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Abstract: In this work, we obtain exact solutions and continuous numerical approximations for
mixed problems of coupled systems of diffusion equations with delay. Using the method of
separation of variables, and based on an explicit expression for the solution of the separated vector
initial-value delay problem, we obtain exact infinite series solutions that can be truncated to provide
analytical–numerical solutions with prescribed accuracy in bounded domains. Although usually
implicit in particular applications, the method of separation of variables is deeply correlated with
symmetry ideas.
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a-priori error bounds

1. Introduction

In real-world problems, there are time lags between actions and responses. When these time
delays are much shorter than the scale of observation, and they do not significantly affect the dynamics
of the system, these problems might be satisfactorily modeled using ordinary or partial differential
equations (PDEs). However, there are many situations where the presence of delays can not be safely
ignored, requiring the use of modeling tools such as delay differential equations (DDEs) and partial
delay differential equations (PDDEs) [1,2], including, among others, problems in life sciences [3],
population dynamics [4], and control engineering [5].

For transport phenomena, diffusion, and heat conduction problems, it has been long pointed out
that classical models, derived from Fourier or Fick laws and resulting in parabolic partial differential
equations, implied infinite speed of propagation [6–9], and alternative models including the presence
of delays have been proposed, finding increasing interest and wider areas of applications in recent
years (see [10,11] and references therein).

Exact and analytical–numerical solutions for the generalized diffusion equation with delay,
where a delay term is added to the classical model, have been previously obtained [12,13]. In the
present work, we consider coupled systems of generalized diffusion equations with delay, written in
matrix form as

ut(t, x) = Auxx(t, x) + Buxx(t− τ, x), t > 0, 0 ≤ x ≤ l, (1)
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where u(t, x) ∈ RM; τ > 0 is the delay; and the coefficient matrices A, B ∈ RM×M are, in general,
not simultaneously diagonalizable. We consider mixed problems for these systems, with initial condition

u(t, x) = ϕ(t, x), −τ ≤ t ≤ 0, 0 ≤ x ≤ l, (2)

and boundary conditions
u(t, 0) = u(t, l) = 0, t ≥ −τ. (3)

Exact solutions in the form of infinite series for linear constant coefficients PDEs can be obtained
using the method of separation of variables (MSV). Application of the MSV to particular problems is
usually straightforward, without explicit symmetry ideas, but the MSV itself, and the properties of
special functions appearing in the solutions of some problems, are deeply correlated with symmetry
concepts (see, e.g., [14]).

Truncating the exact infinite series solutions, obtained by applying the MSV, up to a certain term
can provide continuous numerical solutions satisfying a-priori error bounds in bounded domains.
The use of these approaches has proven to be useful for more general PDEs, including time-dependent
PDEs [15,16], strongly coupled problems [17], and also for different types of PDDEs [12,13,18–22].

In the case of PDDEs, application of the MSV results in initial-value problems for DDEs,
and explicit constructive solutions for these problems are required in order to derive computable
analytical–numerical solutions satisfying accuracy prescriptions. One key point in the problem
considered in this work is being able to obtain closed form constructive solutions of the separated
vector delay problem without requiring commutativity of the matrix coefficients. A result of this type
will be obtained in the next section, and, as will be indicated in the final section, it could also pave the
way to address different related problems.

The structure of this paper is as follows. In the next section, an explicit expression for the
initial-value vector delay problem resulting from the application of the MSV to (1)–(3) is obtained.
In Section 4, a formal series solution of problems (1)–(3), resulting from the application of the MSV,
is proved to be an exact classical solution of this problem under certain regularity conditions on the
initial function ϕ(t, x). Next, in Section 4, bounds on the approximation errors from truncating the
infinite series solution to a finite number of terms are given, allowing the construction of continuous
numerical solutions with prescribed accuracy in bounded domains. In the final section, the results are
summarized and discussed.

2. Separated Initial-Value Vector Delay Differential Problem

We apply the MSV to problem (1)–(3) by writing u(t, x) = T(t)X(x), where T(t) ∈ RM and
X(x) ∈ R. Thus, we are led to two separated problems, the spatial scalar boundary problem

X′′(x) + λ2X(x) = 0, 0 ≤ x ≤ l, (4)

X(0) = X(l) = 0, (5)

with solutions Xn(x) = sin(λnx), corresponding to the sequence of eigenvalues λn = nπ
l , n = 1, 2, . . . ;

and the corresponding temporal initial-value vector delay differential problems

T′n(t) + λ2
n(ATn(t) + BTn(t− τ)) = 0, t > 0, (6)

Tn(t) = Bn(t), −τ ≤ t ≤ 0, (7)

where Bn(t) are the Fourier coefficients in the expansion of the initial function ϕ(t, x) in terms of the
eigenfunctions Xn(x), i.e.,

Bn(t) =
2
l

∫ l

0
ϕ(t, x) sin

(nπx
l

)
dx, (8)
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so that

ϕ(t, x) =
∞

∑
n=1

Bn(t) sin
(nπx

l

)
, −τ ≤ t ≤ 0, 0 ≤ x ≤ l. (9)

Then, the formal series

u(t, x) =
∞

∑
n=1

Tn(t) sin
(nπx

l

)
(10)

will be a candidate for the exact solution of problem (1)–(3).
Problems (6) and (7) are of the general form

F′(t) = AF(t) + BF(t− τ), t > 0, (11)

F(t) = ψ(t), −τ ≤ t ≤ 0, (12)

with F(t), ψ(t) ∈ RM and A,B ∈ RM×M.
We consider first the auxiliary matrix problem

G′(t) = AG(t) + BG(t− τ), t > 0, (13)

G(t) = I, −τ ≤ t ≤ 0, (14)

where G(t) ∈ RM×M and I is the identity matrix, whose solution is given in the next lemma.

Lemma 1. Consider problem (13) and (14) with A invertible. Write C = A−1B and let

Q1(t) =
(

eAt − I
)
(I + C), Qk(t) =

∫ t

0
eA(t−s)BQk−1(s)ds, k > 1. (15)

Then, the solution of (13) and (14) in the interval [(m− 1)τ, mτ] is given by

G(t) = I, m = 0, (16)

G(t) = I +
m

∑
k=1

Qk(t− (k− 1)τ), m ≥ 1. (17)

Proof. It is clear that G(t) is a well-defined continuous function, as in each interval [(m− 1)τ, mτ] it is
a sum of continuous functions, and values at the ends of the intervals agree. It is also immediate to
check that the matrix functions Qk(t) defined in (15) satisfy

Q′1(t) = AQ1(t) +A+ B, Q′k(t) = AQk(t) + BQk−1(t), k ≥ 2. (18)

Thus, for t ∈ [0, τ], one has

G′(t) = Q′1(t) = AQ1(t) +A+ B = AG(t) + BG(t− τ). (19)

Moreover, for t ∈ [(m− 1)τ, mτ], with m > 1, one has

G′(t) =
m

∑
k=1

Q′k(t− (k− 1)τ) = AQ1(t) +A+ B +
m

∑
k=2
AQk(t− (k− 1)τ) +

m

∑
k=2
BQk−1(t− τ − (k− 2)τ)

= A
(

I +
m

∑
k=1

Qk(t− (k− 1)τ)

)
+ B

(
I +

m−1

∑
k=1

Qk(t− (k− 1)τ)

)
= AG(t) + BG(t− τ). (20)

The next lemma gives an expression for the solution of problem (11) and (12) in terms of the
function G(t) defined in Lemma 1.



Symmetry 2020, 12, 1560 4 of 12

Lemma 2. Consider problem (11) and (12) with A and I + C invertible. For a differentiable initial function
ψ(t), its solution is given by F(t) = ψ(t), for −τ ≤ t ≤ 0, and, for (m− 1)τ < t ≤ mτ and m ≥ 1, by

F(t) = G(t)(I + C)−1 (Cψ(−τ) + ψ(0)) +
∫ 0

−τ
G(t− τ − s)(I + C)−1Cψ′(s)ds. (21)

Proof. It is clear that F(t) is continuous, as it is defined in terms of continuous functions. It is also
immediate from (20) that F(t) satisfies (11) for t ∈ [(m− 1)τ, mτ] when m > 1. Thus, we only need to
check that (11) is also satisfied for t ∈ [0, τ]. In this case, since G(t− τ − s) = I for s > t− τ, one has

F′(t) = G′(t)(I + C)−1 (Cψ(−τ) + ψ(0)) +
∫ t−τ

−τ
G′(t− τ − s)(I + C)−1Cψ′(s)ds

= (AG(t) + B) (I + C)−1 (Cψ(−τ) + ψ(0)) +
∫ t−τ

−τ
(AG(t− τ − s) + B) (I + C)−1Cψ′(s)ds

= A
(

G(t)(I + C)−1 (Cψ(−τ) + ψ(0)) +
∫ 0

−τ
G(t− τ − s)(I + C)−1Cψ′(s)ds−

∫ 0

t−τ
(I + C)−1Cψ′(s)ds

)
+B(I + C)−1 (Cψ(−τ) + ψ(0)) +

∫ t−τ

−τ
B(I + C)−1Cψ′(s)ds

= AF(t) + Bψ(t− τ) = AF(t) + BF(t− τ). (22)

A more explicit expression for the solution is presented in the next theorem.

Theorem 1. The solution of problem (11) and (12), with conditions as in Lemma 2, is given by F(t) = ψ(t) for
−τ ≤ t ≤ 0, and, for (m− 1)τ < t ≤ mτ and m ≥ 1, by

F(t) = ψ(0) +
m

∑
k=1

Qk(t− (k− 1)τ)(I + C)−1 (Cψ(−τ) + ψ(0))

+
m−1

∑
k=1

∫ 0

−τ
Qk(t− (k− 1)τ − s)(I + C)−1Cψ′(s)ds

+
∫ t−mτ

−τ
Qm(t− (m− 1)τ − s)(I + C)−1Cψ′(s)ds, (23)

where the second summation is assumed to be empty for m = 1.

Proof. It is immediate by substituting in (21) the expression of G(t) given in (17), taking into account
that t− τ − s > (m− 1)τ ⇐⇒ s < t−mτ, and cancelling out some terms.

Remark 1. Although the matrix functions Qk(t) have been defined in (15) recursively, they can be written
explicitly as iterated integrals,

Qk(t) =
∫ t

0
eA(t−sk)Bdsk

∫ sk

0
eA(sk−sk−1)Bdsk−1...

∫ s2

0
eA(s2−s1)(A+ B)ds1. (24)

When A and B commute, it is not difficult to check that they are given by the following compact expression
without integrals,

Qk(t) =

(
eAt

k−1

∑
j=0

(−At)j

j!
− I

)
(−C)k−1(I + C), k ≥ 1. (25)

In particular, if A and B are diagonal, or with the appropriate change of variables when they are
simultaneously diagonalizable, problems (11) and (12) consist of M independent scalar problems, and it can be
checked that the expressions given by Theorem 1 for each component of F(t) agree with those given in [12,13] for
the corresponding scalar problems.
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Remark 2. In scalar problems, diffusion coefficients are always positive, so it is common to assume in diffusion
vector problems that the corresponding matrix coefficients are positive defined (see, e.g., [23]). In the next
sections, where exact and numerical solutions for the coupled diffusion problems (1) and (3) are derived, we will
assume the weaker condition of A being positive stable, i.e., having eigenvalues with positive real part, similar to
the condition assumed in [16] for diffusion problems without delay. In this section, in Lemma 2 and Theorem 1,
we have only required A to be invertible, and similarly for I + C, or equivalently A + B, which would be
the coefficient when τ = 0. As will be indicated in the last section, the solution of (11) and (12) given in
Theorem 1 might find application in different problems, not necessarily of diffusion type, so that only conditions
guaranteeing the obtention of compact, closed form solutions of (11) and (12) have been assumed.

When A is singular, matrices Qk(t) can still be defined, by replacing the definition of Q1(t) in (15) with
the nonintegrated form

Q1(t) =
∫ t

0
eA(t−s)(A+ B)ds. (26)

However, even in the much simpler case of commuting coefficients, infinite sums seem unavoidable, as the
expression corresponding to (25) would be

Qk(t) = eAt
∞

∑
r=0

(−A)r tr+k

(r + k)!
Bk−1(A+ B), k ≥ 1. (27)

3. Exact Infinite Series Solution

The solution of the general initial-value vector DDE problem given in Theorem 1 provides
expressions for the functions Tn(t) in (10), by taking in (11) and (12) A = −λ2

n A, B = −λ2
nB,

and ψ(t) = Bn(t). The corresponding functions Qk(t) for each of these problems will be denoted
Qn

k (t). Writing p = π/l, the candidate series solution of problem (1)–(3) for t ∈ [(m− 1)τ, mτ] can be
written as

u(t, x) = ϕ(0, x) + u1(t, x) + u2(t, x) + u3(t, x), (28)

where

u1(t, x) =
∞

∑
n=1

m

∑
k=1

Qn
k (t− (k− 1)τ)(I + C)−1 (CBn(−τ) + Bn(0)) sin(npx), (29)

u2(t, x) =
∞

∑
n=1

∫ 0

−τ

m−1

∑
k=1

Qn
k (t− (k− 1)τ − s)(I + C)−1CB′n(s) sin(npx)ds, (30)

u3(t, x) =
∞

∑
n=1

∫ t−mτ

−τ
Qn

m(t− (m− 1)τ − s)(I + C)−1CB′n(s) sin(npx)ds. (31)

In the next theorem, we show that under a condition on the eigenvalues of A and for sufficiently
regular initial functions, the three series in (29)–(31) converge uniformly and can be differentiated
termwise with respect to t and twice with respect to x, and the candidate series (29) is a classical solution
of problem (1)–(3). Specifically, we will assume the following conditions on the initial function ϕ(t, x):

ϕ(·, x) is continuously differentiable for each x,

ϕ(t, ·), ϕt(t, ·) are twice continuously differentiable for each t, (32)

ϕxx(t, x) is continuous in t and of bounded variation in x.

Theorem 2. Consider problem (1)–(3). Assume that every eigenvalue of A has positive real part, and that
(I + C) is invertible, where C = A−1B and I is the identity matrix. For any initial function ϕ(t, x) satisfying
the conditions given in (32), the function u(t, x) defined in (29) is continuous in [0, ∞)× [0, l], its derivatives
ut(t, x) and uxx(t, x) are continuous in (0, ∞)× (0, l), and it is an exact solution of problem (1)–(3).
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Before proving this theorem, we present in the next lemmas bounds for the norms of matrix
exponentials and of the functions Qn

k (t). In what follows, ‖ ‖ denotes a vector norm or a compatible
norm for matrices, and we will assume that the conditions of Theorem 2 hold.

Lemma 3. For a matrix A, let σ(A) be the set of its eigenvalues, and α(A) = max{<(z)|z ∈ σ(A)}.
Then, for each ν > α(A), we can find a constant Kν such that

‖eAt‖ ≤ Kνeνt, ∀t ≥ 0. (33)

Proof. Consider the Jordan decomposition A = PJP−1, so that J = D + E, where D is diagonal,
with eigenvalues of A, and E is an upper triangular nilpotent matrix. Letting P(t) = ∑m−1

k=0 ‖Et‖k/k!,
one has ([24], p. 396) that ‖eAt‖ ≤ eσ(A)tP(t). Thus, for any ν > α(A), there is T > 0 such that
etα(A)P(t) ≤ eνt for t > T, and we can take Kν = max{max{P(t)|t ∈ [0, T]}, 1}.

Lemma 4. Let α = ‖A‖ and γ = ‖C‖. Fix ν > 0 such that −ν > α(−A), and write K for a constant
K−ν > 1 satisfying the condition of Lemma 3. Then, Qn

k (t) can be written in the form

Qn
k (t) = (−1)kCk−1(I + C) + Sn

k (t), (34)

where the matrices Sn
k (t) admit the bounds

‖Sn
k (t)‖ ≤ (1 + γ)γk−1Kke−νn2 p2t

k−1

∑
j=0

(n2 p2αt)j

j!
. (35)

Proof. We proceed by induction on k. For k = 1, one has Qn
1 (t) = (e−n2 p2 At − I)(I + C), and we can

write Qn
1 (t) = −(I + C) + Sn

1 (t), where Sn
1 (t) = e−n2 p2 At(I + C), so that

‖Sn
k (t)‖ ≤ ‖(I + C)‖‖e−n2 p2 At‖ ≤ (1 + γ)Ke−νn2 p2t, (36)

which is of the form (35).
For k > 1, from (15) and assuming the induction hypothesis, one has

Qn
k (t) = −

∫ t

0
e−n2 p2 A(t−s)n2 p2 AC

(
(−1)k−1Ck−2(I + C) + Sn

k−1(s)
)

ds

= (−1)kCk−1(I + C) + Sn
k (t), (37)

where

Sn
k (t) = e−n2 p2 At(−1)k−1Ck−1(I + C)−

∫ t

0
e−n2 p2 A(t−s)n2 p2 ACSn

k−1(s)ds. (38)

Thus,

‖Sn
k (t)‖ ≤ Ke−n2 p2νtγk−1(1 + γ) +

∫ t

0
Ke−n2 p2ν(t−s)n2 p2αγ(1 + γ)γk−2Kk−1e−νn2 p2s

k−2

∑
j=0

(n2 p2αs)j

j!
ds

≤ (1 + γ)γk−1Kke−νn2 p2t
k−1

∑
j=0

(n2 p2αt)j

j!
. (39)

We can now proceed to the proof of Theorem 2. We note that the conditions (3) assumed for the
initial function ϕ(t, x) ensure convergence of the Fourier expansions of ϕt(t, x) and ϕxx(t, x).
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Proof of Theorem 2. From Lemma 2, since ν > 0, it follows that for each k and any finite positive t,
the functions Qn

k (t) are bounded. In addition, for each t there is N such that Qn
k (t) is decreasing for

n > N.
Consider now the series obtained by termwise differentiating u(t, x), as given in (28) and (29)–(31),

with respect to t. We denote this series ut(t, x), as it will be proved that it converges uniformly in
(0, ∞)× (0, l). For each of the subseries in (29)–(31) and for each k, and letting aside some constant
terms, one gets infinite series of the form

∞

∑
n=1
−n2 p2Qn

k (t− (k− 1)τ)(I + C)−1 (CBn(−τ) + Bn(0)) sin(npx) (40)

for u1(t, x), and of the form

∞

∑
n=1
−n2 p2Qn

k (t− (k− 1)τ − s)(I + C)−1CB′n(s) sin(npx)ds (41)

for u2(t, x) and u3(t, x). From the conditions assumed in (3) for the initial function ϕ(t, x), it follows
the uniform converge and continuity of the series

(I + C)−1

(
C

∞

∑
n=1
−n2 p2Bn(−τ) sin(npx) +

∞

∑
n=1
−n2 p2Bn(0) sin(npx)

)
= (I + C)−1 (Cϕxx(−τ, x) + ϕxx(0, x)) (42)

and

(I + C)−1C
∞

∑
n=1
−n2 p2B′n(s) sin(npx)ds = (I + C)−1Cϕtxx(s, x) (43)

for x ∈ (0, l). Hence, since Qn
k (t) are bounded and decreasing for n large, it follows that ut(t, x)

converges uniformly in [(m− 1)τ, mτ]× (0, l). It is immediate to check the continuity at the connecting
intervals for m > 1. For m = 1, at t = 0 it is easy to check the continuity of u(t, x), but in general this is
not the case for ut(t, x), unless a special condition is required on the initial function ϕ(t, x).

Similar arguments apply for the series resulting from termwise twice differentiating u(t, x) with
respect to x, since they have the same form as those previously discussed for ut(t, x).

4. Continuous Numerical Solutions

In this section, we will obtain bounds on the errors of continuous numerical solutions of
problem (1)–(3), computed by truncating to N terms the exact series solution defined in Theorem 2.

Using the decomposition of Qn
k (t) given in (34), it is immediate that the series in (29)–(31) can be

written in the form

u1(t, x) =
m

∑
k=1

(−1)kCk−1 (Cϕ(−τ, x) + ϕ(0, x)) + S1(t, x), (44)

u2(t, x) =
m−1

∑
k=1

(−1)kCk(ϕ(0, x)− ϕ(−τ, x)) + S2(t, x), (45)

u3(t, x) = (−1)mCm(ϕ(t−mτ, x)− ϕ(−τ, x)) + S3(t, x), (46)

where Si(t, x), i = 1, 2, 3, are the respective infinite sums in (29)–(31) corresponding to the
terms Sn

k (t). Hence, the errors resulting from approximating u(t, x) by using the expressions for
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ui(t, x), i=1,2,3, given in (44)–(46) but computing only a finite number of terms, N, in the infinite sums
Si(t, x) i = 1, 2, 3, are

RN
1 =

∞

∑
n=N+1

m

∑
k=1

Sn
k (t− (k− 1)τ)(I + C)−1 (CBn(−τ) + Bn(0)) sin(npx), (47)

RN
2 =

∞

∑
n=N+1

∫ 0

−τ

m−1

∑
k=1

Sn
k (t− (k− 1)τ − s)(I + C)−1CB′n(s) sin(npx)ds, (48)

RN
3 =

∞

∑
n=N+1

∫ t−mτ

−τ
Sn

m(t− (m− 1)τ − s)(I + C)−1CB′n(s) sin(npx)ds. (49)

To bound these errors, we will use bounds for Sn
k (t) derived from (35), in terms of incomplete

gamma functions ([25], p. 174). Letting µk = max{(α/ν)j, j = 0, . . . , k− 1}, from (35) it follows that

‖Sn
k (t)‖ ≤ (1 + γ)γk−1Kkµke−νn2 p2t

k−1

∑
j=0

(n2 p2νt)j

j!
= (1 + γ)γk−1Kkµk

Γ(k, n2 p2νt)
Γ(k)

. (50)

We note that, from the conditions (3) assumed for the initial function ϕ(t, x), the Fourier
coefficients of ϕ(t, x) and ϕt(t, x) decay as O(n−2), so we can find constants H and H1 such that,
for s ∈ [−τ, 0],

‖Bn(s)‖ ≤
H
n2 , ‖B′n(s)‖ ≤

H1

n2 . (51)

Hence, writing γ1 = ‖(I + C)−1‖, one has

‖RN
1 ‖ ≤ γ1(1 + γ)2H

m

∑
k=1

γk−1Kkµk
Γ(k)

∞

∑
n=N+1

Γ(k, n2 p2ν(t− (k− 1)τ)
n2 ,

≤ γ1(1 + γ)2H
m

∑
k=1

γk−1Kkµk
Γ(k)

Γ(k, (N + 1)2 p2ν(t− (k− 1)τ)
N

, (52)

since Γ(k, v) is decreasing with respect to v and ∑∞
n=N+1 1/n2 ≤ 1/N.

Similarly, for RN
2 , one has

‖RN
2 ‖ ≤ γ1(1 + γ)H1

m−1

∑
k=1

γkKkµk
Γ(k)

∞

∑
n=N+1

∫ 0

−τ

Γ(k, n2 p2ν(t− (k− 1)τ − s)
n2 ds,

≤ γ1(1 + γ)H1τ
m−1

∑
k=1

γkKkµk
Γ(k)

Γ(k, (N + 1)2 p2ν(t− kτ)

N
, (53)

since Γ(k, n2 p2ν(t− (k− 1)τ − s) ≤ Γ(k, n2 p2ν(t− kτ) for s ∈ [−τ, 0].
Finally, for RN

3 , one has

‖RN
3 ‖ ≤ γ1(1 + γ)H1

γmKmµm

Γ(m)

∞

∑
n=N+1

∫ t−mτ

−τ

Γ(k, n2 p2ν(t− (m− 1)τ − s)
n2 ds, (54)

and with the change of variable v = n2 p2ν(t−mτ − s), one gets

‖RN
3 ‖ ≤ γ1(1 + γ)H1

γmKmµm

Γ(m)

∞

∑
n=N+1

1
n4 p2ν

∫ n2 p2ν(t−(m−1)τ)

0
Γ(m, v + n2 p2ντ)dv,

≤ γ1(1 + γ)H1
γmKmµm

Γ(m)

∞

∑
n=N+1

1
n4 p2ν

∫ ∞

0
Γ(m, v)dv ≤ γ1(1 + γ)H1

mγmKmµm

3p2νN3 , (55)
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since
∫ ∞

0 Γ(m, v)dv = Γ(m + 1) and ∑∞
n=N+1 1/n4 ≤ 1/(3N3).

Therefore, we have proved the following theorem.

Theorem 3. Consider problem (1)–(3), let u(t, x) be the exact series solution given in Theorem 2, and let
uN(t, x) be the approximation obtained when the infinite series’ in (44)–(46) are replaced by the corresponding
partial sums with N terms. Then, for (t, x) ∈ [(m− 1)τ, mτ]× [0, l],

‖uN(t, x)− u(t, x)‖ ≤
m

∑
k=1

γ1(1 + γ)2Hγk−1Kkµk
Γ(k)

Γ(k, (N + 1)2 p2ν(t− (k− 1)τ))
N

+
m−1

∑
k=1

γ1(1 + γ)H1τγkKkµk
Γ(k)

Γ(k, (N + 1)2 p2ν(t− kτ))

N
+

γ1(1 + γ)H1mγmKmµm

3p2νN3 . (56)

Consequently, for any δ > 0 and given a prescribed a-priori error ε > 0, there is N such that ‖uN(t, x)−
u(t, x)‖ ≤ ε for (t, x) ∈ [(m− 1)τ + δ, mτ]× [0, l].

Next, we present an example showing the practical feasibility of computing the numerical
solutions uN(t, x) and the error bounds given in Theorem 3. In this example, we used the infinity
norm; computations were performed using Maple R©, and graphics were prepared using Matlab R©.

Example 1. Figure 1 shows the numerical solutions computed with N = 20 for problem (1)–(3) with parameters
τ = 1, l = 1, and

A =

(
2 1
1 3

)
, B =

(
1 0
1 −1

)
, ϕ(t, x) =

(
(t + 1)x(x2 − 1)
e−(t+1)x(x2 − 1)

)
.

(a) (b)

Figure 1. Numerical solutions computed with N = 20 for Example 1. (a) First component.
(b) Second component.

In the next figure (Figure 2), total error bounds and individual contributions to the error bounds
by the three terms in (56) are presented.

In this example, the Fourier coefficients of the initial function satisfy more stringent conditions
than those assumed in (51), since one has

Bn(s) =
(

12(−1)n(s+1)
n3π3

12(−1)ne−(s+1)

n3π3

)T
, B′n(s) =

(
12(−1)n

n3π3
12(−1)n+1e−(s+1)

n3π3

)T
. (57)

Thus, taking H = H1 = 12/π3, one has ‖Bn(s)‖ ≤ H/n3 and ‖B′n(s)‖ ≤ H1/n3. Hence,
the bounds given in (56) can be refined for this example by substituting N in the denominator of the
first two terms by 2N2, and 3N3 in the denominator of the third term by 4N4.



Symmetry 2020, 12, 1560 10 of 12

For the rest of the constants in (56), it is straightforward to compute that γ = 1 and γ1 = 5.
Since α(−A) = −1, letting ν = 0.9 we can choose K = 1.1, and also, since α = 3, one gets µk =

(3/0.9)k−1, for k = 1 . . . m.
As seen in Figure 2, the order of the global error bound is essentially determined by the third

term in (56).

(a) (b)

Figure 2. Maximum error bounds (log-scale) for numerical solutions of Example 1 for
(t, x) ∈ [(m− 1)τ + δ, mτ]× [0, l], with δ = 0.1, in terms of N. (a) Error bounds for different m values.
(b) Individual contributions to total error bound, for m = 4, of the first (s1), second (s2), and third term
(s3) in (56), with different scales for the first two terms (left axis) and the third term (right axis).

5. Conclusions

In this work, we have presented exact and continuous numerical solutions for coupled systems of
diffusion equations with delay, extending previous results for scalar problems [12,13]. These solutions
are expressed in terms of the parameters of the problem, and may be used to analyze how the system
behavior depends on those parameters.

As shown in Theorem 3, the analytic–numerical solutions proposed in this work may provide
numerical approximations with a-priori prescribed errors in bounded domains. The error bounds
given in Theorem 3 for the first two terms, RN

1 and RN
2 , depending on gamma incomplete functions, are

essentially exponentially decaying with N; and the third term, RN
3 , is O(N−3). As was shown in [13],

the rate of convergence can also be made exponential for this last term, by using suitable polynomial
approximations to the initial function. In any case, the error bounds guaranteed by Theorem 3 are
usually far from being sharp, and convergence can be much faster, especially for problems with highly
regular initial functions. Additionally, when the initial function consists of a finite combination of the
eigenfunctions sin(npx), the exact solution defined in Theorem 2 reduces to a finite sum.

The expression given in Theorem 1 for the solution of a general initial value vector DDE problem
may find applications in a wide variety of problems, beyond its use in this work. For instance,
it would provide the basis to deal with related problems for coupled system with delay, as the
type of reaction–diffusion equations with delay considered in [13]. More generally, since the matrix
coefficients are not required to commute, this expression can be applied to obtain constructive solutions
for problems involving scalar higher-order linear DDE, as they can be converted into a first-order
system of the type considered in Theorem 1. The exact solution given in Theorem 1 could also provide
the basis for extending previous works dealing with random scalar delay problems [26,27] to general
vector delay problems, or with the construction of numerical schemes based on exact solutions [28–30].
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