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Abstract: We propose a new extended theory of Hořava gravity based on the following three
conditions: (i) power-counting renormalizable, (ii) healthy IR behavior and (iii) a stable vacuum state
in a quantized version of the theory. Compared with other extended theories, we stress that any
realistic theory of gravity must have physical ground states when quantization is performed. To fulfill
the three conditions, we softly break the detailed balance but keep its basic structure unchanged.
It turns out that the new model constructed in this way can avoid the strong coupling problem and
remains power-counting renormalizable, moreover, it has a stable vacuum state by an appropriate
choice of parameters.

Keywords: Hořava gravity; power-counting renormalizable; healthy IR behavior; a stable vacuum
state; stochastic quantization

1. Introduction

Hořava–Lifshitz gravity is a new attempt to formulate a consistent and renormalizable
quantum theory of gravity. This is an ultraviolet (UV) renormalizable theory of gravity [1].
Inspired by the perspectives that exist in the theory of dynamical critical systems and
quantum criticality, the proposal assumes that the space and time are anisotropic

xi → bxi, t→ bzt, (1)

where z ≥ 1 is the dynamical critical exponent. In the UV regime it has z > 1. It is
assumed that the theory will flow to z = 1 in the infrared (IR) region. The Lorentz
invariance is violated as z > 1 but it assumes that there is a foliated diffeomorphism
invariance with respect to the spatial sector (although the Lorentz invariance has been
verified experimentally at sufficiently large scales, it is possible to have a Lorentz invariance
violation at high energies (Please see [2] for details). This possibility also has been partially
confirmed in some recent experiments, see [3,4] for examples.). By adding higher order
spatial derivative terms into the Lagrangian, it can reconcile the UV divergence and make
the theory renormalizable by power-counting [5]. This interesting theory has attracted a
lot of interests in the last decade, such as restricting the parameters [6–17], the combination
to cosmology [18–24], and other aspects (see [25–46] for an incomplete list).

In principle, the independent higher order terms which are allowed in the action
seem to be extremely large [47], leading to the theory lack of predictive power. Hořava’s
original proposal overcomes this difficulty by introducing an additional condition into
the theory—the so called “detailed balance”, an idea borrowing from condensed matter
physics. However, later research indicated that the theory exhibits a pathological behavior
at the low energies. Generally speaking, the pathologies include the following two aspects:
the strong coupling problem in the IR fixed point [48–52] and the non-closure of constraint
algebra [53,54]. Essentially, these two pathologies have the same origin. As pointed out
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in [6], this is mainly due to the fact that the breaking of general covariance by the pre-
ferred foliation of space-time introduces a new scalar excitation. The effort in attempting
to overcome these difficulties is an extended theory of the non-projectable Hořava grav-
ity proposed by Blas, Pujolàs and Sibiryakov (BPS) [55]. The key idea of this extended
theory (we denote it by BPS theory hereafter) is to improve the IR behavior by breaking
the “detailed balance” and introducing a new 3-vector and its higher derivatives in the
Lagrangian (It was later extended to the case with the detailed balance condition softly
breaking by one of the authors [17,18]). As pointed out in [56], this extension could still
possess strong coupling at low energies as we consider a cubic or higher order Lagrangian,
but it is also possible to avoid the strong coupling if higher derivative terms in the action
become important below the strong coupling energy scale [55].

So far, it seems that the BPS model is an ideal theory of gravity exhibiting healthy
behavior at both high and low energies. However, there are at least two obvious obstacles
that prevent us from the final theory. First, by giving up the “detailed balance”, the
potential term in the action appears to include a large number of terms. The number of free
parameters needed in this model is possibly large in the case that we do not have any good
mechanism to reduce them. A large number of free parameters will weaken the predictive
power of the theory. Second, a well-defined quantized theory of the model constructed in
this way cannot be guaranteed in the sense that the model may have unphysical ground
states. Therefore, we should refine our model by carefully selecting terms in the action so
that the model has a well-defined quantized theory. Meanwhile, to improve the predictive
power, the number of free parameters in the theory should be as low as possible. In this
paper, we address these problems and try to construct our theory of gravity based on the
following three conditions:

(i) The theory is power-counting renormalizable, in the sense that the candidate theory
should be renormalizable in the UV regime;

(ii) The theory has a healthy IR behavior, namely, the theory should be free of ghosts and
does not have strong coupling;

(iii) The theory can be well quantized in the sense that the theory has a stable vacuum
state (physical ground state). Generally speaking, in accordance with the symmetry
of the theory, the number of allowed terms in the action is large. As we will see in
Section 5, to ensure the theory has a stable vacuum, the allowed terms in the actions
should be carefully selected such that the probability density is finite and normalized.
In other words, to have a physical ground state, the theory should have a finite (and
normalized) probability density. To ensure there is a finite probability density, one has
to select suitable terms in the action such that the Euclidean action of the theory is
positive definite. We should emphasize that this selection is not unique. What we will
adopt in the present paper is one of the choices.

In performing quantization of our model, we apply the stochastic quantization
method [57], which is constructed through the stochastic differential equation, so that
the question of whether a stable vacuum (ground state) really exists or not can be easily
investigated and answered. It also has the great advantage of no need for gauge-fixing
when applied to theories with gauge symmetry. Its equivalence to path integral has been
effectively proven in many studies (see [58] for example).

The organization of the rest of the paper is as follows. In Section 2, we start with a
brief review of Hořava gravity and its healthy extension. Section 3 focuses on the power-
counting renormalization analysis of our new model. Detailed study of the IR behavior
of the model is given in Section 4, where we will show that our model is free of the
strong coupling problem. In Section 5, we focus on the quantization of our theory using
stochastic quantization. We will show that the theory has a stable vacuum state if λ < 1/3.
Conclusions and discussions are given in the last Section 6.
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2. Anisotropic Theory of Gravity

For an anisotropic theory of gravity as suggested by Hořava, a power-counting
renormalizable action can be constructed by considering the ADM decomposition of the
space-time metric

ds2 = −N2dt2 + gij(dxi − Nidt)(dxj − N jdt) , (2)

where N and Ni are the lapse and shift functions, respectively. The spatial metric gij with
i, j = 1, 2, 3 for (3 + 1)—dimensional spacetimes has a Euclidean signature. For z = 3
theory, a generic action to be power-counting renormalizable is of the form [1,6]

S =
∫

dtd3x
√

gN(
2
κ2LK − κ2LV), (3)

where g denotes the determinant of the spatial metric gij. The kinetic term is given by

LK ≡ OK = KijKij − λK2 = KijGijklKkl , (4)

where Kij is defined by

Kij =
1

2N
(ġij −∇i Nj −∇jNi), (5)

and K ≡ Ki
i . The symbol Gijkl is the generalized De Witt metric

Gijkl =
1
2
(gikgjl + gil gjk)− λgijgkl , (6)

with λ a dimensionless free parameter.
The potential term in (3), which satisfies both the power-counting renormalizable

condition and foliation-diffeomorphisms is of the form

LV =
6

∑
n=2

Dn(Λ, gij, Rij,∇iRjk, · · · ) , (7)

where Dn(n = 2, · · · , 6) denote all possible scalars constructed from Λ, gij, Rij,∇iRjk, · · ·
with the same dimension n and spatial parity. In particular, D2 is of the form −(R− 2Λ) so
as to have a GR limit. A possible term of D3 is εijk∇iRjk, but it is excluded by spatial parity.
D4 may include terms such as RijRij, ∆R etc. While the only possible term with spatial par-
ity for D5 is εijkRil∇jRl

k. The highest dimension allowed by the renormalizable condition
is 6 and all terms with dimension 6 constitutes D6, which has RijRjkRi

k, ∇iRjk∇iRjk and
R∆R · · · as its ingredients.

Recent progress on Hořava gravity turns out, however, that the action constructed
as (3) does not have a healthy infrared behavior—it suffers from a strong coupling problem
due to the violation of the diffeomorphisms for the full spacetimes. A possible way out
of this difficulty was recently suggested in [6], by introducing the potential a set of terms
which are constructed from a 3-vector

Ei ≡
∂i N
N

.

Explicitly, the extra terms of potential is

δLV = −αEiE i + β(EiE i)2 + γEi∆E i + δEiEjRij + · · · (8)

where α, β, γ, δ are coupling constants and ellipse represents all other possible terms con-
structed from Ei and its covariant derivatives but the following conditions should be
satisfied [6]: (a) power-counting renormalizability, this is equivalent to require that all the
terms should have dimensions no more than 6, (b) spatial parity and, (c) time-reversal
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invariance. Action constructed in this way turns out [6] to be renormalizable by power-
counting and free of strong coupling problem.

So far it seems that we have a good theory of gravity by constructing the gravity
action in the way given above. However, as mentioned in the last section, there are at least
two obvious obstacles that prevent us from the final result: (i) The potential term in the
action (3) has too many terms, and currently we do not have any good reason to believe that
these terms can be determined from a finite number of IR-relevant couplings. Therefore,
the number of free parameters in its current form could be large, and the theory could lack
predictive power. (ii) A well-defined quantized theory of the model constructed in this
way cannot be guaranteed in the sense that the model may have unphysical ground states
(we will show this explicitly in Section 5). Motivated by these considerations, we refine
our model by carefully selecting terms in the action so that the model has a well-defined
quantized theory. Meanwhile, to make the theory have predictive power, it is better to have
as few parameters as possible in the action. Ref. [59] shows that for Hořava gravity, it is
possible to have a physical ground state, and that the detailed balance structure plays an
important role in achieving this. For this reason, we keep the basic structure of Hořava’s
theory, but add terms that contribute to the IR behavior to softly break it. Explicitly, the
action is of the form (we stress here that although more general terms in (8) would be
allowed in the action, only the leading term of the BPS modification, EiE i, is added into
the action. This is based on the following two considerations: (i) The leading term of the
BPS modification (8) is sufficient to cure the IR pathologic behavior as will see below in
Section 4, since in the IR limit EiE i dominates the modification (8); (ii) To make the theory
more powerful in predictive power, the theory should have as few parameters as possible.)

S =
∫

d3xdt
√

gN(
2
κ2 KijGijklKkl −

κ2

8
EijGijklEkl + αEiE i), (9)

where Eij is given by
√

gEij =
δW
δgij

, (10)

with
W = µ1

∫
ω3 + µ2

∫
d3x
√

g(R− 2ΛW) , (11)

where
ω3 = Tr(Γ ∧ dΓ +

2
3

Γ ∧ Γ ∧ Γ) , (12)

and µi(i = 1, 2) is the coupling constant with scaling dimensions [µi]s = i− 1 and [ΛW ]s = 2.
The model (9) is largely simplified and only very limited parameters are needed. It is also
obviously renormalizable by power counting and is free of the strong coupling problem since
the main contribution of δLV in (8) in the IR limit comes from EiE i. Meanwhile, the theory (9),
when a proper choice of parameters are made, can be well quantized at least in the context of
stochastic quantization, as will see below. We will give more details in the following sections.

3. Power-Counting Renormalizable

In this section, we show, in an explicit way, that the extended theory is power-counting
renormalizable. To make the analysis more convenient, one rewrites the action (3) in a
more explicit form

S =
∫

d3xdt
√

gN(
2
κ2 KijGijklKkl −

6

∑
a=2

λaOa) , (13)

where

λ6 ≡
κ2µ2

1
2

, λ5 ≡ −
κ2µ1µ2

2
, λ4 ≡

κ2µ2
2

8
, λ2 ≡

ΛWλ4

3λ− 1
, (14)
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and

O2 = R− 3ΛW − α̂EiE i, O4 = RijRij − 1− 4λ

4(1− 3λ)
R2,

O5 = εijkRil∇jRl
k, O6 = CijCij, (15)

where α̂ ≡ α
λ2

and Cij is the Cotton tensor, defined by

Cij ≡ εikl∇k

(
Rj

l −
1
4

Rδ
j
l

)
. (16)

The scaling dimensions of the coefficients of terms in the action (13) are

[κ2]s = z− 3, [λa]s = z + 3− a, [α̂]s = 0.

In the context of Hořava–Lifshitz gravity, the dynamical critical exponent in the UV
regime is z = 3, implying that OK and O6 are marginal terms and other terms are relevant.
Hence, the theory is renormalizable by power counting. While in the IR regime, where the
dynamical critical exponent is flowed to z = 1, we find only OK and O2 are relevant with
O4 marginal, in this limit, we reach the low-energy effective theory of gravity (up to the
O4 term).

4. IR Behavior

To see the IR behavior of the Hořava theory, we investigate the quadratic Lagrangian
of (13) by introducing the scalar perturbations of the metric. By adopting the same gauge
as the one used in [56], we obtain the scalar perturbations of metric

N = eφ(t,~x), Ni = ∂iB(t,~x), gij = e2ψ(t,~x)δij. (17)

Substituting (17) into the action (13) and integrating by part, we obtain the following
quadratic terms

O(2)
K = 3(1− 3λ)ψ̇2 − 2(1− 3λ)ψ̇∆B + (1− λ)(∆B)2, (18)

O(2)
2 = −4φ∆ψ + 2(∂ψ)2 − 3

2
ΛW(φ + 3ψ)2 + α̂φ∆φ, (19)

O(2)
4 =

2(λ− 1)
1− 3λ

ψ∆2ψ, O(2)
5 = O(2)

6 = 0. (20)

It is obvious that the above quadratic Lagrangian reduces to those obtained in [56]
once we set ΛW = 0. Following [56] the momentum constraints can be obtained by varying
the quadratic action with respect to B,

∆B =
3λ− 1
λ− 1

ψ̇. (21)

Similarly, varying the quadratic action with respect to φ we obtain

4∆ψ + 3ΛW(φ + 3ψ)− 2α̂∆φ = 0. (22)

To solve the constraint (22), we assume that α̂ = −2/3, then it yields

φ = −3ψ. (23)
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The action for the extra scalar mode of the theory can be obtained by substituting the
constraints (21) and (23) into the quadratic Lagrangian

S(2) = −
∫

d3xdt

[
4
κ2

1
c2

ψ

ψ̇2 +
2(λ− 1− 2ΛW)λ4

3λ− 1
(∂ψ)2

]
, (24)

where c2
ψ = 1−λ

3λ−1 is the speed of sound for the mode ψ. It is straightforward from (24) that
the dispersion relation of the propagating mode is

ω2 =
(
− κ2c2

ψ
2(λ− 1− 2ΛW)λ4

3λ− 1

)
k2. (25)

From the quadratic action (24), we see that the ghost instability can be avoided by
requiring c2

ψ < 0 (generally speaking, the ghost instability represents a negative energy
density and hence it refers to a wrong sign of the kinetic term [60]. In our case, however,
this is equivalent to the wrong sign of the ψ̇2, since we can show that energy density of (24)
is ρ = − 2

κ2
1

c2
ψ

ψ̇2 (for perfect fluid). The positivity of energy density implies c2
ψ < 0. More

strict analysis is to derive the effective action and show that the propagator does not have
additional ghost poles [61].). This imposes a constraint on λ

3λ− 1
λ− 1

> 0, (26)

implying λ > 1 or λ < 1/3. On the other hand, from the dispersion relation (25), the only
way to avoid gradient instabilities of the propagating mode ψ is

λ− 1− 2ΛW
3λ− 1

> 0, (27)

assuming λ4 = κ2µ2
2/8 > 0. As (26) is satisfied this can be easily fulfilled by requiring

ΛW
3λ− 1

< 0, (28)

which is equivalent to require ΛW < 0 for λ > 1 or ΛW > 0 for λ < 1/3. It should be
noticed that the above analysis does not hold in the case λ = 1. In this limit, all the analysis
should be done from the beginning, that is, set λ = 1 in the action (3) and (4). More detailed
analysis can be found in the literature, for example, [6,8,11,12,14–16].

The above analysis shows that, at least for the quadratic action, the theory is free of
strong coupling problem and exhibits a healthy IR behavior as some conditions are fulfilled.

It is generally believed that the Lorentz invariance violations (LIV) in the gravitational
sector will percolate in the matter sector [62–64]. The Lorentz invariance violation in
the matter sector is well constrained at low energies [65,66]. In the case that the general
relativity (GR) is an IR fixed point of the model, our model is compatible with current
observations at low energies. This is because our model recovers the IR action of the
BPS model at low energy, as shown in the action (9). The IR behavior of the BPS model
is compatible with many current observations, such as binary pulsar [11], gravitational
waves [2,13], and binary black hole [15] . However, if λ does not flow to 1 in the IR, General
Relativity is not recovered at low energies, and the theory reduces to a LIV gravitational
theory, which could be incompatible with current experiments [67]. We leave the full
investigation for future work.

5. Quantization of the Theory

Recently, most works on Hořava’s gravity focus on the IR behavior of the theory
and try to refine the model by removing the pathological behavior of the extra mode, as
mentioned in the last section. However, there is another more fundamental question that
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should be paid more attention, namely, whether the theory can really be quantized in a
consistent and non-perturbative manner? If yes, whether this will put any constraint(s)
on the parameters appearing in the action or not? In this section, we will, following the
work [59], make a detailed analysis of these questions by using the stochastic quantization.

5.1. Brief Review of Stochastic Quantization

In this subsection, we give a brief survey of the stochastic quantization. Generally
speaking, the stochastic quantization can be performed in the following steps: (1) Trans-
forming the action to Euclidean version via an analytic continuation to imaginary time;
(2) Introducing a fictitious time to the system through which the evolution of fields under
random walk can be described. The evolution equation is known as the Langevin equa-
tion; (3) Defining the n-point correlation functions by taking averages over the random
noise field with a Gaussian distribution; (4) Identifying the equal time correlators for the
field with the corresponding quantum Green’s functions as the fictitious time approaches
infinity. For stochastic quantization, the key point is that the system is assumed to be in
equilibrium for a large fictitious time. In other words, the Euclidean action is assumed
to be bounded from below. The most convenient way to see this point is to investigate
the Fokker–Planck equation [68,69] associated with the equations describing the stochastic
dynamic of the system.

As an example, let us consider a free scalar field φ(x). As mentioned, we introduce a
fictitious time τ. Then, the Langevin equation, which describes the evolution of the system
under random motion, is given by

∂ φ(x, τ)

∂τ
= − δSE

δφ
+ η(x, τ), (29)

with SE the Euclidean action

SE[φ] =
∫

ddx
(

1
2
(∂φ)2 +

1
2

m2
0 φ2(x)

)
. (30)

The white Gaussian noise η in (29) satisfies

< η(x, τ) >= 0 < η(x1, τ1)η(x2, τ2) >= 2 δ(τ1 − τ2)δ
d(x1 − x2). (31)

The n-point correlation function is defined as

< φη(x1, τ1) . . . φη(xk, τk) >=

∫
D[η]φη(x1, τ1) . . . φη(xk, τk) exp

[
− 1

4

∫
ddx

∫
dτ η2(τ, x)

]
∫
D[η] exp

[
− 1

4

∫
ddx

∫
dτ η2(τ, x)

] . (32)

Identifying this correlation function with the corresponding quantum Green’s func-
tions as the fictitious time approaches infinity, i.e.,

lim
τ→∞

< φη(x1, τ1) . . . φη(xk, τk) >|τ1=···=τk=τ=< φη(x1) . . . φη(xk) > . (33)

In particular, for the action given by (30), it is easy to show that the equal time
two-point correlation function in phase space is given by

< φ(τ, k)φ(τ, k′) >= (2π)dδd(k + k′)
1

(k2 + m2
0)

(
1− exp

(
−2τ(k2 + m2

0)
))

. (34)

Therefore, the Euclidean two-point function is recovered as τ → ∞.
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On the other hand, the existence of an equilibrium state can be proved or disproved
by studying the corresponding Fokker–Planck equation associated with the Langevin
equation. This is given by

∂P(φ, τ)

∂τ
=

∂

∂φ

(
∂

∂φ
+

∂SE
∂φ

)
P(φ, τ), (35)

where P is the probability density which satisfies the normalization condition∫
dφ P(φ, τ) = 1. (36)

Solving the Fokker–Planck Equation (35) for given SE, one can obtain the probability
density. An equilibrium state of a system is supposed to have a positive and finite P.

5.2. Quantization of BPS Model

Although the extended Hořava gravity [6] succeeds in avoiding the problem of
Hořava’s original scheme, it is not guaranteed that the theory can be quantized in a
consistent way and that it has a well-defined physical ground state. In this subsection, we
point out that the BPS model in its original form may have unphysical ground states since
the candidate ground-state function is not always normalizable.

We start with the BPS action

SBPS =
∫

d3xdt
[

2
κ2LK − κ2(LV + δLV)

]
, (37)

where LK, LV and δLV are given, respectively, by (4), (7) and (8). Performing a wick
rotation t→ iθ, we obtain the Euclidean action of (37), which is denoted by Sbps

E hereafter.
As usual, the Langevin equation of the BPS theory is given by [70–72]ġµν = − 1√

gGµνρσ
∂Sbps

E
∂gρσ

+ ξµν,

Ėi = − 1√
g

δSbps
E

δE i + σi,
(38)

where the dot represents derivative with respect to the fictitious time τ. When applying it
to the ADM parametrization, the Langevin equation then becomes [59] (if we only focus
on the quantum fluctuations of the space part, the stochastic quantization usually applies
only on the Euclidean 3d action W as shown in [73]. As comparison, we consider the
quantum fluctuations of the whole spacetimes due to the fact that the stochastic walks
of the independent fields N and Ni may affect the quantum behavior, as will see below
in (47).) 

Ṅ = − 1√
g

δSbps
E

δN + η,

Ṅi = − 1√
g

δSbps
E

δNi + ζaea
i,

Ėi = − 1√
g

δSbps
E

δE i + σaea
i,

ġI = −G I J∂JS
bps
E + ξAEA

I ,

(39)

where the following notations have been introduced:

gij ≡ gI , G I J ≡ Gijkl , ∂IS
bps
E ≡ 1

√
g

δSbps
E

δgij
.
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In Equation (39), we also have introduced vielbein

ea
ieb

jgij = δab, EA
I EB

JGI J = δAB, (40)

ea
ieb

jδab = gij, EA
I EB

JδAB = G I J , (41)

so that noises η, ζa, σa and ξA are Gaussian and the following relations hold [59]

< η(x, τ) >= 0, < ζa(x, τ) >= 0, < σa(x, τ) >= 0, < ξA(x, τ) >= 0, (42)

< η(x, τ)η(y, τ′) >= 2δ(x− y)δ(τ − τ′), (43)

< ζa(x, τ)ζb(y, τ′) >= 2δabδ(x− y)δ(τ − τ′), (44)

< σa(x, τ)σb(y, τ′) >= 2δabδ(x− y)δ(τ − τ′), (45)

< ξ A(x, τ)ξB(y, τ′) >= 2δABδ(x− y)δ(τ − τ′). (46)

(Here, x stands for Euclidean coordinates (xi, θ).) The correlation functional then can be
defined with respect to η, ζa, σa and ξ A by

< F (N, Ni, Ei, gI) > ∼
∫
D[η]D[ζ]D[σ]D[ξ]F (N, Ni, Ei, gI)

· exp
[
−1

4

∫
dθd3xdτ

√
gN(η2 + ζaζa + σaσa + ξ AξA)

]
, (47)

which is obviously Gaussian as desired.
As mentioned in the last subsection, a convenient way to study whether the Langevin

process (39) really converges to a stationary equilibrium distribution is to explore the
associated Fokker–Planck equation,

∂Q(N, Ni, Ei, gI , τ)

∂τ
= −HFPQ(N, Ni, Ei, gI , τ). (48)

Here, we have introduced a new function Q, which is associated the probability
density through

Q(N, Ni, Ei, gI , τ) ≡ P(N, Ni, Ei, gI , τ)eSE/2, (49)

where the probability density functional is given by

P(N, Ni, Ei, gI , τ) =
exp

[
− 1

4

∫
dθd3xdτ

√
gN(η2 + ζaζa + σaσa + ξAξA)

]
∫
D[η]D[ζ]D[σ]D[ξ] exp

[
− 1

4

∫
dθd3xdτ

√
gN(η2 + ζaζa + σaσa + ξAξA)

] . (50)

The Fokker–Planck HamiltonianHFP in (48) is of the form

HFP = a†a + gijai
†aj + gij ãi

† ãj + G I JAI
†AJ . (51)

Here,

a = iπ +
1
2

1
√

g
δSbps

E
δN

, ai = iπi +
1
2

1
√

g
δSbps

E
δNi

, ãi = iπ̃i +
1
2

1
√

g
δSbps

E
δEi

, AI = iπ I +
1
2

∂ISbps
E , (52)

with π, πi, π̃i and π I , respectively, the conjugate momenta of N, Ni, Ei and gI : π = −i 1√
g

δ
δN ,

πi = −i 1√
g

δ
δNi

, π̃i = −i 1√
g

δ
δEi

, πI = −i∂I . The time independent eigenvalue equation
associated with Equation (48) is

HFPQn(N, Ni, Ei, gI , τ) = EnQn(N, Ni, Ei, gI , τ). (53)

The solutions of Equation (48) lead to the probability density

P(N, Ni, Ei, gI , τ) =
∞

∑
n=0

anQn(N, Ni, Ei, gI)e−Sbps
E /2−Enτ . (54)
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From (54), we show that the theory will approach an equilibrium state Q0(N, Ni, Ei, gI)

= e−Sbps
E /2 for large τ if and only if all En > 0 (n > 0 and with E0 = 0). This is equivalent

to find the condition(s) under which the Fokker–Planck Hamiltonian (51) is non-negative
definite. Following the analysis made in [59], we show that this can be fulfilled by re-
quiring a positive definite De Witt metric G I J , i.e., λ < 1/3. The theory then approaches
an equilibrium

P0(N, Ni, Ei, gI) ≡ lim
τ→∞

P(N, Ni, Ei, gI , τ) = a0e−Sbps
E , (55)

where
a0 =

1∫
D[N]D[Ni]D[Ei]D[gI ]e−Sbps

E (N,Ni ,Ei ,gI)
, (56)

is the normalization constant. Note that the stationary candidate of equilibrium state P0
in (55) is far from a genuine physical ground state. In other words, the normalization
constant a0 in (56) is not guaranteed to be finite. It follows from (56) that the normalizable
ground state is achieved by requiring a positive definite Euclidean action Sbps

E . While

from (37), we see the action Sbps
E is not always positive definite, implying that some

unphysical ground states appear. To cure this problem, more constraints have to be
imposed on the potential terms.

5.3. Stochastic Quantization of Our Model

In this subsection, we would like to propose a possible prescription for removing the
unphysical vacuum state. Inspired by the result of [59], we found a possible way out is to
keep the basic structure of “detailed balance”. However, there are a lot of studies (see [48]
for example) that show that the strict “detailed balance” will lead to a catastrophe of the
theory—the strong coupling problem as mentioned in the previous part of the paper. To
avoid the strong coupling, we have to violate the detailed balance structure. To coordinate
these two apparently incompatible conditions smoothly, on one hand, we softly break the
detailed balance, on the other hand, we keep the basic structure of the detailed balance. This
leads to our extended action (9) of Hořava gravity. This action violates the detailed balance
by introducing an extra term EiE i whose presence cures the strong coupling problem as
analysed in Section 4. Meantime, it keeps the basic structure of detailed balance, which
leads to a cure of the unphysical ground states, as will see below.

To see this explicitly, we write down the Euclidean action of our model (9),

SE =
∫

d3xdτ
√

gN(
2
κ2 KijGijklKkl −

κ2

8
EijGijklEkl + αEiE i) (57)

Repeating the procedures given in the last subsection, we can quantize the theory
using the stochastic quantization, and, similar to the case of BPS theory, we obtain the
following solution of the Fokker–Planck equation

P(N, Ni, Ei, gI , τ) =
∞

∑
n=0

anQn(N, Ni, Ei, gI)e−SE/2−Enτ , (58)

where SE is given by (57). Therefore, the theory will approach an equilibrium state
Q0(N, Ni, Ei, gI) = e−SE/2 for large τ as long as the De Witt metric G I J is positive def-
inite, or equivalently, λ < 1/3. The candidate equilibrium state of the theory is

P0(N, Ni, Ei, gI) ≡ lim
τ→∞

P(N, Ni, Ei, gI , τ) = a0e−SE , (59)

where again

a0 =
1∫

D[N]D[Ni]D[Ei]D[gI ]e−SE(N,Ni ,Ei ,gI)
, (60)
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is the normalization constant. As mentioned in the last subsection, the key to obtain a
stable vacuum state (or physical ground state) is that the Euclidean action in (60) must be
positive definite. In our model, this can be achieved by requiring that both the De Witt
metric and α are positive definite. Explicitly, we rewrite the action (57) as

SE =
∫

d3xdτ
√

gN
[

2
κ2G

I J(KIKJ −
κ4

16
EI EJ) + αgijEiEj

]
, (61)

where EI = ∂IW with W given by (11). Therefore, SE is positive definite for λ < 1/3
and α > 0. In Section 4, we have chosen α = − 2

3 λ2 with λ2 is defined in (14). It is
straightforward to show that the condition to have α > 0 is

ΛW
3λ− 1

< 0.

This is precisely the condition (28) with which the theory is free of the strong coupling
problem. This condition is equivalent to require λ < 1/3 for ΛW > 0. As a consequence,
the state (59) is indeed a physical ground state if λ < 1/3.

6. Conclusions and Discussions

Based on three conditions: (i) power-counting renormalizable, (ii) healthy IR behavior
and (iii) a stable vacuum state, we have constructed a new extension of the Hořava’s
gravity. In some sense, this model is an improvement of the BPS model by imposing an
extra constraint—the condition with which the theory has a stable vacuum —on the theory.
This is achieved by keeping the basic “detailed balance” structure but adding the terms
curing the IR pathologies in the action. There are at least three merits when construct
theories in this way: First, it puts strong constraints on the number of the allowed terms in
the action, hence makes the theory has predictive power. Second, it makes the Euclidean
action of the theory bounded from below when λ < 1/3 is fulfilled. This is a key condition
to have a stable vacuum state for theories when we are performing stochastic quantization
or path integral quantization. Third, it provides a possible way in avoiding the strong
coupling problem at low energies. Indeed, our analyses made in this paper show that
the theory constructed in this way can fulfill all the three conditions mentioned above
assuming the parameter λ satisfies some conditions in different energy scales.

One point deserves further investigation is to check whether our model can really
avoid the strong coupling problem when we expand the Lagrangian to higher order.
Although the present paper shows that the theory exhibits a healthy IR behavior for
the quadratic Lagrangian, this is not guaranteed for a higher order Lagrangian. This is
equivalent to check if there is a new scale other than the Planck scale for suppressing the
higher derivative terms so that these terms become important before the strong coupling
appears [55]. Meanwhile, it is worthy of further study on the Hamiltonian formalism of
our model so as to find the constraint structure of the theory. In addition, it was shown, as
firstly noted in [6] and then proved in [74], that the BPS modification to the Hořava theory
cannot completely reproduce the general relativity in the IR limit, instead, it changes the
theory into the Einstein-aether theory. In addition, in the present work we do not perform
full quantization analysis. Generally speaking, a full analysis is necessary to show that a
theory is reliable or not, just like what is generally done in the classical theory, where a
full perturbation analysis is helpful to show the theory is stable or not [75]. In addition,
full RG flow analysis of the model along [76] is needed to show whether GR is really a
fixed point of the model. In the case that it fails to flow to GR (i.e., if λ does not flow to 1 in
the IR), the model reduces to a LIV gravitational theory, and thus it could be incompatible
with experiments on LIV in the matter sector at low energies [67]. As a last point, it is
also valuable to investigate the possible relation at the quantum level of our model with
models such as the Gravity’s Rainbow [77]. In summary, our model also faces the same
problems. In this sense, our model is incomplete and all the points raised above deserve
further investigation.



Symmetry 2021, 13, 100 12 of 14

Author Contributions: Author F.-W.S. contributed to the literature collection, proposed the main
idea based on these literature, provided the calculations, made the charts and wrote the manuscript.
Author T.Z. provided and checked part of the calculations, made the charts, supplemented some
literature. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant numbers 11975116, and Jiangxi Science Foundation for Distinguished Young Scientists
under grant number 20192BCB23007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [CrossRef]
2. Zhang, T.; Shu, F.W.; Tang, Q.W.; Du, D.H. Constraints on Hořava—Lifshitz gravity from GRB 170817A. Eur. Phys. J. C 2020,
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24. Bandyopadhyay, T.; Debnath, U. Bouncing cosmology for entropy corrected models in Hořava Lifshitz gravity and fractal
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