
symmetryS S

Article

Explicit Formulas for All Scator Holomorphic
Functions in the (1+2)-Dimensional Case
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Abstract: Scators form a vector space endowed with a non-distributive product, in the hyperbolic
case, have physical applications related to some deformations of special relativity (breaking the
Lorentz symmetry) while the elliptic case leads to new examples of hypercomplex numbers and
related notions of holomorphicity. Until now, only a few particular cases of scator holomorphic
functions have been found. In this paper we obtain all solutions of the generalized Cauchy–Riemann
system which describes analogues of holomorphic functions in the (1 + 2)-dimensional scator space.
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1. Introduction

Scators, as defined by Manuel Fernández-Guasti and Felipe Zaldívar [1], form a linear space with
a specific multiplicative structure. In fact, we have two different structures: elliptic and hyperbolic.

Namely, in the elliptic case, the scator product of scators
o
a := (a0; a1, . . . , an) and

o
b := (b0; b1, . . . , bn)

is given by
o
u := (u0; u1, . . . , un), where

u0 = a0b0

n

∏
k=1

(
1− akbk

a0b0

)
,

uk =
akb0 + bka0

a0b0 − akbk
u0 (k = 1, . . . , n) ,

(1)

provided that a0 6= 0 and b0 6= 0 (more general case is presented and discussed in [1]). In the hyperbolic
case, the formula is very similar (all minuses are replaced by pluses). In principle, one can consider
mixed cases as well. The scator product is non-distributive, although a distributive approach has been
proposed recently [2,3]. The so-called restricted space (defined by a2

0 > a2
k for k = 1, . . . , n) is an

abelian group with respect to the scator product.
In the hyperbolic case, scators have potential physical applications related to generalizations of

the special theory of relativity (breaking the Lorentz symmetry) [4,5]. The elliptic case is an interesting
new example of (non-distributive) hypercomplex numbers [6].

Any hypercomplex numbers, like quaternions or Clifford numbers, lead to a natural question of
defining and finding anlogues of holomorphic functions. In this paper, following [7], we focus
on the most straightforward definition of holomorphicity, i.e., existence, at any point, of a
direction-independent derivative. Fernández-Guasti derived a system of partial differential equations
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which assures scator differentiabiliy of this kind [7]. They can be considered as a generalization of
Cauchy–Riemann equations of standard complex analysis:

∂u0

∂x0
=

∂uj

∂xj
,

∂uj

∂x0
= −∂u0

∂xj
,

∂u0

∂xj

∂u0

∂xm
= −

∂uj

∂xj

∂uj

∂xm

(2)

for all m 6= j, where m and j take values from 1 to n. Note that the last (nonlinear) equations
appear only for n > 1. The generalized Cauchy–Riemann Equation (2) consists of a set of linear
equations (n copies of the Cauchy–Riemann equations, in fact) and a set of nonlinear equations
(for n > 1). The latter is the main difference with the standard case of complex holomorphic functions
(i.e., the case n = 1).

In this paper, we are going to solve the open problem of finding all solutions of the system (4) in
the case n = 2. Until now only two particular solutions were reported: four-parameter family of linear
affine functions [7] and components exponential function [8].

2. Generalized Cauchy–Riemann System in the Case n = 2

In this paper, we confine ourselves to the elliptic scator space of dimension 1 + 2. We introduce
the notation:

x0 = x, x1 = y, x2 = z, u0 = u, u1 = v, u2 = w. (3)

In the new notation, the generalized Cauchy–Riemann system (2) takes the following form

ux = vy, uy = −vx,

ux = wz, uz = −wx,

uyuz = −vyvz = −wywz ,

(4)

where here and throughout the rest of this paper the subscripts x, y, z mean partial derivative with
respect to the corresponding variable.

Theorem 1. The full set of solutions to the generalized Cauchy–Riemann Equation (4) consists of three families.

• Components exponential functions

u = q0 + p0ek0x cos(k0y + k1) cos(k0z + k2) ,

v = q1 + p0ek0x sin(k0y + k1) cos(k0z + k2) ,

w = q2 + p0ek0x cos(k0y + k1) sin(k0z + k2) .

(5)

• Linear functions
u = b0 + a0(x + f0y + g0z) ,

v = b1 + a0(y− f0x− f0g0z) ,

w = b2 + a0(z− g0x− f0g0y) .

(6)

• Exceptional solutions

u = c0y + c1 , v = −c0x + V1(z) , w = W1(z) ,

u = d0z + d1 , v = V2(y) , w = −d0x + W2(z) ,
(7)
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where q0, q1, q2, p0, k0, k1, k2, b0, b1, b2, a0, f0, g0, c0, c1, d0 and d1 are real constants (p0 6= 0, k0 6= 0),
and V1, V2, W1 and W2 are arbitrary functions of one variable.

The above set of solutions is not very rich, but one has to remember that in the case of quaternionic
analysis the analogous set is much narrower and consists only of linear affine functions [9,10].
Therefore the quaternionic analysis, like the Clifford analysis, has to use other definitions of
holomorphicity, see, e.g., [11].

In next sections, we present the proof of Theorem 1, by straightforward derivation of all solutions.
It is convenient to divide the computation into three cases related to vanishing of the first and second
x-derivatives of u.

3. Components Exponential Functions

This is the case characterized by

ux 6≡ 0 and uxx 6≡ 0 . (8)

We are going to express the variables v and w in terms of u and its derivatives:

vx = −uy, vy = ux, vz = uyuz/ux ,

wx = −uz, wz = ux , wy = −uyuz/ux.
(9)

Necessary conditions for the existence of v and w (provided that u is known) are given by:

vxy = vyx , vxz = vzx , vyz = vzy ,
wxy = wyx , wxz = wzx , wyz = wzy .

(10)

Rewriting compatibility conditions (10) in terms of u (and its derivatives), we obtain:

uxx + uyy = 0 ,
uyz − (uyuz/ux)x = 0 ,
uxz + (uyuz/ux)y = 0 ,
uzy − (uyuz/ux)x = 0 ,
uzz + uxx = 0 ,
uxy + (uyuz/ux)z = 0 .

(11)

In other words, removing a redundant equation, we have:

uyy = uzz = −uxx ,
uyzu2

x = uxyuxuz + uxzuxuy − uyuzuxx ,
uxzu2

x = −uyyuxuz − uyzuxuy + uyuzuxy ,
uxyu2

x = −uyzuxuz − uzzuxuy + uyuzuxz ,

(12)

or, in the matrix form: uxuz uxuy −u2
x

−uyuz u2
x uxuy

u2
x −uyuz uxuz


 uxy

uxz

uyz

 = uxx

 uyuz

uxuz

uxuy

 , (13)



Symmetry 2020, 12, 1550 4 of 6

where uyy and uzz were replaced by −uxx. This equation can be solved by inverting the matrix on the
left-hand side: uxy

uxz

uyz

 =
uxx

u2
x(u2

x + u2
y)(u2

x + u2
z)

 uxuz(u2
x + u2

y) 0 u2
x(u2

x + u2
y)

uxuy(u2
x + u2

z) u2
x(u2

x + u2
z) 0

u2
yu2

z − u4
x uxuy(u2

x + u2
z) uxuz(u2

x + u2
y)


 uyuz

uxuz

uxuy

 . (14)

Now, the right-hand side turns out to be surprisingly simple and Equation (14) is equivalent to
the following system of three equations:

uxy =
uy

ux
uxx , uxz =

uz

ux
uxx , uyz =

uyuz

u2
x

uxx . (15)

The first two equations can be expressed as conservation laws and, then, easily solved:

d
dx

(
uy

ux

)
= 0 =⇒ uy = f (y, z)ux ,

d
dx

(
uz

ux

)
= 0 =⇒ uz = g(y, z)ux ,

(16)

where f and g are some functions of two variables. Substituting (16) into Equation (15) we obtain

uxy = f uxx , uxz = guxx , uyz = f guxx . (17)

Differentiating (16) with respect to z and y, respectively, we get

uyz = fzux + f uxz , uzy = gyux + guxy . (18)

Then, using (17), we obtain fz = 0 and gy = 0, i.e.,

f = f (y) , g = g(z) . (19)

Now, differentiating (16) with respect to y and z, respectively, we get

fyux + f 2uxx = −uxx

gzux + g2uxx = −uxx,
(20)

where we took into account uyy = −uxx and uzz = −uxx. Therefore:

fy

1 + f 2 =
gz

1 + g2 = −uxx

ux
. (21)

Thus, by virtue of (19), we have

fy

1 + f 2 = −k0 ,
gz

1 + g2 = −k0 , uxx = k0ux , (22)

where k0 = const. In this section, due to the condition (8), we confine ourselves to k0 6= 0. Then

k0 6= 0 =⇒ u = p(y, z)ek0x + q(y, z) ,

f = − tan(k0y + k1) , g = − tan(k0z + k2) ,
(23)
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where p and q are functions of two variables and k1 and k2 are constants. Then, Equation (16) imply

qy = qz = 0 =⇒ q = q0 = const ,

py = k0 p f , pz = k0 pg .
(24)

The last two equations can be solved, yielding

p = p0 cos(k0y + k1) cos(k0z + k2) , (25)

where p0 = const. Hence, u is proved to be of the form (5). Note that now the equations from the first
line of (12) are identically satisfied. Finally, the system (9) takes the form

vx = k0ek0x sin(k0y + k1) cos(k0z + k2) , vy = wz = k0ek0x cos(k0y + k1) cos(k0z + k2) ,

wx = k0ek0x cos(k0y + k1) sin(k0z + k2) , vz = wy = k0ek0x sin(k0y + k1) sin(k0z + k2) ,
(26)

and its only solution is given by the last two equations of (5). Special case k1 = k2 = q0 = q1 = q2 = 0 and
k0 = p0 = 1, known as components exponential function, was shown to be differentiable (i.e., scator
holomorphic) earlier, see [8], Lemma 2.

4. Linear Functions

Linear functions satisfying (4) can be obtained directly, by substituting a linear ansatz and
computing its coefficients. However, in order to obtain all solutions to (4), we follow the pattern of the
previous section, now assuming:

ux 6≡ 0 , and uxx 6≡ 0 . (27)

Then, the third equation of (22) implies k0 = 0.

k0 = 0 =⇒ uxx = 0 , uyy = 0 , uzz = 0 =⇒ u = b0 + a1x + a2y + a3z , (28)

where a1, a2, a3 and b0 are real constants (a1 6= 0). Moreover, due to (22), f = f0 = const and
g = g0 = const, and from (16) we have

a1 = f0a0 , a2 = g0a0 . (29)

Substituting the above formula for u, we reduce the system (4) into

vx = − f0a0 , vy = a0 , vz = − f0g0a0 ,
wx = −g0a0 , wy = − f0g0a0 , wz = a0 .

(30)

Hence
v = b1 − f0a0x + a0y− f0g0a0z ,
w = b2 − g0a0x− f0g0a0y + a0z ,

(31)

where b1 and b2 are real constants. Special case f0 = g0 = 0 (linear affine functions) was shown to be
differentiable in [7], Lemma 4.1.

5. Exceptional Solutions

The last case corresponds to ux = 0. Then Equation (4) yields, immediately, vy = wz = 0,
and, the last equation reads uyuz = 0. Thus we have two distinct subcases: uy = 0 (i.e., u = u(z)) and
uz = 0 (i.e., u = u(y)).

1. u = u(y), v = v(x, z), w = w(x, y) .
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Then wx = 0 and uy = −vx. Hence uy = c0 = const and we get the following solution:

u = c0y + c1 , v = −c0x + V1(z) , w = W1(y) , (32)

where c0 and c1 are constant and V1 = V1(z) and W1 = W1(y) are arbitrary functions of one
variable.

2. u = u(z), v = v(x, z), w = w(x, y) .

Then, wx = −uz and vx = 0. Hence uz = d0 and, as a result, we get the solution:

u = d0z + d1 , v = V2(y) , w = −d0x + W2(z) , (33)

where d0 and d1 are onstant and V2 = V2(y) and W2 = W2(z) are arbitrary functions of one
variable.

Finally, we derived all solutions to the system (4) and thus Theorem 1 is proved.
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