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Abstract: Fuzzy goal programming (FGP) is applied to solve fuzzy multi-objective optimization
problems. In FGP, the weights are associated with fuzzy goals for the preference among them.
However, the hierarchy within the fuzzy goals depends on several uncertain criteria, decided
by experts, so the preference relations are not always easy to associate with weight. Therefore,
the preference relations are provided by the decision-makers in terms of linguistic relationships, i.e.,
goal A is slightly or moderately or significantly more important than goal B. Due to the vagueness
and ambiguity associated with the linguistic preference relations, intuitionistic fuzzy sets (IFSs) are
most efficient and suitable to handle them. Thus, in this paper, a new fuzzy goal programming with
intuitionistic fuzzy preference relations (FGP-IFPR) approach is proposed. In the proposed FGP-IFPR
model, an achievement function has been developed via the convex combination of the sum of
individual grades of fuzzy objectives and amount of the score function of IFPRs among the fuzzy
goals. As an extension, we presented the linear and non-linear, namely, exponential and hyperbolic
functions for the intuitionistic fuzzy preference relations (IFPRs). A study has been made to compare
and analyze the three FGP-IFPR models with intuitionistic fuzzy linear, exponential, and hyperbolic
membership and non-membership functions. For solving all three FGP-IFPR models, the solution
approach is developed that established the corresponding crisp formulations, and the optimal
solution are obtained. The validations of the proposed FGP-IFPR models have been presented with
an experimental investigation of a numerical problem and a banking financial statement problem.
A newly developed distance measure is applied to compare the efficiency of proposed models.
The minimum value of the distance function represents a better and efficient model. Finally, it
has been found that for the first illustrative problem considered, the exponential FGP-IFPR model
performs best, whereas for the second problem, the hyperbolic FGP-IFPR model performs best and
the linear FGP-IFPR model shows worst in both cases.

Keywords: fuzzy goal programming; intuitionistic fuzzy set; score function; imprecise goal hierarchy;
preference relations; distance function

1. Introduction

Multi-objective programming is a robust analytical method for the formulation of real-world
problems in which two or more than two goals have to be optimized, simultaneously. It has been
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favourably implemented for various applications in the field of engineering, economics, machine learning,
manpower planning etc., see Ull Hasan et al. [1], Hasan and Hasan [2], Hasan et al. [3,4], Ashraf et al. [5,6],
Muhuri et al. [7], Suttorp and Igel [8], Marler and Arora [9], Alexandropoulos et al. [10], Bora et al. [11],
Breen et al. [12], Kumar et al. [13], Palacios [14], Nepomuceno [15], Caqo et al. [16], Ashraf et al. [17],
Zheng et al. [18], Yang and Chou [19].

The mathematical formulation of classical multi-objective programming is as follows:

Max(Min): {Z1(X), Z2(X), . . . , ZK(X)} , (1)

subject to Ax ≤ b (2)

x ≥ 0, x ∈ S. (3)

where Zk(X) ∀ k = 1, 2, . . . , K represents the k-th objective function of decision variable X and S is
the set of feasible solutions. Equation (2) represents the constraints of the optimization problem where
A and b are the m× n and n× 1 dimensional matrices, respectively.

Goal programming (GP) is a regularly used methodology to overcome the multi-objective
programming problems. Since, the initial proposal of GP by Charnes et al. Charnes et al. [20],
Charnes and Cooper [21], several researchers, including Ignizio [22], Ignizio [23], Romero [24],
Romero [25], Chang [26], Caballero and Go [27] and others expanded it theoretically as well
practically. GP performs with the over-optimistic and under-pessimistic accomplishment of the
objectives (goals) so that each goal is met with the smallest divergence from their particular target.
In traditional GP, the aspiration level provides the best achievement value with the respective goal are
explicitly acknowledged, though in real-world applications, the aspiration levels in the multi-objective
decision-making problem are mostly not-precise. As a result, over the years, the principles of the fuzzy
set approach was successfully utilized in GP.

Zadeh [28] initially offered the fuzzy sets (FSs). Following the proposal of FSs, Bellman and
Zadeh [29] elaborated the decision approach in the imprecise context. Uncertainties, incorporated in
GPs, due to the vagueness and ambiguity, are being handled by the concept of fuzzy decisions.
The significance of accomplishment within every optimizing goal is greatly enhanced in fuzzy
optimization methods, which enables the decision-maker (DM) to determine the best suitable result.
The judgement of DM gets more and more difficult as the problem requires vague preferences for
the target goals and their level of aspiration. Many researchers propose fuzzy goal programming
(FGP) models, for example, Chen and Tsai [30], Aköz and Petrovic [31], Pramanik and Roy [32],
Cheng [33], Jadidi et al. [34] and Jana et al. [35]. Among them, the most commonly used
FGP method for solving multi-objective mathematical programming problems is proposed by
Aköz and Petrovic [31]. In Aköz and Petrovic [31] approach, the importance relations among goals
is imprecise and represented via linguistic terms, for example, Goal A is slightly or moderately or
significantly more important than Goal B.

In the last few decades, the imprecise preference relation in FGP is applied to numerous
real-world applications and theoretically extended by several other authors, such as Petrovic and
Aköz [36], Torabi and Moghaddam [37], Khalili-Damghani and Sadi-Nezhad [38], Cheng [33],
Díaz-Madroñero et al. [39], Sheikhalishahi and Torabi [40], Khan et al. [41], Bilbao-Terol et al. [42],
Bilbao-Terol et al. [43] and Arenas-Parra et al. [44]. Some well-known research works that has been
carried out in FGP has been summarized in Table 1. In Table 1, a summary of existing related work is
presented and classified the concerning uncertainty incorporated in imprecise preference relations,
choice of membership function (MF) for linguistic relation and the area of application. All existing
FGP models dealing the imprecise preference relations with maximization of the belongingness degree.
However, they do not consider the uncertainty causes by vagueness, incorrect data, and deliberate
decisions. In addition, the hesitations among the DMs due to lack of information and conflicting
choices might play a critical role in the imprecise preference relations. Thus, the FGP methods with
the fuzzy membership function that represent the degree of belongingness for such situations are
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insufficient. The higher-order fuzzy sets have been proposed as the generalization of fuzzy sets to
overcome these situations. The most popular and widely used higher order fuzzy set is named as
intuitionistic fuzzy set (IFS). The concept of IFS was first introduced by Atanassov [45] and later on,
Angelov [46] discussed the optimization problem in intuitionistic fuzzy environment.

In IFS, the membership and non-membership function represent the degree of belongingness
and non-belongingness, respectively, instead of single MF. Intuitionistic fuzzy optimization technique
simultaneously consider both aspects of satisfaction degree, which consists maximization of
belongingness and minimization of non-belongingness for different objectives. Therefore, the IFS
is a better choice to deal with the imprecise preference relations rather than fuzzy set because of
the non-belongingness degree of the imprecise relations among fuzzy goals. Many authors Bharati
and Singh [47], Seikh et al. [48], Ebrahimnejad and Verdegay [49], Kour et al. [50], Zhao et al. [51],
Singh and Yadav [52], Mahajan and Gupta [53] and Roy et al. [54] discussed the real-life applications
in intuitionistic fuzzy environment.

Table 1. Literature summary.

Author’s Uncertainty Preference Relation Contribution/Application

Petrovic and Aköz [36] Fuzzy set Linear MF Loading and scheduling of machine
Torabi and Moghaddam [37] Fuzzy set Linear MF Production distribution planning
Khalili-Damghani and
Sadi-Nezhad [38] Fuzzy set Linear MF Project selection

Khalili-Damghani et al. [55] Fuzzy set Linear MF Project selection/TOPSIS
Khalili-Damghani et al. [56] Fuzzy set Linear MF Supply chain network
Díaz-Madroñero et al. [39] Fuzzy set Linear MF Material reqirements planning
Sheikhalishahi and Torabi [40] Fuzzy set Linear MF Maintainence supplier selection
Bilbao-Terol et al. [42] Fuzzy set Linear MF Regional forest planning
Arenas-Parra et al. [44] Fuzzy set Linear MF Sequential approach
Bilbao-Terol et al. [43] Fuzzy set Linear MF Portfolio selection problem
Hashmi et al. [57] Fuzzy set Linear MF Transportation problem
Hasan et al. [3] Fuzzy set Linear MF Manpower planning problem
Khan et al. [41] Fuzzy set Linear and Exponential MFs Numerical example

Proposed work Intuitionistic
Fuzzy set

Hyperbolic, Exponential and
Linear MFs

Numerical example and Banking
financial statement problem

Moreover, from the literature, it could be observed that most of the existing works on FGP having
the linguistic importance preference relation modeled with linear membership satisfaction degree.
A linear MF is the simplest and commonly used MF in the fuzzy set. It is defined by fixing the
lower and upper end points of the acceptability level. However, a linear MF is not necessarily the
desirable representation for many real-life scenarios. Because the fuzzy goals that contain vagueness
and ambiguity with a linear degree of belonging are somehow may not represent the real-life situation.
Additionally, the imprecise preference relation between Goal A and Goal B also needs not to be
linear. Hence, the most commonly known non-linear MFs that is Gaussian, and exponential MFs
are developed that lead to a better description of the achievement level. The non-linear MFs are
also not kind enough to represent all practical situations because the marginal MFs value is not
deterministic. Non-linear MFs’ typical nature enables them to adjust their accomplishment values as
per the conditions, enabling the DMs to implement their scheme with consistency in quite a satisfying
way (Khan et al. [41], Singh and Yadav [52], Gupta and Mehlawat [58]).

Based on the above discussion, we have proposed fuzzy goal programming with intuitionistic
fuzzy preference relation (FGP-IFPR) among fuzzy goals to model the problems with uncertainties
and ambiguities more realistically. In the proposed FGP-IFPR model, we have presented the linear and
non-linear MFs, which are used in the representation of the intuitionistic fuzzy preference relations
(IFPR). A new achievement function consists of individual MF of objective functions, and score
functions are utilized to measure the efficiency of different models. A distance function is developed
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for the proposed FGP-IFPR. To best of our knowledge and belief, no one has discussed in this domain
so far. Therefore, this present work fills the gap as mentioned earlier.

The significant contributions of the work are summarized as follows:

1. A novel fuzzy goal programming with intuitionistic fuzzy preference relation named as FGP-IFPR
is proposed for multi-objective programming problems.

2. Decision-makers provide the IFPRs among the goals in linguistic terms, such as, slightly more
important, moderately more important, and significantly more important.

3. Intuitionistic fuzzy membership and non-membership functions, linear as well as non-linear,
represent the linguistic preference relations.

4. New intuitionistic fuzzy exponential and hyperbolic functions are designed to portrait the IFPRs
between the fuzzy objective functions.

5. For the extensive analysis and comparison, three different FGP-IFPR models are formulated
corresponding to intuitionistic fuzzy linear, exponential and hyperbolic functions.

6. For solving all three FGP-IFPR models corresponding crisp formulations are established, and the
results are thoroughly compared by using a new distance function that identifies the efficiency
of models.

7. Experimental simulations are conducted on a well-known illustrative numerical example and
financial banking statement application.

The rest of the paper is organized as follows: In Section 2, the basic definitions regarding fuzzy
set and intuitionistic fuzzy set are discussed. Section 3 presents the basic FGP, the proposed FGP-IFPR,
and intuitionistic fuzzy membership and non-membership functions. In Section 4, the solution
approach to the proposed models is presented. Section 5 shows an experimental study to the proposed
models. A numerical example and a banking sector problem have been studied in order to show the
real-life application of the proposed approach. Finally, conclusions, limitations, and future scope have
been discussed in Section 6.

2. Preliminaries

In this section, we have discussed some basic definitions and related terms of the fuzzy sets and
intuitionistic fuzzy sets, see [28,51,59–61].

Definition 1. Let X be the classical set of objects, therefore the set of ordered pairs W̃ = {(x, µW̃(x)) : x ∈ X}
is said to be a fuzzy set, where µW̃(x) : X → [0, 1] is called the membership function of W̃.

Definition 2. An intuitionistic fuzzy set is given by ordered triplets as follows:

W̃ = {x, µW̃(x), νW̃(x) : x ∈ X} (4)

where, µW̃(x) : X → [0, 1]; νW̃(x) : X → [0, 1] such that, 0 ≤ µW̃(x) + νW̃(x) ≤ 1. The µW̃(x) and
νW̃(x) denotes the membership and non-membership function of the element x into the set W̃.

For IFS W̃, λW̃(x) = {1− µW̃(x)− νW̃(x), x ∈ X} is called the intuitionistic index of the element
x in the set W̃. It is also called as hesitancy degree of x to W̃. An ordinary fuzzy set is a special case
of intuitionistic fuzzy set for which νW̃(x) = 1− µW̃(x). It determines the amount of uncertainty
about belongingness or non-belongingness of x to W̃. The larger the degree of hesitation, the more the
uncertainty of belongingness (or not) x to W̃.

Definition 3. In the IFS, θW̃(x) is called the score function and defined as:

θW̃(x) = {µW̃(x)− νW̃(x), x ∈ X}, such that, − 1 ≤ θW̃(x) ≤ 1 (5)
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3. Fuzzy Goal Programming with Intuitionistic Fuzzy Preference Relations

This section is about the detailing of the basic model of FGP, FGP with linear fuzzy preference
relation, linear and non-linear intuitionistic fuzzy membership and non-membership functions and
proposed FGP with intuitionistic fuzzy preference relations (FGP-IFPR) formulation. This section
also provides intuitionistic fuzzy formulations for linear, exponential and hyperbolic functions of
preference relations.

3.1. Basic Fuzzy Goal Programming Model

Multi-objective optimization problems are widespread in day to day life. In real life, it is not
always possible to have precise aspiration levels for the goals. When the goals have imprecise aspiration
levels than we apply fuzzy goal programming (FGP). FGP is a technique to provide a solution when the
decision-maker (DM) is allowed to specify imprecise aspiration levels to the objectives. An objective
with an imprecise aspiration level can be treated as a fuzzy goal. Let Z = {Zk : k = 1, . . . , K} be a set
of fuzzy goals, having maximization (B) and minimization (C) type fuzzy goals. The FGP model by
Tiwari et al. [62] can be written as follows:

Optimize: x
Zk(x) ' ak, ∀Zk ∈ B
Zk(x) / ak ∀Zk ∈ C

such that: Ax ≤ b
x ≥ 0


(6)

Here, optimize means to find an optimal (maximum or minimum or both) solution x such that all
the fuzzy goals are satisfied. In addition, ' and / implies the fuzzy linguistic terms essentially greater
than or equal to and essentially less than or equal to, respectively. Ax ≤ b represents the constraints in
vectors. Moreover, ak represents the aspiration level for kth goal Zk. Fuzzy aspiration levels are either
provided by the DM or determined from the payoff table. The payoff table is obtained by solving the
defuzzified model separately for each objective and determine other objectives for each solution.

Let us assume that uk and tk, k = 1, ..., K are the upper and lower limits for minimization and
maximization type fuzzy goals, respectively, with ak as their aspiration levels. Then, the MF (µk) for
the objective function Zk corresponding to each situation can be modelled as follows:

• For the maximization type fuzzy goal, we have:

µk =


0, Zk ≤ tk
Zk−tk
ak−tk

, tk < Zk < ak

1, Zk ≥ ak

(7)

• For minimization type fuzzy goal, we have:

µk =


1, Zk ≤ ak
uk−Zk
uk−ak

, ak < Zk < uk

0, Zk ≥ uk

(8)

Due to the conflicting nature of objective functions, it may not always be easy to provide the
crisp weight to the most preferred/desired goals over others. In this situation, uncertainty may be
incorporated in relative preference relation among the goals, or simultaneously the use of relative
preference relation among the goals, which may contain some vagueness and hesitation from the
DM’s point of view. When there lies fuzzy relations in linguistic terms like “slightly or significantly
or moderately more important” then we employ the Aköz and Petrovic [31] model, which gives a
fuzzy goal method with imprecise goal hierarchy. Basically, three fuzzy relations R̃1(k, l), R̃2(k, l) and
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R̃3(k, l) for “kth goal is slightly more important than lth goal”, “kth goal is moderately more important
than lth goal” and “kth goal is significantly more important than lth goal” are used with MFs µR̃1(k, l),
µR̃2(k, l) and µR̃3(k, l), respectively. These MFs of fuzzy preference relations are defined as follows:

µR̃1(k, l) =

{
µk − µl + 1, if− 1 ≤ µk − µl ≤ 0;
1, 0 ≤ µk − µl ≤ 1.

(9)

µR̃2(k, l) =
µk − µl + 1

2
, − 1 ≤ µk − µl ≤ 1; (10)

µR̃3(k, l) =

{
0, −1 ≤ µk − µl ≤ 0;
µk − µl , 0 ≤ µk − µl ≤ 1.

(11)

Thus, the FGP model shown in Equation (6) with fuzzy hierarchies as in Aköz and Petrovic [31] is
formulated as:

Objective-1: It maximizes the sum of achievement levels of all the fuzzy goals Zk.

Maximize
K

∑
k=1

µk (12)

Objective-2: It maximizes the sum of membership grades for the fuzzy preference relations.

Maximize
K

∑
k=1

K

∑
l=1

bklµR̃(k, l) (13)

Convex combination of the two objectives by applying the respective weights α and (1− α) to obtain a
compromise solution between the two objectives becomes:

Maximize Z = α(
K

∑
k=1

µk) + (1− α)(
K

∑
k=1

K

∑
l=1

bklµR̃(k, l)) (14a)

subject to, µk =
Zk − tk
ak − tk

, Zk ∈ maximization type fuzzy goal, (14b)

µk =
uk − Zk
uk − ak

, Zk ∈ minimization type fuzzy goal, (14c)

(µk − µl + 1) ≥ µR̃1(k, l) ∀ bkl = 1 and R̃(k, l) = R̃1, (14d)

(µk − µl + 1)
2

≥ µR̃2(k, l) ∀ bkl = 1 and R̃(k, l) = R̃2, (14e)

(µk − µl) ≥ µR̃3(k, l)∀ bkl = 1 and R̃(k, l) = R̃3, (14f)

Ax ≤ b, (14g)

x ≥ 0, 0 ≤ µk ≤ 1, , k = 1, ..., K, (14h)

0 ≤ µR̃(k, l) ≤ 1 for all bkl = 1 (14i)

Here, bkl , k, l = 1, 2, ..., K and k 6= l; be a binary variable, taking value 1 if there is an importance relation
defined between the goal Zk and Zl , and 0 otherwise, i.e., value of bkl = 1, when a fuzzy relation
exists otherwise its value is zero. The constraint (14b) and (14c) represents the linear membership
functions for maximization and minimization type fuzzy goals whereas, constraints (14d) to (14f) are
for the achievement levels of fuzzy imprecise relations. In constraint (14h) and (14i), the non-negativity
restrictions to variable x and bound to MFs) are presented.
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3.2. Fuzzy Preference Relations under Intuitionistic Fuzzy Enviourment

The concept of multiobjective optimization with FGP only considers the membership grade
of each preference relation. It does not consider the hesitation of DM on each preference relation.
The vagueness and hesitation due to the imprecise preference relation among goals may be dealt with
IFPRs in a very convenient manner. The major advantage of FGP-IFPR over FGP is that it separates
the degree of acceptance and non-acceptance over a decision by the decision maker. To include this
advantage in problem-solving, we are proposing this FGP-IFPR approach. To efficiently model the
problem, we proposed the formulation of linear and non-linear linguistic fuzzy importance relation
among different goals based on Aköz and Petrovic [31] model namely, goal k is “slightly more
important than” or “moderately more important than” or “significantly more important than” goal
l. These linguistic terms has been assigned with the fuzzy relations defined as R̃1, R̃2 and R̃3 with
different membership and non-membership functions µR̃i

and νR̃i
∀ i = 1, 2 and 3 respectively.

The hierarchy structure of the problem model is explained through Figure 1. It is divided into
five sections as a type of preference relation, linguistic term, intuitionistic fuzzy relation, intuitionistic
fuzzy membership function and intuitionistic fuzzy non-membership function. It explains that initially,
the linguistic preference on fuzzy goals is assigned by the DM. It may be assigned as linear, exponential
or hyperbolic preference relation. As the case is intuitionistic, these relations are further divided into
three different categories of slightly, moderately and significantly more and not more important cases.
The membership grade provides a satisfaction level of these relations. Whereas, the non-membership
grade provides the satisfaction level of the opposite part of preference relation, i.e., not more important.
The decision of the type of preference relation completely depends upon the type of real-life problem.
The transform function for these preference relation is also defined in Table 2.

                                            

                                                                                                                                                                          Type of preference relation

                                                                

                                                                                                      
                                                                                                     
                                                                                                                                                                                    Linguistic terms             

                                                                                                                                                                                 Intuitionistic
                                                                                                                                                                                Fuzzy relations

                                                                                                                                                                                          
                                                                                                                                                                             Intuitionistic fuzzy
                                                                                                                                                                          Membership function
               

                                                                                                                                                                           Intuitionistic fuzzy
                                                                                                                                                                          Non-Membership function

Linguistic preferences on fuzzy goals by DM

Linear preference relation

Slightly more 
important 

Exponential preference relation Hyperbolic preference relation

Slightly not more 
important 

Moderately more 
important 

Moderately not more 
important 

Significantly more 
important 

Significantly not more 
important 

R
1

R
2

R
3

µ
R1

Ʋ
R1

µ
R2

Ʋ
R2

µ
R3

Ʋ
R3

Figure 1. Hierarchy structure of decision-maker (DM) preference on fuzzy goals.

Before moving to the proposed FGP-IFPR, we shall first define the formulations for different
membership and non-membership functions namely linear (L), exponential (E), and hyperbolic (H) for
linguistic preference relations among different goals, which are to be maximized and minimized in
order to achieve the importance among goals, respectively.
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Table 2. Linguistic relative preferences of goal k over l.

Linguistic Term Fuzzy Relation Intuitionistic Fuzzy Transform Function

Membership fn. Non-Membership fn.

Slightly more important than R̃1 µR̃1
νR̃1

Moderately more important than R̃2 µR̃2
νR̃2

µk(X)− µl(X)

Significantly more important than R̃3 µR̃3
νR̃3

∀ k, l ∈ (1...K)

3.2.1. Linear Membership and Non-Membership Function

The linear membership function of an IFPR for each linguistic term can be defined as follows:

µL
R̃1(k, l) =

{
(µk − µl + 1), if− 1 ≤ µk − µl ≤ 0;
1, if 0 ≤ µk − µl ≤ 1.

(15a)

µL
R̃2(k, l) =

{
( µk−µl+1

2 ), if− 1 ≤ µk − µl ≤ 1; (15b)

µL
R̃3(k, l) =

{
0, if− 1 ≤ µk − µl ≤ 0;
(µk − µl), if 0 ≤ µk − µl ≤ 1.

(15c)

where, µL
R̃1(k, l)

, µL
R̃2(k, l)

, and µL
R̃3(k, l)

represents the linear MFs of an IFPR for each linguistic

term {R̃1, R̃2, R̃3}.
The linear non-membership function for the IFPR for each linguistic term can be defined as follows:

νL
R̃1(k, l) =

{
−(µk − µl), if− 1 ≤ µk − µl ≤ 0;
0, if 0 ≤ µk − µl ≤ 1.

(16a)

νL
R̃2(k, l) =

 1, if− 1 ≤ µk − µl ≤ 0;
1− (µk − µl)

2
, if 0 ≤ µk − µl ≤ 1.

(16b)

νL
R̃3(k, l) =

{
1, if− 1 ≤ µk − µl ≤ 0;
1− (µk − µl), if 0 ≤ µk − µl ≤ 1.

(16c)

where, νL
R̃1(k, l)

, νL
R̃2(k, l)

, and νL
R̃3(k, l)

represents the linear non-membership function of an IFPR for each

linguistic term {R̃1, R̃2, R̃3}. A pictorial demonstration of linear membership and non-membership
function of IFPR R̃1, R̃2, and R̃3 are shown in Figure 2 .

3.2.2. Exponential Membership and Non-Membership Function

The exponential membership function of an IFPR for each linguistic term can be defined as follows:

µE
R̃1(k, l) =

 1− e−s∗(µk−µl+1)

1− e−s , if− 1 ≤ µk − µl ≤ 0;

1, if 0 ≤ µk − µl ≤ 1.
(17a)

µE
R̃2(k, l) =

{
1− e−s∗( µk−µl+1

2 )

1− e−s , if− 1 ≤ µk − µl ≤ 1; (17b)

µE
R̃3(k, l) =

 0, if− 1 ≤ µk − µl ≤ 0;
1− e−s∗(µk−µl)

1− e−s , if 0 ≤ µk − µl ≤ 1.
(17c)
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where, µE
R̃1(k, l)

, µE
R̃2(k, l)

, and µE
R̃3(k, l)

represents the exponential membership function of an IFPR

for each linguistic term {R̃1, R̃2, R̃3}. Additionally, s is the measurement of grades of fuzziness and
defined by the decision makers according to the ambiguity of the relations.
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Figure 2. Linear membership and non-membership functions for the intuitionistic fuzzy preference
relation (IFPR).

The exponential non-membership function of an IFPR for each linguistic term can be defined
as follows:

νE
R̃1(k, l) =

 e−s∗(µk−µl+1) − e−s

1− e−s , if− 1 ≤ µk − µl ≤ 0;

0, if 0 ≤ µk − µl ≤ 1.
(18a)

νE
R̃2(k, l) =

{
e−s∗( µk−µl+1

2 ) − e−s

1− e−s , if− 1 ≤ µk − µl ≤ 1; (18b)

νE
R̃3(k, l) =

 1, if− 1 ≤ µk − µl ≤ 0;
e−s∗(µk−µl) − e−s

1− e−s , if 0 ≤ µk − µl ≤ 1.
(18c)

where νE
R̃1(k, l)

, νE
R̃2(k, l)

, and νE
R̃3(k, l)

represents the exponential non-membership function of an IFPR

for each linguistic term {R̃1, R̃2, R̃3}. A pictorial demonstration of exponential membership and
non-membership function of IFPRs R̃1, R̃2, and R̃3 are shown in Figure 3.
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Figure 3. Exponential membership and non-membership functions for the IFPRs.

3.2.3. Hyperbolic Membership and Non-Membership Function

The hyperbolic membership function of an IFPR for each linguistic term can be defined as follows:

µH
R̃1(k, l) =


e3+6(µk−µl)

e−(3+6(µk−µl)) + e3+6(µk−µl)
+

e−3

e−3 + e3 , if− 1 ≤ µk − µl ≤ 0;

1, if 0 ≤ µk − µl ≤ 1.
(19a)

µH
R̃2(k, l) =

{
e3(µk−µl)

e−3(µk−µl) + e3(µk−µl)
, if− 1 ≤ µk − µl ≤ 1; (19b)

µH
R̃3(k, l) =


0, if− 1 ≤ µk − µl ≤ 0;

e−3+6(µk−µl)

e3−6(µk−µl) + e−3+6(µk−µl)
− e−3

e−3 + e3 , if 0 ≤ µk − µl ≤ 1.
(19c)

whre, µH
R̃1(k, l)

, µH
R̃2(k, l)

, and µH
R̃3(k, l)

represents the hyperbolic membership function of an IFPR for

each linguistic term {R̃1, R̃2, R̃3}.
The hyperbolic non-membership function of an IFPR for each linguistic term can be defined

as follows:

νH
R̃1(k, l) =


e−(3+6(µk−µl))

e−(3+6(µk−µl)) + e3+6(µk−µl)
− e−3

e−3 + e3 , if− 1 ≤ µk − µl ≤ 0;

0, if 0 ≤ µk − µl ≤ 1.
(20a)

νH
R̃2(k, l) =

{
e−3(µk−µl)

e−3(µk−µl) + e3(µk−µl)
, if− 1 ≤ µk − µl ≤ 1; (20b)

νH
R̃3(k, l) =


1, if− 1 ≤ µk − µl ≤ 0;

e3−6(µk−µl)

e3−6(µk−µl) + e−3+6(µk−µl)
+

e−3

e−3 + e3 , if 0 ≤ µk − µl ≤ 1.
(20c)
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here, νH
R̃1(k, l)

, νH
R̃2(k, l)

, and νH
R̃3(k, l)

represents the exponential non-membership function of an IFPR

for each linguistic term {R̃1, R̃2, R̃3}. A pictorial demonstration of hyperbolic membership and
non-membership function of IFPRs R̃1, R̃2, and R̃3 are shown in Figure 4.
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Figure 4. Hyperbolic membership and non-membership functions for the IFPRs.

It is to be mentioned that the membership and non-membership function of IFPRs are defined
over the transform function µk − µl where k is not equal to l. k and l, both represents the index of MF of
objective function, see Khalili-Damghani et al. [55] and Khalili-Damghani et al. [56]. The membership
functions of IFPRs have to be maximizied, whereas, non-membership functions minimized in order to
achieve the relative importance among the intuitionistic fuzzy goals.

3.3. Proposed FGP-IFPR Model

Aköz and Petrovic [31] defined the achievement function as a convex combination of the sum of
individual membership function of fuzzy goals and the sum of satisfaction degrees of the imprecise
linguistic importance relations but here, for FGP-IFPR, we define the achievement function as a convex
combination of the sum of individual membership function of fuzzy goals and the sum of score
functions of the imprecise linguistic importance relations.

In order to achieve these fuzzy goals, we define score function

SA
R̃i(k, l) = (µA

R̃i(k, l) − νA
R̃i(k, l)), ∀ i = 1, 2 and 3, (21)

Let bkl , ∀ k, l = 1, 2, ..., K where k 6= l; be a binary variable, taking value 1 if there is an importance
relation defined between the goal Zk and Zl , and 0 otherwise. The lower and upper tolerance limit for
each fuzzy goal is represented by tk and uk respectively. So, the proposed model with new achievement
function and with weight α in intuitionistic fuzzy environment is formulated as follows:
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Maximize Z = α(
K

∑
k=1

µk) + (1− α)(
K

∑
k=1

K

∑
l=1

bk,lSA
R̃i(k, l)) (22a)

subject to, µk =
Zk(x)− tk

ak − tk
, (Maximization type goal) (22b)

µk =
uk − Zk(x)

uk − ak
, (Minimization type goal) (22c)

0 ≤ µk ≤ 1 (22d)

µA
R̃i(k, l) ≥ µR̃i(k, l) (22e)

νA
R̃i(k, l) ≤ νR̃i(k, l) (22f)

SA
R̃i(k, l) = (µA

R̃i(k, l) − νA
R̃i(k, l)) (22g)

µA
R̃i(k, l) ≥ νA

R̃i(k, l) (22h)

0 ≤ µA
R̃i(k, l) + νA

R̃i(k, l) ≤ 1 (22i)

0 ≤ µA
R̃(k, l) ≤ 1, 0 ≤ νA

R̃i(k, l) ≤ 1 ∀ bkl = 1 or 0 (22j)

Ax ≤ b, x ≥ 0 (22k)

∀ i = 1, 2 and 3; k, l = 1, 2, ..., K where k 6= l. (22l)

where superscript A = (L, E, and H) represents the type of membership functions i.e., linear,
exponential and hyperbolic used to express the satisfactory degree of decision makers respectively.
µA

R̃i(k, l)
and νA

R̃i(k, l)
, ∀ A = linear, exponential and hyperbolic; represents the type of membership

and non-membership function used by the decision makers and i = 1, 2 and 3 represents the type of
linguistic preference relation among different fuzzy goals. µk represents the membership grade for kth
objective function or goal.

4. Solution Approach

The approach to solving the proposed FGP-IFPR models is a composition of several steps.
The first step is to formulate the crisp model of the problem with all the goal functions. After that,
for determining the tolerance and aspiration values of the respective goal functions, either the crisp
model is solved for each objective function or the decision-maker may provide it. The obtained
solution should be feasible and optimal. Take the optimum value of objective functions as the target
aspiration value. Determine then all of the objective function values for the solution obtained. This step
will give us a payoff table (values of extreme solutions), and aspiration, including tolerance level
values. Formulate all membership grades for objective functions which are fuzzy goals. Create the
transform function for preferential linguistic relationships by using objective functions membership
grades. Establish the intuitionistic fuzzy preferential linguistic relationships between different objective
functions, and formulate the intuitionistic fuzzy membership and non-membership grades functions.
Form the desired intuitionistic fuzzy preference relationship function (IFPR) among the fuzzy goals,
it can be either linear or exponential or hyperbolic function. Define the score function by taking the
difference of membership and non-membership function of each IFPRs. Now, formulate the FGP-IFPR
models for the problem, as detailed in the section above. Solve the formulation using any optimization
software packages. We have used the NEOS server online facility provided by Wisconsin Institutes for
Discovery at the University of Wisconsin in Madison for solving optimization problems, and AMPL
(Fourer et al. [63]) for mathematical modeling of the issues.

In this paper, the obtained FGP-IFPR model has been modeled in AMPL language
(Fourer et al. [63]) and solved using solvers available on NEOS server online facility provided by
Wisconsin Institutes for Discovery at the University of Wisconsin in Madison for solving optimization
problems, see Gropp, W. Moré [64], Czyzyk et al. [65], Dolan [66] and Server [67]. As the results are
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obtained, we need to investigate the feasibility of solutions. If the result is infeasible, rest the aspiration
and tolerance conditions and restart, if not, offer the answer to the experts. The step by step procedure
of the solution approach is presented in Algorithm 1 and Figure 5 shows the flow diagram.

                                                                                                                                                                

                                                                                                      
                                                                                                        Yes

                                                                  No
     

     Yes

                          
                             No

                                         No

                                                              Yes

Start

Consider the problem as K-single objective 
problems and determine the individual optima

Formulate the crisp mathematical programming problem model

Is the problem 
Infeasible

Construct the table of extreme 
solutions

Determine the aspiration and tolerance 
levels for different objectives

Formulate the problem as FGP-IFPR 
model

Formulate the desired membership function 
 for objective function and preference relation

Solve the model and present the solution 
to the decision maker

Is it a preferred 
solution

Stop

Is model Modification
 Needed ?

Modify the model

Figure 5. Flow chart of proposed solution procedure.

Algorithm 1 Solution approach

1: Input: Data and parametric values of problem.
2: Output: Optimal solution.
3: Formulate the crisp multi-objective programming problem.
4: Consider K-single objective optimization problems and determine the individual optima.
5: if Aspiration values are not known then
6: Find the optimal values of each single objective optimization problem.
7: Evaluate the membership function for each fuzzy goals.
8: Define the linguistic preference relations among the different goals by using membership and

non-membership functions via choosing linear or non-linear function.
9: Calculate the score function by considering the difference of membership and non-membership

function for each fuzzy preference relation.
10: Formulate the FGP-IFPR model with their aspiration values.
11: Apply the optimization toolbox for finding the optimal solutions.
12: Stop and present the solution obtained to the decision maker.
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5. Experimental Study

In order to validate the proposed models, we considered two examples. The first example was a
numerical example and second one was a banking application problem. The problems were modeled
as the proposed FGP-IFPR using all of the linear, exponential, and hyperbolic membership functions.

5.1. Example 1

In this numerical example, used by Chen and Tsai [30], Aköz and Petrovic [31], Cheng [33] and
Arenas-Parra et al. [44], we had to find best solution x = (x1, x2, x3, x4) for the following multi-objective
mathematical programming problem.

Goal 1: 4x1 + 2x2 + 8x3 + x4 ≤ 35 (23a)

Goal 2: 4x1 + 7x2 + 6x3 + 2x4 ≥ 100 (23b)

Goal 3: x1 − 6x2 + 5x3 + 10x4 ≥ 120 (23c)

Goal 4: 5x1 + 3x2 + 2x4 ≥ 70 (23d)

Goal 5: 4x1 + 4x2 + 4x3 ≥ 40 (23e)

subject to 7x1 + 5x2 + 3x3 + 2x4 ≤ 98 (23f)

7x1 + x2 + 2x3 + 6x4 ≤ 117 (23g)

x1 + x2 + 2x3 + 6x4 ≤ 130 (23h)

9x1 + x2 + 6x4 ≤ 105 (23i)

xi ≥ 0, i = 1, ..., 4. (23j)

Here, we had five objectives as Goal-1, Goal-2, Goal-3, Goal-4, and Goal-5. The fuzzy preference
relations among these objectives (goals) were given as follows:

1. Goal-1 is moderately more important than Goal-2 (µ12).
2. Goal-2 is moderately more important than Goal-4 (µ24).
3. Goal-2 is moderately more important than Goal-5 (µ25).
4. Goal-3 is moderately more important than Goal-2 (µ32).

Now, the problem has been solved using solution approach of Algorithm 1 by applying proposed
FGP-IFPR models and results were obtained.

5.2. Solution Steps for Example 1

The solution steps are summarized as follows.
Step-1 Start with given multi-objective programming problem as given in Equations (23a)–(23j).
Step-2 Formulate the problem as five single objective models (based on the respective goals).

All the five optimization problems are solved for finding the best and worst values of goals.
The decision maker can provide the aspiration values as per choice or determine it based on individual
solution of the problem models.

Step-3 For this multi objective problem, the tolerance limits are provided. The upper limit for
minimization type fuzzy goal Z1 is u1 = 55, the lower limits for maximization type fuzzy goals Z2,
Z3, Z4 and Z5 are t2 = 40, t3 = 70, t4 = 30 and t5 = 10, respectively, with ak as their corresponding
aspiration levels.

Step-4 The membership function (µk) for each objective function Zk is modeled using Equations (7)
and (8) as follows:

µ1 =
(55− Z1)

(55− 35)
; µ2 =

(Z2 − 40)
(100− 40)

; µ3 =
(Z3 − 70)
(120− 70)

; µ4 =
(Z4 − 30)
(70− 30)

; µ5 =
(Z5 − 10)
(40− 10)

.

Step-5 The intuitionistic fuzzy functions for the preference relations are formulated and presented
in this step. Suppose, µ12, µ24, µ25, and µ32 are the intuitionistic fuzzy membership function and ν12, ν24,
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ν25, and ν32 are intuitionistic fuzzy non-membership function with respect to the linguistic preference
relations as given in problem definition. Thus, the linear membership function and non-membership
function formulation for each preference relation using Equations (15a)–(15c) and Equations (16a)–(16c)
are as:

µ12 =
(µ1 − µ2 + 1)

2
; µ24 =

(µ2 − µ4 + 1)
2

; µ25 =
(µ2 − µ5 + 1)

2
; µ32 =

(µ3 − µ2 + 1)
2

.

v12 =
(1− µ1 + µ2)

2
; v24 =

(1− µ2 + µ4)

2
; v25 =

(1− µ2 + µ5)

2
; v32 =

(1− µ3 + µ2)

2
.

The exponential membership function and non-membership function formulation for each
preference relation using Equations (17a)–(17c) and Equations (18a)–(18c) are as:

µ12 =
(1− e−s.(µ1−µ2+1)/2)

(1− e−s)
; µ24 =

(1− e−s.(µ2−µ4+1)/2)

(1− e−s)
;

µ25 =
(1− e−s.(µ2−µ5+1)/2)

(1− e−s)
; µ32 =

(1− e−s.(µ3−µ2+1)/2)

(1− e−s)
.

v12 =
(e−s.(µ1−µ2+1)/2 − e−s)

(1− e−s)
; v24 =

(e−s.(µ2−µ4+1)/2 − e−s)

(1− e−s)
;

v25 =
(e−s.(µ2−µ5+1)/2 − e(−s))

(1− e−s)
; v32 =

(e−s.(µ3−µ2+1)/2 − e−s)

(1− e−s)
.

The hyperbolic membership function and non-membership function formulation for each
preference relation using Equations (19a)–(19c) and Equations (20a)–(20c) are as:

µ12 =
e3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; µ24 =

e3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
;

µ25 =
e3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; µ32 =

e3(µ3−µ2)

e−3(µ3−µ2) + e3(µ3−µ2)
].

v12 =
e−3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; v24 =

e−3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
;

v25 =
e−3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; v32 =

e−3(µ3−µ2)

e−3(µ3−µ2) + e3(µ3−µ2)
.

Step-6 Problem formulations: The FGP-IFPR model of numerical Example-1 is formulated using
preference relation functions.

We apply three different kinds of intuitionistic fuzzy functions for preference relations, namely,
linear, exponential, and hyperbolic, so there are three different formulations.

Formulation I: FGP-IFPR for linear.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5) + (1− α).(S12 + S24 + S25 + S32) (24a)

subject to,
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µ12 ≤
(µ1 − µ2 + 1)

2
; µ24 ≤

(µ2 − µ4 + 1)
2

; µ25 ≤
(µ2 − µ5 + 1)

2
; µ32 ≤

(µ3 − µ2 + 1)
2

; (24b)

v12 ≥
(1− µ1 + µ2)

2
; v24 ≥

(1− µ2 + µ4)

2
; v25 ≥

(1− µ2 + µ5)

2
; v32 ≥

(1− µ3 + µ2)

2
; (24c)

S12 = µ12 − v12; S24 = µ24 − v24; S25 = µ25 − v25; S32 = µ32 − v32 (24d)

µ1 =
(55− Z1)

(55− 35)
; µ2 =

(Z2 − 40)
(100− 40)

; µ3 =
(Z3 − 70)
(120− 70)

; µ4 =
(Z4 − 30)
(70− 30)

; µ5 =
(Z5 − 10)
(40− 10)

; (24e)

0 ≤ µ1 ≤ 1; 0 ≤ µ2 ≤ 1; 0 ≤ µ3 ≤ 1; 0 ≤ µ4 ≤ 1; 0 ≤ µ5 ≤ 1 (24f)

1 ≥ µ12 ≥ v12 ≥ 0; 1 ≥ µ24 ≥ v24 ≥ 0; 1 ≥ µ25 ≥ v25 ≥ 0; 1 ≥ µ32 ≥ v32 ≥ 0; (24g)

0 ≤ µ12 + v12 ≤ 1; 0 ≤ µ24 + v24 ≤ 1; 0 ≤ µ25 + v25 ≤ 1; 0 ≤ µ32 + v32 ≤ 1; (24h)

Equations (23f)–(23j)

Formulation II: FGP-IFPR for exponential.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5) + (1− α).(S12 + S24 + S25 + S32) (25a)

subject to,

µ12 ≤
(1− e−s.(µ1−µ2+1)/2)

(1− e−s)
; µ24 ≤

(1− e−s.(µ2−µ4+1)/2)

(1− e−s)
; (25b)

µ25 ≤
(1− e−s.(µ2−µ5+1)/2)

(1− e−s)
; µ32 ≤

(1− e−s.(µ3−µ2+1)/2)

(1− e−s)
; (25c)

v12 ≥
(e−s.(µ1−µ2+1)/2 − e−s)

(1− e−s)
; v24 ≥

(e−s.(µ2−µ4+1)/2 − e−s)

(1− e−s)
; (25d)

v25 ≥
(e−s.(µ2−µ5+1)/2 − e(−s))

(1− e−s)
; v32 ≥

(e−s.(µ3−µ2+1)/2 − e−s)

(1− e−s)
(25e)

Equations (24d)–(24h)

Equations (23f)–(23j)

Formulation III: FGP-IFPR for hyperbolic.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5) + (1− α).(S12 + S24 + S25 + S32) (26a)

subject to,

µ12 ≤
e3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; µ24 ≤

e3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
; (26b)

µ25 ≤
e3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; µ32 ≤

e3(µ3−µ2)

e−3(µ3−µ2) + e3(µ3−µ2)
; (26c)

v12 ≥
e−3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; v24 ≥

e−3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
; (26d)

v25 ≥
e−3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; v32 ≥

e−3(µ3−µ2)

e−3(µ3−µ2) + e3(µ3−µ2)
; (26e)

Equations (24d)–(24h)

Equations (23f)–(23j)

Step-7 Now, we solve the above FGP-IFPR models of example 1 using any linear and non linear
optimization solver and software.

Step-8 Stop, the optimal and feasible solution is obtained.
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5.2.1. Results and Discussion for Example 1

The problem consisting of five multiple objectives was modelled and solved. It provided a feasible
and optimal result. To get a more detailed nature of three FGP-IFPR models, the results were evaluated
for α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

The results obtained on solving are presented in Tables 3 and 4. In Table 3, the intuitionistic
fuzzy membership values, intuitionistic fuzzy non-membership values corresponding to the given
four fuzzy preference relations are tabulated along with the score function. The higher value of score
function was better than smaller values, as it was the difference of membership and non-membership
function values. From Table 3, it can be seen that for the case of linear preference relation, the sum of
membership grades were decreasing for the values of α. The non-membership grades were increasing,
and as a result of them, the score function values were decreasing. For better visualisation of the score
function, see, Figure 6. In case of linear FGP-IFPR, at α = 0, score function was 1.3091 whereas for
α = 1, it became 0.098. For exponential and hyperbolic preference relation FGP-IFPR models, the same
decreasing pattern was followed by the score function. On comparing the three FGP-IFPR models,
the hyperbolic FGP-IFPR performed best for score function, and linear FGP-IFPR performed worst.
At α = 1, the values were very much nearby for exponential and hyperbolic FGP-IFPR models.

For the solution values of this example, the values of decision variables, optimal goal values and
fuzzy goals and their individual membership grades were also evaluated. In Table 4, the solution
values that are x1, x2, x3, and x4, objective functions Z1, Z2, Z3, Z4, and Z5, and grades are presented.
The values of sum of membership grades of objective functions, in case of linear, exponential and
hyperbolic FGP-IFPR models continuously increases for values of α. There was an increase in sum
of membership grades for exponential FGP-IFPR model at α = 0.4, before that the values were less
than linear FGP-IFPR model. In Figure 7, it is clear that from α = 0.4–1, exponential FGP-IFPR model
have larger value of ∑ µk than linear and hyperbolic FGP-IFPR models, whereas before 0.4 hyperbolic
FGP-IFPR model gives better values for ∑ µk. There was much less difference for exponential and
linear FGP-IFPR models from α = 0.4–0.7, whereas for hyperbolic and exponential FGP-IFPR models,
the same values as from α = 0.6–0.7 applied.
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Figure 6. Score function for Example 1.
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Table 3. Result values for preference membership, non-membership grades and score function of proposed FGP-IFPR for Example 1.

Formulation α µ12 µ24 µ25 µ32 ∑ µRi(k, l) ν12 ν24 ν25 v32 ∑ νRi(k, l) ∑ SRi(k, l)

I:FGP-IFPR 0.0 0.7795 0.5954 0.7795 0.500 2.6545 0.2204 0.4045 0.2204 0.5000 1.3453 1.3091
for Linear 0.1 0.7795 0.5954 0.7795 0.5000 2.6545 0.2204 0.4045 0.2204 0.5000 1.3453 1.3091

0.2 0.7795 0.5954 0.7795 0.5000 2.6545 0.2204 0.4045 0.2204 0.5000 1.3453 1.3091
0.3 0.7795 0.5954 0.7795 0.5000 2.6545 0.2204 0.4045 0.2204 0.5000 1.3453 1.3091
0.4 0.6023 0.5857 0.6023 0.5339 2.3244 0.3976 0.4142 0.3976 0.4660 1.6754 0.6488
0.5 0.6023 0.5857 0.6023 0.5339 2.3244 0.3976 0.4142 0.3976 0.4660 1.6754 0.6488
0.6 0.6023 0.5857 0.6023 0.5339 2.3244 0.3976 0.4142 0.3976 0.4660 1.6754 0.6488
0.7 0.6023 0.5857 0.6023 0.5339 2.3244 0.3976 0.4142 0.3976 0.4660 1.6754 0.6488
0.8 0.6023 0.5857 0.6023 0.5339 2.3244 0.3976 0.4142 0.3976 0.4660 1.6754 0.6488
0.9 0.5682 0.5940 0.5000 0.5283 2.1906 0.4317 0.4059 0.5000 0.4716 1.8092 0.3812
1.0 0.4855 0.4893 0.5000 0.4929 1.9679 0.4522 0.4390 0.5000 0.4786 1.8698 0.0980

II:FGP-IFPR 0.0 0.9376 0.7154 0.6004 0.9376 3.1910 0.0624 0.2846 0.3996 0.0624 0.8090 2.3819
for Exponential 0.1 0.9376 0.7154 0.6004 0.9376 3.1910 0.0624 0.2845 0.3996 0.0624 0.8090 2.3819

0.2 0.9376 0.7154 0.6004 0.9376 3.1909 0.0624 0.2846 0.3996 0.0624 0.8090 2.3819
0.3 0.8992 0.7127 0.6112 0.8992 3.1223 0.1008 0.2873 0.3888 0.1008 0.8777 2.2445
0.4 0.7158 0.7013 0.6545 0.7158 2.7874 0.2842 0.2987 0.3455 0.2842 1.2126 1.5749
0.5 0.7158 0.7013 0.6545 0.7158 2.7874 0.2842 0.2987 0.3455 0.2842 1.2126 1.5749
0.6 0.7158 0.7013 0.6545 0.7158 2.7874 0.2842 0.2987 0.3455 0.2842 1.2126 1.5749
0.7 0.7158 0.7013 0.6545 0.7158 2.7874 0.2842 0.2987 0.3455 0.2842 1.2126 1.5749
0.8 0.6879 0.7081 0.6496 0.6293 2.6750 0.3121 0.2919 0.3504 0.3707 1.3250 1.3499
0.9 0.6491 0.7171 0.6432 0.5000 2.5093 0.3509 0.2829 0.3569 0.5000 1.4907 1.0186
1.0 0.4842 0.4743 0.4807 0.5000 1.9392 0.4059 0.3665 0.4076 0.5000 1.6800 0.2593

III:FGP-IFPR 0 0.9663 0.7586 0.5000 0.9663 3.1912 0.0337 0.2414 0.5000 0.0337 0.8088 2.3823
for Hyperbolic 0.1 0.9661 0.7586 0.5002 0.9661 3.1911 0.0339 0.2414 0.4998 0.0339 0.8089 2.3821

0.2 0.9490 0.7543 0.5207 0.9490 3.3379 0.0510 0.2457 0.4793 0.0510 0.8271 2.3458
0.3 0.9248 0.7501 0.5404 0.9248 3.1402 0.0752 0.2499 0.4596 0.0752 0.8598 2.2803
0.4 0.8904 0.7458 0.5601 0.8904 3.0867 0.1096 0.2542 0.4399 0.1096 0.9133 2.1734
0.5 0.8348 0.7408 0.5824 0.8348 2.9928 0.1652 0.2592 0.4176 0.1652 1.0072 1.9857
0.6 0.7735 0.7367 0.6006 0.7735 2.8843 0.2265 0.2633 0.3994 0.2265 1.1157 1.7685
0.7 0.7735 0.7367 0.6006 0.7735 2.8843 0.2265 0.2633 0.3994 0.2265 1.1157 1.7685
0.8 0.7735 0.7367 0.6006 0.7735 2.8843 0.2265 0.2633 0.3994 0.2265 1.1157 1.7685
0.9 0.7735 0.7367 0.6006 0.7735 2.8843 0.2265 0.2633 0.3994 0.2265 1.1157 1.7685
1.0 0.4751 0.4655 0.4997 0.5000 1.9403 0.3866 0.3400 0.4389 0.5000 1.6655 0.2748
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Table 4. Result values for solution: objective functions and their membership grade of proposed FGP-IFPR for Example 1.

Formulation α x1 x2 x3 x4 Z1 Z2 Z3 Z4 Z5 µ1 µ2 µ3 µ4 µ5 ∑ µk

I:FGP-IFPR 0.0 0.0000 4.1935 1.6129 13.7097 35.0000 66.4516 120.0000 40.0000 23.2258 1.0000 0.4408 1.0000 0.2500 0.4408 3.1317
for Linear 0.1 0.0000 4.1935 1.6129 13.7097 35.0000 66.4516 120.0000 40.0000 23.2258 1.0000 0.4408 1.0000 0.2500 0.4408 3.1317

0.2 0.0000 4.1935 1.6129 13.7097 35.0000 66.4516 120.0000 40.0000 23.2258 1.0000 0.4408 1.0000 0.2500 0.4408 3.1317
0.3 0.0000 4.1935 1.6129 13.7097 35.0000 66.4516 120.0000 40.0000 23.2258 1.0000 0.4408 1.0000 0.2500 0.4408 3.1317
0.4 0.0000 7.4822 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1464
0.5 0.0000 7.4822 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1464
0.6 0.0000 7.4822 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1464
0.7 0.0000 7.4822 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1464
0.8 0.0000 7.4822 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1464
0.9 0.0000 8.2563 0.2954 16.1239 35.0000 91.8146 113.1790 57.0168 34.2069 1.0000 0.8635 0.8635 0.6754 0.8068 4.2094
1.0 0.0000 8.2563 0.2954 16.1239 35.0000 91.8146 113.1790 57.0168 34.2069 1.0000 0.8635 0.8635 0.6754 0.8068 4.2094

II:FGP-IFPR 0.0 0.0000 1.9941 2.3754 12.0088 35.0000 52.2287 120.0000 30.0000 17.4780 1.0000 0.2038 1.0000 0.0000 0.2493 2.4531
for Exponential 0.1 0.0000 1.9941 2.3754 12.0088 35.0000 52.2287 120.0000 30.0000 17.4780 1.0000 0.2038 1.0000 0.0000 0.2493 2.4531

0.2 0.0000 1.9941 2.3754 12.0088 35.0000 52.2287 120.0000 30.0000 17.4780 1.0000 0.2038 1.0000 0.0000 0.2493 2.4531
0.3 0.0000 3.0679 2.0031 12.8392 35.0000 59.1723 120.0000 34.8819 20.2840 1.0000 0.3195 1.0000 0.1220 0.3428 2.7844
0.4 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.5 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.6 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.7 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.8 0.0000 8.2018 0.3079 16.1330 35.0000 91.5262 113.6590 56.8715 34.0389 1.0000 0.8588 0.8732 0.6718 0.8013 4.2050
0.9 0.0000 9.1647 0.0872 15.9725 35.0000 96.6217 105.1730 59.4393 37.0079 1.0000 0.9437 0.7035 0.7360 0.9003 4.2834
1.0 0.0000 9.1647 0.0872 15.9725 35.0000 96.6217 105.1730 59.4393 37.0079 1.0000 0.9437 0.7035 0.7360 0.9003 4.2834

III:FGP-IFPR 0.0 0.0000 4.1936 1.6129 13.7097 35.0000 66.4516 120.0000 40.0000 23.2258 1.0000 0.4409 1.0000 0.2500 0.4407 3.13172
for Hyperbolic 0.1 0.0000 4.1996 1.6108 13.7143 35.0000 66.4905 120.0000 40.0273 23.2415 1.0000 0.4415 1.0000 0.2507 0.4413 3.1336

0.2 0.0000 4.8617 1.3813 14.2264 35.0000 70.7722 120.0000 43.0377 24.9718 1.0000 0.5129 1.0000 0.3259 0.4991 3.3379
0.3 0.0000 5.5002 1.1599 14.7202 35.0000 74.9015 120.0000 45.9411 26.6406 1.0000 0.5817 1.0000 0.3985 0.5547 3.5349
0.4 0.0000 6.1424 0.9373 15.2168 35.0000 79.0543 120.0000 48.8608 28.3188 1.0000 0.6509 1.0000 0.4715 0.6106 3.7331
0.5 0.0000 6.8764 0.6828 15.7844 35.0000 83.8009 120.0000 52.1982 30.2371 1.0000 0.7300 1.0000 0.5550 0.6746 3.9595
0.6 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.7 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.8 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
0.9 0.0000 7.4823 0.4728 16.2530 35.0000 87.7187 120.0000 54.9527 31.8203 1.0000 0.7953 1.0000 0.6238 0.7273 4.1465
1.0 0.0000 8.2563 0.2954 16.1239 35.0000 91.8146 113.1790 57.0168 34.2069 1.0000 0.8636 0.8636 0.6754 0.8069 4.2095
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Figure 7. Sum of membership grades of objective functions for Example 1.

5.3. Example 2: Banking Application

In this example, a real-life application was studied with the banking financial statement
management system of Maybank. The data of financial statements are shown in Table 5. They included
total assets, liabilities, total equity, earning and profit, taken from Halim et al. [68]. We have given six
objectives as Goal-1: assets, Goal-2: liabilities, Goal-3: equity, Goal-4: earning, Goal-5: profitability,
and Goal-6: financial statement. The decision variables were:

x1 = the amount of financial statement in year 2010.
x2 = the amount of financial statement in year 2011.
x3 = the amount of financial statement in year 2012.
x4 = the amount of financial statement in year 2013.
x5 = the amount of financial statement in year 2014.

Table 5. Data summarized from Maybank financial statement from year 2010 to 2014 (RM’ trillion).

Goal Year Total Aspiration Values

2010 2011 2012 2013 2014

Asset 0.3367 0.4516 0.4948 0.5603 0.6403 2.4837 2.4941
Liability 0.3080 0.4157 0.4509 0.5126 0.5856 2.2729 2.2633
Equity 0.0287 0.0325 0.0438 0.0477 0.0547 0.2074 0.2207
Profit 0.0038 0.0026 0.0057 0.0066 0.0067 0.0254 0.0292
Earnings 0.2908 0.3766 0.4256 0.4792 0.5518 2.1241 2.1459

Total 0.9680 1.2790 1.4209 1.6064 1.8391 7.1135 7.1624

The fuzzy goals were as follows:

0.3367x1 + 0.4516x2 + 0.4948x3 + 0.5603x4 + 0.6403x5 ≥ 2.4837; (Goal 1)
0.3080x1 + 0.4157x2 + 0.4509x3 + 0.5126x4 + 0.5856x5 ≤ 2.2729; (Goal 2)
0.0287x1 + 0.0325x2 + 0.0438x3 + 0.0477x4 + 0.0547x5 ≥ 0.2074; (Goal 3)
0.0038x1 + 0.0026x2 + 0.0057x3 + 0.0066x4 + 0.0067x5 ≥ 0.0254; (Goal 4)
0.2908x1 + 0.3766x2 + 0.4256x3 + 0.4792x4 + 0.5518x5 ≥ 2.1241; (Goal 5)
0.9680x1 + 1.2790x2 + 1.4209x3 + 1.6064x4 + 1.8391x5 ≥ 7.1135; (Goal 6)

x1, x2, x3, x4, x5 ≥ 0 (non-negativity restrictions)

Based on the discussion with experts, the type of linguistic preference relations among the bank
financial statement goals were:
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1. Asset (Goal-1) is moderately more important than liability (Goal-2): µ12.
2. Liability (Goal-2) is moderately more important than earning (Goal-4): µ24.
3. Liability (Goal-2) is moderately more important than profitability (Goal-5): µ25.
4. Asset (Goal-1) is moderately more important than profitability (Goal-5): µ15.

Now, the problem was solved using solution approach of Algorithm 1 by applying proposed
FGP-IFPR models and results were obtained.

5.4. Solution Steps for Example 2

The solution steps are summarized as follows.
Step-1 Start with given multi-objective programming problem as follows:

Maximize Z1 = 0.3367x1 + 0.4516x2 + 0.4948x3 + 0.5603x4 + 0.6403x5 ≥ 2.4837 (27a)

Minimize Z2 = 0.3080x1 + 0.4157x2 + 0.4509x3 + 0.5126x4 + 0.5856x5 ≤ 2.2729 (27b)

Maximize Z3 = 0.0287x1 + 0.0325x2 + 0.0438x3 + 0.0477x4 + 0.0547x5 ≥ 0.2074 (27c)

Maximize Z4 = 0.0038x1 + 0.0026x2 + 0.0057x3 + 0.0066x4 + 0.0067x5 ≥ 0.0254 (27d)

Maximize Z5 = 0.2908x1 + 0.3766x2 + 0.4256x3 + 0.4792x4 + 0.5518x5 ≥ 2.1241 (27e)

Maximize Z6 = 0.9680x1 + 1.2790x2 + 1.4209x3 + 1.6064x4 + 1.8391x5 ≥ 7.1135 (27f)

subject to x1, x2, x3, x4, x5 ≥ 0 (27g)

Step-2 Formulate the problem as six single objective problems (based on the respective goals).
Step-3 On solving each optimization problem individually, we get the aspiration values, as given

in Table 5. In addition, the upper limit for minimization fuzzy goal Z2 is u2 = 2.2729 and lower limits
for maximization fuzzy goals Z1 is t1 = 2.4837, Z3 is t3 = 0.2115, Z4 is t4 = 0.0280, Z5 is t5 = 2.1248,
Z6 is t6 = 7.1228, with ak as their corresponding aspiration levels.

Step-4 The membership function (µk) for each objective function Zk corresponding to each
situation can be modeled using Equations (7) and (8) as follows:

µ1 =
(Z1 − 2.4837)

(2.4941− 2.4837)
; µ2 =

(2.2729− Z2)

(2.2729− 2.2633)
; µ3 =

(Z3 − 0.2115)
(0.2207− 0.2115)

;

µ4 =
(Z4 − 0.0280)

(0.0292− 0.0280)
; µ5 =

(Z5 − 2.1248)
(2.1459− 2.1248)

; µ6 =
(Z6 − 7.122)

(7.1624− 7.1228)
.

Step-5 The intuitionistic fuzzy functions for the preference relations are presented in this step.
Suppose µ12, µ24, µ25, and µ15 are the intuitionistic fuzzy membership function and ν12, ν24, ν25, and ν15

are intuitionistic fuzzy non-membership function with respect to the linguistic preference relations
as given in problem definition. Thus, the linear membership function and non-membership function
formulation for each preference relation using Equations (15a)–(15c) and Equations (16a)–(16c) are
calculated as:

µ12 =
(µ1 − µ2 + 1)

2
; µ24 =

(µ2 − µ4 + 1)
2

; µ25 =
(µ2 − µ5 + 1)

2
; µ15 =

(µ1 − µ5 + 1)
2

;

v12 =
(1− µ1 + µ2)

2
; v24 =

(1− µ2 + µ4)

2
; v25 =

(1− µ2 + µ5)

2
; v15 =

(1− µ1 + µ5)

2
;

The exponential membership function and non-membership function formulation for each
preference relation using Equations (17a)–(17c) and Equations (18a)–(18c) are calculated as:

µ12 =
(1− e−s.(µ1−µ2+1)/2)

(1− e−s)
; µ24 =

(1− e−s.(µ2−µ4+1)/2)

(1− e−s)
;
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µ25 =
(1− e−s.(µ2−µ5+1)/2)

(1− e−s)
; µ15 =

(1− e−s.(µ1−µ5+1)/2)

(1− e−s)
;

v12 =
(e−s.(µ1−µ2+1)/2 − e−s)

(1− e−s)
; v24 =

(e−s.(µ2−µ4+1)/2 − e−s)

(1− e−s)
;

v25 =
(e−s.(µ2−µ5+1)/2 − e−s)

(1− e−s)
; v15 =

(e−s.(µ1−µ5+1)/2 − e−s)

(1− e−s)
;

The hyperbolic membership function and non-membership function formulation for each
preference relation using Equations (19a)–(19c) and Equations (20a)–(20c) are calculated as:

µ12 =
e3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; µ24 =

e3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
;

µ25 =
e3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; µ15 =

e3(µ1−µ5)

e−3(µ1−µ5) + e3(µ1−µ5)
;

v12 =
e−3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; v24 =

e−3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
;

v25 =
e−3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; v15 =

e−3(µ1−µ5)

e−3(µ1−µ5) + e3(µ1−µ5)
;

Step-6 Problem formulations: The FGP-IFPR model of numerical Example-2 are formulated
using preference relation functions. We have applied three different kinds of intuitionistic fuzzy
functions for preference relations, namely, linear, exponential, and hyperbolic, there will be three
different formulations.

Formulation I: FGP-IFPR for linear.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + (1− α).(S12 + S24 + S25 + S32) (28a)

subject to,

µ12 ≤
(µ1 − µ2 + 1)

2
; µ24 ≤

(µ2 − µ4 + 1)
2

; µ25 ≤
(µ2 − µ5 + 1)

2
; µ15 ≤

(µ1 − µ5 + 1)
2

(28b)

v12 ≥
(1− µ1 + µ2)

2
; v24 ≥

(1− µ2 + µ4)

2
; v25 ≥

(1− µ2 + µ5)

2
; v15 ≥

(1− µ1 + µ5)

2
(28c)

µ1 =
(Z1 − 2.4837)

(2.4941− 2.4837)
; µ2 =

(2.2729− Z2)

(2.2729− 2.2633)
; µ3 =

(Z3 − 0.2115)
(0.2207− 0.2115)

; (28d)

µ4 =
(Z4 − 0.0280)

(0.0292− 0.0280)
; µ5 =

(Z5 − 2.1248)
(2.1459− 2.1248)

; µ6 =
(Z6 − 7.122)

(7.1624− 7.1228)
(28e)

S12 = µ12 − v12; S24 = µ24 − v24; S25 = µ25 − v25; S32 = µ15 − v15; (28f)

1 ≥ µ12 ≥ v12 ≥ 0; 1 ≥ µ24 ≥ v24 ≥ 0; 1 ≥ µ25 ≥ v25 ≥ 0; 1 ≥ µ15 ≥ v15 ≥ 0; (28g)

0 ≤ µ12 + v12 ≤ 1; 0 ≤ µ24 + v24 ≤ 1; 0 ≤ µ25 + v25 ≤ 1; 0 ≤ µ15 + v15 ≤ 1; (28h)

0 ≤ µ1 ≤ 1; 0 ≤ µ2 ≤ 1; 0 ≤ µ3 ≤ 1; 0 ≤ µ4 ≤ 1; 0 ≤ µ5 ≤ 1; 0 ≤ µ6 ≤ 1. (28i)

Formulation II: FGP-IFPR for exponential.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + (1− α).(S12 + S24 + S25 + S32) (29a)

subject to,
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µ12 ≤
(1− e−s.(µ1−µ2+1)/2)

(1− e−s)
; µ24 ≤

(1− e−s.(µ2−µ4+1)/2)

(1− e−s)
; (29b)

µ25 ≤
(1− e−s.(µ2−µ5+1)/2)

(1− e−s)
; µ15 ≤

(1− e−s.(µ1−µ5+1)/2)

(1− e−s)
(29c)

v12 ≥
(e−s.(µ1−µ2+1)/2 − e−s)

(1− e−s)
; v24 ≥

(e−s.(µ2−µ4+1)/2 − e−s)

(1− e−s)
(29d)

v25 ≥
(e−s.(µ2−µ5+1)/2 − e(−s))

(1− e−s)
; v15 ≥

(e−s.(µ1−µ5+1)/2 − e−s)

(1− e−s)
(29e)

Equations (28f)–(28i)

Formulation III: FGP-IFPR for hyperbolic.

Maximize α.(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + (1− α).(S12 + S24 + S25 + S32) (30a)

subject to,

µ12 ≤
e3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; µ24 ≤

e3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
; (30b)

µ25 ≤
e3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; µ15 ≤

e3(µ1−µ5)

e−3(µ1−µ5) + e3(µ1−µ5)
(30c)

v12 ≥
e−3(µ1−µ2)

e−3(µ1−µ2) + e3(µ1−µ2)
; v24 ≥

e−3(µ2−µ4)

e−3(µ2−µ4) + e3(µ2−µ4)
; (30d)

v25 ≥
e−3(µ2−µ5)

e−3(µ2−µ5) + e3(µ2−µ5)
; v15 ≥

e−3(µ1−µ5)

e−3(µ1−µ5) + e3(µ1−µ5)
; (30e)

Equations (28f)–(28i)

Step-7 Now, we solve the above FGP-IFPR model of Example 2 using any linear and non linear
optimization solver and software.

Step-8 Stop, the optimal and feasible solution is obtained.

5.4.1. Results and Discussion for Example 2

The problem solved in Example 2 was a real-life problem. The solutions i.e., amount of financial
statement in 2010, 2011, 2012, 2013, and 2014 (x1, x2, x3, x4, and x5) were determined. The problem
consisted of six different goals. Similar to Example 1, membership grade, non-membership grades,
goal values and their satisfaction levels were determined and presented in Tables 6 and 7. In Table 6,
the preference membership grades decreased for linear and exponential FGP-IFPR models from
α = 0.0–1.0 whereas it increased for non-membership grades. As a result, score function decreased
for increasing values of α. For hyperbolic FGP-IFPR model, it was similar to linear and exponential
FGP-IFPR models from α = 0–0.9. At α = 1, there was an increase in score function value from 0
to 0.5933.

The value of score function remained constant for multiple values of α. For linear FGP-IFPR,
it remained constant as 0.2572 for α = 0.2–0.8 and became 0 for α = 0.9–1. For exponential FGP-IFPR
model, the score function was 1.08345 for α = 0.2–0.3, then again it became constant with value 0.5124
for α = 0.4–0.8. If we see Figure 8, the hyperbolic FGP-IFPR model from α = 0.4–0.9 performed
better for score function values than other models, whereas linear FGP-IFPR model performed worst
among all FGP-IFPR models from α = 0–1. In Table 7 and Figure 9, the sum of individual membership
grades ∑ µk also tended towards increased value for all models of linear, exponential and hyperbolic
preference relations. If we compared all three models, the exponential FGP-IFPR had the larger value
of ∑ µk for all values of α. The solution values of all the objectives are also provided in Table 7.
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Table 6. Result values for preference membership, non-membership grades and score function of fuzzy goal programming with intuitionistic fuzzy relations
(FGP-IFPR) for Example 2.

Formulation α µ12 µ24 µ25 µ15 ∑ µRi(k, l) v12 ν24 ν25 ν15 ∑ νRi(k, l) ∑ SRi(k, l)

I:FGP-IFPR 0.0 0.5834 0.5120 0.5834 0.5000 2.1789 0.4165 0.4879 0.4165 0.5000 1.8209 0.3579
for Linear 0.1 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572

0.2 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.3 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.4 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.5 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.6 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.7 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.8 0.5000 0.6286 0.5000 0.5000 2.1286 0.5000 0.3713 0.5000 0.5000 1.8713 0.2572
0.9 0.5000 0.5000 0.5000 0.5000 2.0000 0.5000 0.5000 0.5000 0.5000 2.0000 0.0000
1.0 0.5000 0.5000 0.5000 0.5000 2.0000 0.5000 0.5000 0.5000 0.5000 2.0000 0.0000

II:FGP-IFPR 0.0 0.7029 0.6320 0.6198 0.7004 2.6500 0.2971 0.3680 0.3802 0.2996 1.3450 1.3100
for Exponential 0.1 0.7145 0.7489 0.5000 0.6038 2.5672 0.2855 0.2511 0.5000 0.3962 1.4328 1.1344

0.2 0.6842 0.7879 0.5000 0.5696 2.5417 0.3158 0.2121 0.5000 0.4304 1.4583 1.0835
0.3 0.6842 0.7879 0.5000 0.5696 2.5417 0.3158 0.2121 0.5000 0.4304 1.4583 1.0835
0.4 0.6225 0.6337 0.5000 0.5000 2.2562 0.3775 0.3663 0.5000 0.5000 1.7438 0.5124
0.5 0.6225 0.6337 0.5000 0.5000 2.2562 0.3775 0.3663 0.5000 0.5000 1.7438 0.5124
0.6 0.6225 0.6337 0.5000 0.5000 2.2562 0.3775 0.3663 0.5000 0.5000 1.7438 0.5124
0.7 0.6225 0.6337 0.5000 0.5000 2.2562 0.3775 0.3663 0.5000 0.5000 1.7438 0.5124
0.8 0.6225 0.6337 0.5000 0.5000 2.2562 0.3775 0.3663 0.5000 0.5000 1.7438 0.5124
0.9 0.6225 0.5654 0.5000 0.5000 2.1879 0.3775 0.4346 0.5000 0.5000 1.8121 0.3758
1.0 0.4827 0.4869 0.5000 0.5000 1.9696 0.4221 0.4528 0.5000 0.5000 1.8750 0.0946

III:FGP-IFPR 0.0 0.6438 0.5880 0.5701 0.7057 2.5077 0.3562 0.4120 0.4299 0.2943 1.4924 1.0151
for Hyperbolic 0.1 0.6538 0.5825 0.5627 0.7085 2.5075 0.3462 0.4175 0.4373 0.2915 1.4926 1.0149

0.2 0.6634 0.6446 0.5000 0.6634 2.4715 0.3366 0.3554 0.5000 0.3366 1.5285 0.9430
0.3 0.5849 0.7435 0.5000 0.5849 2.4134 0.4151 0.2565 0.5000 0.4151 1.5867 0.8267
0.4 0.5000 0.8240 0.5000 0.5000 2.3240 0.5000 0.1760 0.5000 0.5000 1.6760 0.6479
0.5 0.5000 0.8240 0.5000 0.5000 2.3240 0.5000 0.1760 0.5000 0.5000 1.6760 0.6479
0.6 0.5000 0.8240 0.5000 0.5000 2.3240 0.5000 0.1760 0.5000 0.5000 1.6760 0.6479
0.7 0.5000 0.8240 0.5000 0.5000 2.3240 0.5000 0.1760 0.5000 0.5000 1.6760 0.6480
0.8 0.5000 0.8240 0.5000 0.5000 2.3240 0.5000 0.1760 0.5000 0.5000 1.6760 0.6480
0.9 0.5000 0.7967 0.5000 0.5000 2.2967 0.5000 0.2033 0.5000 0.5000 1.7033 0.5934
1.0 0.5000 0.5000 0.5000 0.5000 2.0000 0.5000 0.5000 0.5000 0.5000 2.0000 0.0000



Symmetry 2020, 12, 1548 25 of 32

Table 7. Result values for solution: Objective functions and their membership grade of FGP-IFPR for Example 2.

Formulation α x1 x2 x3 x4 x5 Z1 Z2 Z3 Z4 Z5 Z6 µ1 µ2 µ3 µ4 µ5 µ6 ∑ µk

I:FGP-IFPR 0.0 0.000 0.4058 1.3717 2.8978 0.0000 2.4856 2.2726 0.2115 0.0280 2.1253 7.1233 0.1909 0.0240 0.0000 0.0000 0.02400 0.0328 0.2718
for Linear 0.1 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966

0.2 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1300 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.3 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.4 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.5 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.6 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2703 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.7 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.8 0.0000 0.3371 2.8886 1.6148 0.0000 2.4863 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1977 1.2966
0.9 0.0000 0.2600 2.4077 2.1010 0.0000 2.4860 2.2707 0.2141 0.0282 2.1295 7.1289 0.2228 0.2228 0.2860 0.2228 0.2228 0.1747 1.3521
1.0 0.0000 0.2600 2.4077 2.1010 0.0000 2.4860 2.2707 0.2141 0.0282 2.1295 7.1289 0.2228 0.2228 0.2860 0.2228 0.2228 0.1747 1.3521

II:FGP-IFPR 0.0 0.0000 0.4061 1.3705 2.8989 0.0000 2.4857 2.2727 0.2115 0.0280 2.1253 7.1234 0.1949 0.0199 0.0000 0.0000 0.0254 0.0356 0.2758
for Exponential 0.1 0.0000 0.2869 4.1703 0.5278 0.0000 2.4887 2.2702 0.2176 0.0280 2.1358 7.1403 0.4843 0.2827 0.6150 0.0000 0.5229 0.4629 2.3678

0.2 0.0000 0.2586 4.7943 0.0000 0.0000 2.4890 2.2693 0.2184 0.0280 2.1379 7.1430 0.5116 0.3786 0.7496 0.000 0.6188 0.5308 2.7894
0.3 0.0000 0.2586 4.7943 0.0000 0.0000 2.4890 2.2693 0.2184 0.0280 2.1379 7.1430 0.5116 0.3786 0.7496 0.0000 0.6188 0.5308 2.7894
0.4 0.0000 0.0417 4.9917 0.0000 0.0000 2.4888 2.2682 0.2200 0.0286 2.1403 7.1463 0.4920 0.4920 0.9239 0.4684 0.7323 0.6138 3.7224
0.5 0.0000 0.0417 4.9917 0.0000 0.0000 2.4888 2.2682 0.2200 0.0286 2.1403 7.1463 0.4920 0.4920 0.9239 0.4684 0.7323 0.6138 3.7224
0.6 0.0000 0.0417 4.9917 0.0000 0.0000 2.4888 2.2682 0.2200 0.0286 2.1403 7.1463 0.4920 0.4920 0.9239 0.4684 0.7323 0.6138 3.7224
0.7 0.0000 0.0417 4.9917 0.0000 0.0000 2.4888 2.2682 0.2200 0.0286 2.1403 7.1463 0.4920 0.4920 0.9239 0.4684 0.7323 0.6138 3.7224
0.8 0.0000 0.0417 4.9917 0.0000 0.0000 2.4888 2.2682 0.2200 0.0286 2.1403 7.1463 0.4920 0.4920 0.9239 0.4684 0.7323 0.6138 3.7224
0.9 0.0000 0.0000 4.7318 0.2629 0.0000 2.4886 2.2684 0.2198 0.0287 2.1399 7.1458 0.4734 0.4734 0.9017 0.5889 0.7137 0.6013 3.7525
1.0 0.0000 0.0000 4.7318 0.2629 0.0000 2.4886 2.2684 0.2198 0.0287 2.1399 7.1458 0.4734 0.4734 0.9017 0.5889 0.7137 0.6013 3.7525

III:FGP-IFPR 0.0 0.0000 0.4039 1.3822 2.8897 0.0000 2.4853 2.2723 0.2115 0.0280 2.1251 7.1224 0.1579 0.0594 0.0000 0.0000 0.0122 0.0093 0.2387
for Hyperbolic 0.1 0.0000 0.4041 1.3810 2.8905 0.0000 2.4854 2.2724 0.2115 0.0280 2.1251 7.1225 0.1615 0.0555 0.0000 0.0000 0.0135 0.0118 0.2423

0.2 0.0000 0.3837 1.8610 2.4841 0.0000 2.4859 2.2720 0.2125 0.0280 2.1269 7.1254 0.2124 0.0992 0.1055 0.0000 0.0993 0.0860 0.6024
0.3 0.0000 0.3607 2.3693 2.0541 0.0000 2.4861 2.2712 0.2135 0.0280 2.1285 7.1276 0.2346 0.1774 0.2151 0.0000 0.1774 0.1413 0.9458
0.4 0.0000 0.3372 2.8886 1.6149 0.0000 2.4864 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1978 1.2967
0.5 0.0000 0.3372 2.8886 1.6149 0.0000 2.4864 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1978 1.2966
0.6 0.0000 0.3372 2.8886 1.6149 0.0000 2.4864 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1978 1.2966
0.7 0.0000 0.3372 2.8886 1.6149 0.0000 2.4864 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1978 1.2966
0.8 0.0000 0.3372 2.8886 1.6149 0.0000 2.4864 2.2704 0.2145 0.0280 2.1302 7.1298 0.2572 0.2572 0.3271 0.0000 0.2572 0.1978 1.2966
0.9 0.0000 0.3283 2.8332 1.6709 0.0000 2.4863 2.2705 0.2145 0.0280 2.1301 7.1297 0.2533 0.2533 0.3224 0.0257 0.2533 0.1951 1.3030
1.0 0.0000 0.2600 2.4078 2.1011 0.0000 2.4860 2.2708 0.2141 0.0283 2.1295 7.1289 0.2228 0.2228 0.2861 0.2228 0.2228 0.1748 1.3522
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Figure 8. Score function for Example 2
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Figure 9. Sum of membership grades of objective functions for Example 2.

5.5. Efficiency Analysis

The proposed method was applied to solve two experimental problems. Example 1 was a
numerical problem and Example 2 was a banking financial statement problem. The procedure
followed the solution algorithm explained in Section 4 beginning with determining the individual
best and worst objective function values, then the choice and construction of membership and
non-membership functions based on decision maker linguistic preference relation and constructing
FGP-IFPR. The computational time was acceptable for all the problem models.

Here, FGP-IFPR models for linear, exponential and hyperbolic membership functions provided
different optimal solutions. To determine the efficiency of the FGP-IFPR approach, we evaluated
the degree of closeness of the outcome to the optimal solution for the different models. To measure
closeness, the distance function was utilized, see Pramanik and Roy [69], Zheng et al. [70] and
Zhao et al. [51]. A new distance function for selecting the priority solution for the proposed FGP-IFPR
models was introduced in this paper.

D(x) =

(
K

∑
k=1

(1− µk)
2 +

K

∑
k=1

(1− SRi (k, l))2

)1/2

(31)

The distance function with smaller value provided the most satisfying solution as it represented
the best solution among all other solutions. Furthermore, the proposed FGP-IFPR approach considered
a utility function divided into two criteria, namely: (1) sum of individual membership function
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and (2) sum of preference membership function achievement level. Based on these two criteria
with a different value of α, the performance of the different FGP-IFPR models could be analyzed.
In Table 8, Figures 10 and 11, the results for distance function values are tabulated and plotted for
different values of α and for three of FGP-IFPR models. In Figure 10, for Example 1, at all values of
α = 0− 1, the hyperbolic FGP-IFPR model performed best, and linear FGP-IFPR performed worst.
The overall performance ranking was Hyperbolic > Exponential > Linear. For Example 2, at α = 0.1,
the performance pattern was Exponential > Linear > Hyperbolic, whereas for rest of the values of α,
it is Exponential > Hyperbolic > Linear see in Figure 11. It can be seen that, with respect the problem
type and value of α, the performance of linear, exponential and hyperbolic FGP-IFPR models changed.

Table 8. Distance function values.

FGP-IFPR for Example 1 FGP-IFPR for Example 2

α Linear Exponential Hyperbolic Linear Exponential Hyperbolic

0.0 1.7975 1.7864 1.5588 2.9724 2.7057 2.7971
0.1 1.7975 1.7864 1.5579 2.7024 2.1566 2.7976
0.2 1.7975 1.7864 1.4573 2.7024 2.0911 2.7000
0.3 1.7975 1.6376 1.3693 2.7024 2.0911 2.6333
0.4 1.7543 1.3184 1.2967 2.7024 2.0328 2.6221
0.5 1.7543 1.3184 1.2496 2.7024 2.0328 2.6221
0.6 1.7543 1.3184 1.2584 2.7024 2.0328 2.6221
0.7 1.7543 1.3184 1.2584 2.7024 2.0328 2.6221
0.8 1.7543 1.3980 1.2585 2.7024 2.0328 2.6221
0.9 1.8640 1.5789 1.2584 2.7580 2.0736 2.7580
1.0 1.9969 1.9171 1.9125 2.7580 2.1885 2.6257
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Figure 10. Distance measure for Example 1.
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Figure 11. Distance measure for Example 2.

6. Conclusions, Limitations, and Future Directions

The paper aims to propose a fuzzy goal programming with intuitionistic fuzzy preference relations
(FGP-IFPR) approach. The FGP-IFPR model involves the achievement of the fuzzy goals and uncertain
preference relationships among goals with the degree of belongingness and non-belongingness,
simultaneously. Linguistically imprecise relation represents the associations amongst the fuzzy
goals. The IFPRs among goals are addressed as linear and non-linear (exponential and hyperbolic)
functions. The use of non-linear functions for the imprecise relative importance among fuzzy objective
lead towards the more realistic representation of the linguistic term and provide flexibility in the
decision-making process. The perception of intuitionistic fuzzy exponential and hyperbolic functions
have more justified significance because it can smoothly overcome the weaknesses associated with the
structure of the Gaussian function amidst non-zero functional values affecting its broad range of the
footprint. The mathematical expressibility of intuitionistic fuzzy exponential and hyperbolic functions
only requires two parametric values. The objective function of FGP-IFPR is a convex combination of
membership degrees of fuzzy goals and score function of the IFPRs. We presented the three linear,
exponential, and hyperbolic FGP-IFPR formulations and an extensive step by step solutions procedure
to find the optimal solutions for these formulated models. An experimental study is done to provide a
comprehensive validation of these approaches. Two numerical examples are considered for proposed
models. The first example is a numerical problem, and the second example is the banking financial
statement problem. For both instances, the optimal goal values, decision variables, and fuzzy goals are
evaluated along with the grades and total score values to three FGP-IFPR models for different values of
the weighted objective parameter. On the analysis of the obtained optimal solutions to three FGP-IFPR
models by using the distance function, it has been found that, in case of example 1, the FGP-IFPR for
hyperbolic performs best and FGP-IFPR for linear performs worst. The ranking of the efficiency of
FGP-IFPR models is Hyperbolic > Exponential > Linear. For example 2, the ranking of the efficiency
of FGP-IFPR models is Exponential > Hyperbolic > Linear.

The proposed FGP-IFPR framework has multiple advantages over several existing approaches in
terms of: (1) better representation of uncertain importance relations among goals, (2) including the
concept of the intuitionistic fuzzy set for preference relations, (3) simultaneously evaluating the degree
of belongingness and non-belongingness, (4) preventing the difficulty of providing weights to the
goals, and (5) enhancing the membership degree as well as efficiently reduce the non-membership
degree. All the existing methods dealt only with the linear fuzzy preference relations. The limitation
of the work is that the judgements are drawn based on considered models that may change according
to the problem. Further, only three types of preference relations namely “slightly more important”,
or “moderately more important”, or “significantly more important” are considered.
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In the future, we will increase the numbers of preference relations, that are needed to represent
by the intuitionistic fuzzy exponential and hyperbolic functions. The proposed models can be
applied to a large number of real-life applications where the number of objectives is enormous,
for example, manufacturing, human resource management, sustainable economy, forest management,
portfolio optimization. This work can be further extended to the FGP-IFPR model with other non-linear
functions like parabolic, s-curve, and so on, and its applications to real-life problems.
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