(t)
(
y′′′(t)

)(p1−1) − ξ(x)
(
y′′′(x)

)(p1−1) ≤ −
∫ t

x
q(s)(1− r0)

(p2−1)y(p2−1)(z(s))ds. (27)

By Lemma 1, we get y(x) ≥ xy′(x), and hence,

y(z(x)) ≥ ε1
z(x)

x
y(x). (28)

For (27), letting t→ ∞ and using (28), we get

ξ(x)
(
y′′′(x)

)(p1−1) ≥ ((1− r0)ε1)
(p2−1)y(p2−1)(x)

∫ ∞

x
q(s)

z(p2−1)
j (s)

s(p2−1)
ds. (29)

By integrating (29) from x to ∞, we get

y′′(x) ≤ −((1− r0)ε1)
(p2−1)/(p1−1)y(p2−1)/(p1−1)(x)

∫ ∞

x

(
1

ξ(t)

∫ ∞

t
q(s)

z(p2−1)(s)
s(p2−1)

ds

)1/(p1−1)

dt, (30)

for all ε1 ∈ (0, 1). Now, we define

φ2(x) = v(x)
y′(x)
y(x)

.

Then φ2(x) > 0 for x ≥ x1. By using (33) and (30), we obtain
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φ′2(x) =
v′(x)
v(x)

φ2(x) + v(x)
y′′(x)
y(x)

−v(x)
(

y′(x)
y(x)

)2

≤ v′(x)
v(x)

φ2(x)− 1
v(x)

φ2
2(x)

−((1− r0)ε1)
(p2−1)/(p1−1)v(x)y(p2−1)/(p1−2)(x)

∫ ∞

x

(
1

ξ(t)

∫ ∞

t
q(s)

z(p2−1)(s)
s(p2−1)

ds

)1/(p1−1)

dt.

Thus, we find

φ′2(x) ≤ −Ψ1(x) +
v′(x)
v(x)

ϑ(x)− 1
v(x)

φ2
2(x).

This completes the proof.

Theorem 4. Assume that r0 < 1 and z(x) ≤ x. If there exists positive functions v1,
v ∈ C1([x0, ∞)) such that

∫ ∞

x0

(
Ψ(s)− 2(p1−1)

pp1
1

ξ(s)
(
v′1(s)

)p1

µ
(p1−1)
1 s2(p1−1)v

(p1−1)
1 (s)

)
ds = ∞, (31)

and ∫ ∞

x0

(
Ψ1(s)−

(v′(s))2

4v(s)

)
ds = ∞, (32)

then (1) is oscillatory.

Proof. It is known that (11) and (19) hold in the proof of Theorem 3. From (11), we have
that y′′ is of one sign. From Lemma 4, we find that (22) holds.
Since y′(x) > 0, there exists a x2 ≥ x1 and a constant M > 0 such that

y(x) > M, (33)

for all x ≥ x2. From the inequality

Ew− Fw(α+1)/α ≤ αα

(α + 1)α+1 Eα+1F−α, F > 0,

with E = v′1(x)/v1(x), F = (p1 − 1)µx2/2ξ1/(p1−1)(x)v1/(p1−1)
1 (x) and w = φ1, we find

φ′1(x) ≤ −Ψ(x) +
2(p1−1)

pp1
1

ξ(x)
(
v′1(x)

)p1

µ
(p1−1)
1 x2(p1−1)v

(p1−1)
1 (x)

.

This implies that

∫ x

x1

(
Ψ(s)− 2(p1−1)

pp1
1

ξ(s)
(
v′1(s)

)p1

µ
(p1−1)
1 s2(p1−1)v

(p1−1)
1 (s)

)
ds ≤ φ1(x1),

which contradicts (31). From Lemma 5, we find that (26) holds. This implies that

φ′2(x) ≤ −Ψ1(x) +
(v′(x))2

4v(x)
.
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Then, we obtain ∫ x

x1

(
Ψ1(s)−

(v′(x))2

4v(x)

)
ds ≤ φ2(x1),

which contradicts (32). This completes the proof.

3. Applications

This section presents some interesting examples and applications which are addressed
based on above hypotheses to show some interesting results in this paper. Example 1
is presented to show how to investigate the problem of practical interest to the specific
conditions (0 ≤ r(x) < r0 < 1), whereas Example 2 extends the study to be under this
condition (0 ≤ r(x) < r0 < ∞).

Example 1. Consider the following equation:

(w(x) + (7/8)w(x/e))(4)+q0u−4w
(

x/e2
)

=0, u ≥ 1, (34)

where q0 > 0 is a constant, and

p1=2, ξ(x) = 1, r(x)=7/8, δ(x)=u/e, q(t)=q0u−4, z(x) = x/e2.

By applying the conditions (4)–(7) to the above Equation (34), we obtain the desired results in
the following Table 1

Table 1. The values of q0 for different conditions.

The condition (4) (5) (6) (7)

The criterion q0 > 113, 981.3 q0 > 3561.9 q0 > 3008.5 q0 > 587.93

Observe that, as shown in Table 1 the value of q0 for the condition (7) is smaller than other
values of q0 for other conditions. Hence, the condition (7) provides a better result than the results
obtained by conditions (4)–(6) in [16–18]. However, these conditions for oscillation cannot be
applied to the following example where we investigate the problem of practical interest under this
condition (0 ≤ r(x) < r0 < ∞).

Example 2. Consider the differential equation((
(w + r0w(vx))′′′

)(p1−1)
)′

+
q0

x3p1−2 w(λx) = 0, x ≥ 1, (35)

where v, λ ∈ (0, 1] and r0, q0 > 0. Let ξ(x) = 1, r(x) = r0, δ(x) = vx, z(x) = λx and
q(x) = q0/x3p1−2. Hence, it is easy to see that

q̂(x) = q0λ3p1−2 1
x3p1−2 .

Using Corollary 1, Equation (35) is oscillatory if

q0 ln
1
λ
> (p1 − 1)

(
v + r(p1−1)

0
v

)
6(p1−1)

λ3(p1−1)e
. (36)

From Corollary 2, if

q0 ln
1
λ
>

1

(1− r0)
(p1−1)

6(p1−1)

λ3(p1−1)e
, (37)

then (35) is oscillatory.
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Finally, if we set v1(s) := x3(p1−1) and v(x) := x2, then we have

Ψ(x) = q0(1− r0)
(p1−1)λ3(p1−1) 1

s
,

and

Ψ1(x) :=
1
2

(
q0

3(p1 − 1)

)1/(p1−1)
(1− r0)λ.

Using Theorem 4, Equation (35) is oscillatory if

q0(1− r0)
(p1−1)λ3(p1−1) > 2(p1−1)3p1

(
(p1 − 1)

p1

)p1

, (38)

and

q0 >

(
2

(1− r0)λ

)(p1−1)
3(p1 − 1). (39)

4. Conclusions

This paper explored the oscillatory behavior of the fourth-order neutral differential
equation. In particular, we addressed and investigated the oscillation criteria of Equation (1).
We obtained different forms of conditions to expand the application area by using different
methods. These new conditions complement several results in the literature. Additionally,
some interesting examples were presented to investigate the proposed criteria. Further
research based on the results of this article could extend the analysis herein to investigate
a philos type oscillation criteria to ensure that every solution of the desired Equation (1)
is oscillatory . Moreover, some oscillation criteria for (1) if

∫ ∞
x0

1
ξ1/(p1−1)(s)

ds < ∞, can be

investigated.
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