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Abstract: A geometrical formulation for adjoint-symmetries as one-forms is studied for general
partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning
of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this
formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are
shown to have another geometrical formulation given by one-forms that are invariant under the flow
generated by the system on the solution space. This result is generalized to systems of evolution
equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up
to a functional multiplier of a normal one-form associated with the constraint equations. All of the
results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.
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1. Introduction

Symmetries are a fundamental coordinate-free structure of a partial differential equation (PDE).
In geometrical terms, an infinitesimal symmetry is an evolutionary (vertical) vector field that is tangent
to the solution space of a PDE, where the components of the vector field are the solutions of the
linearization of the PDE on its solution space (see, e.g., [1–4]).

Knowledge of the symmetries of a PDE can be used to map given solutions into other solutions,
find invariant solutions, detect and find mappings in a target class of PDEs, detect integrability, and find
conservation laws through Noether’s theorem when a PDE has a variational (Lagrangian) structure.

Solutions of the adjoint linearization of a PDE on its solution space are known as
adjoint-symmetries. This terminology was first introduced and explored for ordinary differential
equations (ODEs) in [5–8] and then generalized to PDEs in [9,10] (see [11] for a recent overview
for PDEs). When a PDE lacks a variation structure, then its adjoint-symmetries will differ from
its symmetries.

Knowledge of the adjoint-symmetries of a PDE can be used for several purposes just as symmetries
can. Specifically, solutions of the PDE can be found analogously to the invariant surface condition
associated with a symmetry; mappings into a target class of PDEs can be detected and found
analogously to characterizing the symmetry structure of the target class; integrability can be detected
analogously to the existence of higher order symmetries; and conservation laws can be determined
analogously to symmetries that satisfy a variational condition. In particular, the counterpart of
variational symmetries for a general PDE is provided by multipliers, which are well known to be
adjoint-symmetries that satisfy a Euler–Lagrange condition.
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However, a simple geometrical meaning (apart from abstract formulations) for adjoint-symmetries
has yet to be developed in general for PDEs. Several significant new steps toward this goal will be
taken in the present paper.

Firstly, for general PDE systems, adjoint-symmetries will be shown to correspond to evolutionary
(vertical) one-forms that functionally vanish on the solution space of the system. This formulation has
two interesting applications. It will provide a geometrical derivation of a well-known formula that
generates a conservation law from a pair consisting of a symmetry and an adjoint-symmetry [9,12].
It also will yield three different actions of symmetries on adjoint-symmetries from Cartan’s formula
for the Lie derivative, providing a geometrical formulation of some recent work that used an algebraic
viewpoint [13].

Secondly, for evolution systems, these adjoint-symmetry one-forms will be shown to have the
structure of a Lie derivative of a simpler underlying one-form, utilizing the flow generated by
the system. As a result, adjoint-symmetries of evolution systems will geometrically correspond
to one-forms that are invariant under the flow on the solution space of the system. This directly
generalizes the geometrical meaning of adjoint-symmetries known for ODEs [8].

Thirdly, a bridge between the preceding results for general PDE systems and evolution systems
will be developed by considering evolution systems with spatial constraints. These systems are
ubiquitous in applied mathematics and mathematical physics, for example: Maxwell’s equations,
incompressible fluid equations, magnetohydrodynamical equations, and Einstein’s equations. For such
systems, invariance of the adjoint-symmetry one-form under the constrained flow will be shown to
hold up to a functional multiple of the normal one-form associated with the constraint equations.

Throughout, the approach will be concrete, rather than abstract, so that the results can be
readily understood and applied to specific PDE systems of interest in applied mathematics and
mathematical physics.

The rest of the paper is organized as follows. Section 2 discusses the evolutionary form of
vector fields and its counterpart for one-forms in the mathematical framework of calculus in jet
space, which will underlie all of the main results. Section 3 reviews the geometrical formulation of
symmetries and presents the counterpart geometrical formulation of adjoint-symmetries. In addition,
some examples of adjoint-symmetries of physically interesting PDE systems are discussed. Section 4
gives the two applications of adjoint-symmetry one-forms. Section 5 develops the main results for
adjoint-symmetries of evolution systems and extends these results to constrained evolution systems.
Some concluding remarks are made in Section 6.

2. Vector Fields, One-Form Fields, and Their Evolutionary Form

To begin, some essential tools [3,11,14] from calculus in jet space will be reviewed. This will set
the stage for a discussion of the evolutionary form of vector fields and its counterpart for one-forms,
as needed for the main results in the subsequent sections.

Independent variables are denoted xi, i = 1, . . . , n, and dependent variables are denoted uα,
α = 1, . . . , m. Derivative variables are indicated by subscripts employing a multi-index notation:
I = {i1, . . . , iN}, uα

I = uα
i1···iN

:= ∂xi1 · · · ∂xiN uα, |I| = N; I = ∅, uα
I := uα, |I| = 0. Some useful notation

is as follows: ∂ku will denote the set {uα
I }|I|=k of all derivative variables of order k ≥ 0; u(k) will denote

the set {uα
I }0≤|I|≤k of all derivative variables of all orders up to k ≥ 0. The summation convention of

summing over any repeated (multi-)index in an expression is used throughout.
Jet space is the coordinate space J = (xi, uα, uα

j , . . .). A smooth function uα = φα(x) : Rn → Rm

determines a point in J: at any xi = (x0)
i; the values (u0)

α := φα(x0) and the derivative values
(u0)

α
J := ∂j1 · · · ∂jN φα(x0) for all orders N ≥ 1 give a map,

uα = φα(x)
x0→ ((x0)

i, (u0)
α, (u0)

α
j , . . .) ∈ J. (1)
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In jet space, the primitive geometric objects consist of partial derivatives ∂xi , ∂uα
J
, and differentials

dxi, duα
J . They are related by duality (hooking) relations:

∂xicdxj = δ
j
i , (2)

∂uα
I
cduβ

J = δ
β
α δI

J . (3)

It will be useful to also introduce the geometric contact one-forms:

Θα
I = duα

I − uα
Iidxi. (4)

Under the evaluation map (1), the pull back of a contact one-form vanishes.
Total derivatives are given by Di = ∂xi + uα

i J∂uα
J
, which corresponds to the chain rule under

the evaluation map (1). Higher total derivatives are defined by DJ = Dj1 · · ·DjN , J = {j1, . . . , jN},
|J| = N. For J = ∅, D∅ = id is the identity operator, where |∅| = 0. In particular, DJuα = uα

J ,
and DJduα = duα

J .

A differential function is a function f (x, u(k)) defined on a finite jet space J(k) =

(xi, uα, uα
j , . . . , uα

j1···jk ) of order k ≥ 0. The Frechet derivative of a differential function f is given by

f ′ = fuα
I
DI (5)

which acts on (differential) functions Fα. The adjoint-Frechet derivative of a differential function f is
given by

( f ′∗)α = (−1)|I|DI fuα
I

(6)

which acts on (differential) functions F, where the right-hand side is viewed as a composition
of operators.

The Frechet second-derivative is given by

f ′′(F1, F2) = f
uα

I uβ
J
(DI Fα

1 )(DJ Fβ
2 ). (7)

This expression is symmetric in the pair of functions (Fα
1 , Fα

2 ).
The commutator of two differential functions f1 and f2 is given by [ f1, f2] = f ′2( f1)− f ′1( f2).
The Euler operator (variational derivative) is given by

Euα = (−1)|I|DI∂uα
I
. (8)

It characterizes total divergence expressions: Euα( f ) = 0 holds identically iff f = DiFi for some
differential vector function Fi(x, u(k)). The product rule takes the form:

Euα( f1 f2) = f ′1
∗( f2)α + f ′2

∗( f1)α. (9)

The higher Euler operators
EI

uα = (I
J)(−1)|J|DJ∂uα

I J
(10)

characterize higher order total derivative expressions: EI
uα( f ) = 0 holds identically iff f =

Di1 · · ·Di|I|F
i1 ...i|I| for some differential tensor function Fi1 ...i|I|(x, u(k)).

The Frechet derivative is related to the Euler operator by:

f ′(F) = FαEuα( f ) + DiΓi(F; f ), Γi(F; f ) = (DJ Fα)Euα
i J
( f ). (11)
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The Frechet derivative and its adjoint are related by

F2 f ′(F1)− Fα
1 f ′∗(F2)α = DiΨi(F1, F2; f ), Ψi(F1, F2; f ) = (DKF2)(DJ Fα

1 )EK
uα

i J
( f ). (12)

Evolutionary Vector Fields and One-Form Fields

A vector field in jet space is defined as the geometric object,

Pi∂xi + Pα
I ∂uα

I
(13)

whose components are differential functions. Similarly, a one-form field in jet space is defined as the
geometric object,

Qidxi + QI
αduα

I (14)

whose components are differential functions. Total derivatives Di = ∂xi + uα
iI∂uα

I
represent trivial

vector fields that annihilate contact one-forms: DicΘα
J = 0.

Geometric counterparts of partial derivatives ∂uα
J

are evolutionary (vertical) differentials duα
J ,

where d is the evolutionary version of d: d2 = 0, dxi = 0. They satisfy the duality (hooking) relation:

∂uα
I
cduβ

J = δ
β
α δI

J . (15)

An evolutionary (vertical) vector field is the geometric object

Pα
I ∂uα

I
(16)

whose components are differential functions. Every vector field X = Pi∂xi + Pα
I ∂uα

I
has a unique

evolutionary form X̂ = X − PiDi = P̂α
I ∂uα

I
given by the components P̂α

I = Pα
I − Piuα

iI . Its dual
counterpart is an evolutionary (vertical) one-form field,

QI
αduα

I (17)

whose components are differential functions.
For later developments, it will be useful to define the functional pairing relation,

〈Pα
I ∂uα

I
, QI

αduα
I 〉 =

∫
Pα

I QI
α dx (18)

between evolutionary vector fields and evolutionary one-form fields. In the local form, this pairing is
given by the expression:

Pα
I QI

α mod total D. (19)

Two evolutionary one-forms will be considered functionally equivalent iff their pairings with an
arbitrary evolutionary vector field agree,

〈Pα
I ∂uα

I
, Q1

J
βduβ

J 〉 = 〈P
α
I ∂uα

I
, Q2

J
βduβ

J 〉, (20)

or in the local form,

Pα
I (Q1

I
α −Q2

I
α) = 0 mod total D. (21)

The functional equivalence of one-forms is closely related to the notion of functional one-forms in
the variational bi-complex. See [3] for details.
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3. Geometric Formulation of Symmetries and Adjoint-Symmetries

Consider a general PDE system of order N consisting of M equations,

GA(x, u(N)) = 0, A = 1, . . . , M (22)

where xi, i = 1, . . . , n, are the independent variables and uα, α = 1, . . . , m, are the dependent variables.
The space of formal solutions uα(x) of the PDE system will be denoted E .

There are many equivalent starting points for the formulation of infinitesimal symmetries. For the
present purpose, the most useful one is given by evolutionary vector fields and utilizes only the Frechet
derivative. A symmetry is a vector field,

XP = Pα(x, u(k))∂uα (23)

whose component functions Pα(x, u(k)) are non-singular on E and satisfy the linearization of the PDE
system on E ,

(prXPGA)|E = G′(P)A|E = 0. (24)

This is the symmetry determining equation, and the functions Pα are called the characteristic of
the symmetry.

In this setting, an adjoint-symmetry consists of functions QA(x, u(l)) that are non-singular on E and
that satisfy the adjoint linearization of the PDE system on E ,

G′∗(Q)α|E = 0. (25)

This is the adjoint-symmetry determining equation.
In particular, the two determining equations (24) and (25) are formal adjoints of each other.

They coincide only in two cases: either G′ = G′∗, which is the necessary and sufficient condition
for a PDE system to be a Euler–Lagrange equation (namely, possess a variational structure) [1,3,11];
or G′ = −G′∗, which is the necessary and sufficient condition for a PDE system to be a linear,
constant-coefficient system of odd order [10].

Since Pα has the geometrical status as the components of the vector field (23), a natural question
is whether QA has any status given by the components of some other geometrical object [11,12].

It will be useful to work with a coordinate-free description of the PDE system (22) in
jet space. Such a system of equations (G1(x, u(N)), . . . , GM(x, u(N))) = 0 describes a set
of M surfaces in the finite space J(N)(x, u, ∂u, . . . , ∂Nu). Total derivatives of these equations,
(DI G1(x, u(N)), . . . , DI GM(x, u(N))) = 0, correspondingly describe sets of surfaces in the higher
derivative finite spaces J(N+|I|)(x, u, ∂u, . . . , ∂N+|I|u). Altogether, the set comprised by the equations
and the derivative equations for all orders |I| ≥ 0 corresponds to an infinite set of surfaces in jet space,
which can be identified with the solution space E .

As is well known, symmetry vector fields geometrically describe tangent vector fields with respect
to E . To see this explicitly, first consider the identities:

dGA = (GA)uα
I
duα

I , (26)

G′(P)A = prXPGA = prXPcdGA. (27)

Now, observe that dGA is the normal one-form to the surfaces GA = 0. The symmetry determining
equation (24) then shows that the prolonged vector field prXP is annihilated by the normal one-form
and hence is tangent to these surfaces iff XP is a symmetry of the PDE system.

This normal one-form (26) provides a natural way to associate a one-form to an adjoint-symmetry via:

vQ = QA(x, u(l))dGA. (28)
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A functionally equivalent one-form is obtained through integration by parts:

QAdGA = QA(GA)′(du) = G′∗(Q)αduα mod total D. (29)

Evaluating this one-form on the solution space E then gives

vQ|E = 0 mod total D. (30)

Thus, a one-form vQ functionally vanishes on the surfaces E iff its components QA are an
adjoint-symmetry.

This establishes a main geometrical result.

Theorem 1. Adjoint-symmetries describe evolutionary one-forms QAdGA that functionally vanish on the
solution space E of a PDE system (22).

These developments have used evolutionary (vertical) vector fields and evolutionary one-forms.
It is straightforward to reformulate everything in terms of full vector fields and full one-forms.

First, consider the normal one-form

dGA = (GA)xi dxi + (GA)′(du)

= (GA)′(Θ) + ((GA)xi + (GA)′(ui))dxi

= (GA)′(Θ) + DiGAdxi

(31)

which yields the relation
dGA|E = (GA)′(Θ)|E . (32)

Then, observe:
QAdGA|E = QA(GA)′(Θ)|E

= (GA)′∗(QA)α|EΘα mod total D.
(33)

As a consequence, QAdGA|E vanishes mod total D iff QA satisfies the adjoint-symmetry determining
Equation (25). Moreover, the determining equation itself can be expressed directly in terms of the
one-form QAdGA|E by EΘα(QAdGA)|E = (GA)′∗(QA)|E = 0.

Proposition 1. The adjoint-symmetry determining Equation (25) can be expressed geometrically as:

EΘα(QAdGA)|E = 0. (34)

Examples of Adjoint-Symmetries

To illustrate the results, some examples of PDEs that possess non-trivial adjoint-symmetries will
be given.

The Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0 (35)

for shallow water waves is an example of an evolutionary wave equation. Its symmetries X = P∂u are
the solutions of the determining equation

G′(P)|E = (DtP + Dx(uP) + D3
xP)|E = 0, (36)

with G′ = Dt + Dxu + D3
x being the Frechet derivative of the KdV equation, where P is a non-singular

function of t, x, u, and derivatives of u on the space of KdV solutions E . The determining equation for
adjoint-symmetries v = QG′(du) is the adjoint equation
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G′∗(Q)|E = (−DtQ− uDxQ− D3
xQ)|E = 0, (37)

where Q is a non-singular function of t, x, u, and derivatives of u on E .
KdV adjoint-symmetries up to first-order Q(t, x, u, ut, ux) are given by [9] the span of

Q(1) = 1, Q(2) = u, Q(3) = tu− x. (38)

The first two are part of a hierarchy of higher order adjoint-symmetries generated by a recursion
operator R = D2

x +
1
3 u + 1

3 D−1
x uDx applied to Q = u. The third one along with all of the ones

in the hierarchy are related to symmetries of the KdV equation through the Hamiltonian operator
H = Dx. If a linear combination of the lowest order adjoint-symmetries is used like an invariant
surface condition, c1 + c2(tu− x) + c3u = 0, then this yields u = (c2x − c1)/(c2t + c3), which is a
similarity solution of the KdV equation.

An example of a non-evolutionary equation is,

∆φt + φx∆φy − φy∆φx = 0 (39)

which governs the vorticity Ω = ∆φ for incompressible inviscid fluid flow in two spatial dimensions,
where the fluid velocity has the components ~v = (−φy, φx). The symmetries X = P∂φ of this equation
are the solutions of the determining equation,

G′(P)|E = (Dt∆P + φxDy∆P + ∆φyDxP− φyDx∆P− ∆φxDyP)|E = 0, (40)

where P is a non-singular function of t, x, y, φ, and derivatives of φ on the space of vorticity solutions
E , with G′ = Dt∆ + φxDy∆ + ∆φyDx − φyDx∆− ∆φxDy being the Frechet derivative of the vorticity
equation given in terms of the total Laplacian operator ∆ = D2

x + D2
y. The determining equation for

adjoint-symmetries v = QG′(dφ) is the adjoint equation,

G′∗(Q)|E = −(Dt∆Q + Dy∆(φxQ) + Dx(∆φyQ)− Dx∆(φyQ)− Dy(∆φxQ)|E = 0, (41)

where Q is a non-singular function of t, x, y, φ, and derivatives of φ on E .
The first-order adjoint-symmetries Q(t, x, y, φ, φt, φx, φy) are given by [13] the span of,

Q(1) = x2 + y2, Q(2) = φ, Q(3) = f (t), Q(4) = x f (t), Q(5) = y f (t), (42)

where f (t) is an arbitrary smooth function. If a linear combination of these adjoint-symmetries is used
like an invariant surface condition, c1(x2 + y2) + c2φ + c3 f (t) + c4x f (t) + c5y f (t) = 0, then taking
c2 = −1 gives φ = c1(x2 + y2) + (c3 + c4x + c5y) f (t), which is a constant vorticity solution, with Ω =

2c1 and ~v = (−2c1y + c5 f (t), 2c1x + c4 f (t)).
Maxwell’s equations in free space are an example of an evolution system with spatial constraints:

~Et −∇× ~B = 0, ~Bt +∇× ~E = 0, ∇ · ~E = ∇ · ~B = 0 (43)

(in relativistic units with the speed of light set to one). The symmetries X = ~PE · ∂~E + ~PB · ∂~B of this
system are the solutions of the determining equations

G′
(
~PE

~PB

) ∣∣∣∣
E
=


(Dt~PE −∇× ~PB)|E
(Dt~PB +∇× ~PE)|E

(∇ · ~PE)|E
(∇ · ~PB)|E

 = 0, (44)
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where ~PE and ~PB are non-singular vector functions of t, x, y, z, ~E, ~B, and derivatives of ~E, ~B on the space

of Maxwell solutions E , with G′ =


Dt −∇×
∇× Dt

∇· 0
0 ∇·

 being the Frechet derivative of the system in terms

of the total derivative operator ∇ = (Dx, Dy, Dz). The determining equation for adjoint-symmetries

v =
(
~QE ~QB QE QB

)
G′
(

d~E
d~B

)
is the adjoint equation

G′∗
(
~QE ~QB QE QB

) ∣∣∣
E
=

(
(−Dt~QE +∇× ~QB −∇QE)|E
(−Dt~QB −∇× ~QE −∇QB)|E

)
= 0, (45)

where the vectors ~QE, ~QB, and the scalars QE, QB, are non-singular functions of t, x, y, z, ~E, ~B,
and derivatives of ~E, ~B on E . Note that the adjoint ∗ here includes a matrix transpose applied to the
row matrix comprising the adjoint-symmetry vector and scalar functions.

Because Maxwell’s equations are a linear system and contain constraints, it possesses three types of
adjoint-symmetries [15,16]: elementary adjoint-symmetries such that ~QE, ~QB, QE, QB are functions only
of t, x, y, z; gauge adjoint-symmetries given by ~QE = ∇χE, ~QB = ∇χB, QE = −Dtχ

E, QB = −Dtχ
B

in terms of scalars χE and χB that are arbitrary non-singular functions of t, x, y, z, ~E, ~B, and derivatives
of ~E, ~B on E ; and a hierarchy of linear adjoint-symmetries. The linear adjoint-symmetries of zeroth
order are given by the span of

~QE = ~ξ × ~B + ζ~E, ~QB = −~ξ × ~E + ζ~B, QE = ~ξ · ~E, QB = ~ξ · ~B (46)

and
~QE = ~ξ × ~E− ζ~B, ~QB = ~ξ × ~B + ζ~E, QE = −~ξ · ~B, QB = ~ξ · ~E (47)

where
~ξ =~a0 +~a1 ×~x +~a2t + a3~x + a4t~x + (~a5 ·~x)~x− 1

2~a5(~x ·~x + t2),

ζ = a0 +~a2 ·~x + a3t + 1
2 a4(~x ·~x + t2) + (~a5 ·~x)t,

(48)

in terms of arbitrary constant scalars a0, a3, a4 and arbitrary constant vectors~a0,~a1,~a2,~a5, with ~x =

(x, y, z). The pair (~ξ, ζ) represents a conformal Killing vector in Minkowski space R3,1.
These two zeroth-order adjoint-symmetries are related by the duality symmetry (~E,~B) →

(~B,−~E). The linear first-order adjoint-symmetries are more complicated and involve conformal
Killing–Yano tensors. All higher order adjoint-symmetries can be obtained from the zeroth and
first-order adjoint-symmetries by taking Lie derivatives with respect to conformal Killing vectors.
Their explicit description can be found in [15,16]. An unexplored question is whether the lowest
order adjoint-symmetries can be used like an invariant surface condition to produce solutions of
Maxwell’s equations.

4. Some Applications

Two geometrical applications of Theorem 1 will be presented. The first application is a
geometrical derivation of a well-known formula that generates a conservation law from a pair
consisting of a symmetry and an adjoint-symmetry. This derivation will use the functional pairing (18).
The second application is a geometrical derivation of three actions of symmetries on adjoint-symmetries.
These symmetry actions have been obtained in recent work using an algebraic point of view [13].
They will be shown here to arise from Cartan’s formula for the Lie derivative of an adjoint-symmetry
one-form (28).



Symmetry 2020, 12, 1547 9 of 17

It will be useful to work with the determining equations for symmetries and adjoint-symmetries
off of the solution space E of a given PDE system (22). More precisely, the determining equations will
be expressed in the full jet space containing E .

Remark 1. A PDE system (22) will be assumed to be regular [11], so that Hadamard’s lemma holds: a differential
function f satisfies f |E = 0 iff f = R f (G), where R f is a linear differential operator whose coefficients are
non-singular on E .

Consequently, for symmetries, G′(P)A|E = 0 holds iff

G′(P)A = RP(G)A, (49)

and likewise for adjoint-symmetries, G′∗(Q)α|E = 0 holds iff

G′∗(Q)α = RQ(G)α, (50)

where RP and RQ are linear differential operators whose coefficients are non-singular on E .

4.1. Conservation Laws from Symmetries and Adjoint-Symmetries

The functional pairing (18) between a symmetry vector field (23) and an adjoint-symmetry
one-form (28) is given by,

〈prXP, vQ〉 = 〈prPα∂uα , QAdGA〉 =
∫

QAG′(P)A dx (51)

from identity (27). This pairing in local form (19) is the expression,

QAG′(P)A mod total D. (52)

There are two different ways to evaluate it.
First, since XP is a symmetry, QAG′(P)A = QARP(G)A. Second, since vQ is an adjoint-symmetry,

QAG′(P)A = G′∗(Q)αPα + DiΨi(P, Q)G = PαRQ(G)α + DiΨi(P, Q; G), where

Ψi(P, Q; G) = (DKQA)(DJ Pα)EK
uα

i J
(GA). (53)

Hence, on E , QAG′(P)A|E = DiΨi(P, Q)G|E = 0, which is equivalent to 〈prXP, vQ〉|E = 0.
This establishes the following conservation law.

Theorem 2. Vanishing of the functional pairing (51) for any symmetry (23) and any adjoint-symmetry (28)
corresponds to a conservation law

DiΨi(P, Q; G)|E = 0 (54)

holding for the PDE system GA = 0, where the conserved current Ψi(P, Q; G) is given by expression (53).

4.2. Action of symmetries on adjoint-symmetries

For any PDE system (22), its set of adjoint-symmetries is a linear space, and as shown in [13],
symmetries of the PDE system have three different actions on this space.

The primary symmetry action can be derived from the Lie derivative of an adjoint-symmetry
one-form with respect to a symmetry vector field.

Proposition 2. If vQ is an adjoint-symmetry one-form (28), namely vQ|E = 0 (mod total D), then its Lie
derivative with respect to any symmetry vector XP = Pα∂uα yields an adjoint-symmetry one-form,



Symmetry 2020, 12, 1547 10 of 17

LXP vQ|E = vSP(Q)|E = 0 (mod total D) (55)

where
SP(Q)A = Q′(P)A + R∗P(Q)A (56)

are its components.

Here and throughout, RP and RQ are the linear differential operators determined by Equations (49)
and (50). The adjoints of these operators are denoted R∗P and R∗Q.

Proof. Recall that the Lie derivative has the following properties: it acts as a derivation; it commutes
with the differential d; it reduces to the Frechet derivative when acting on a differential function.

By the use of these properties,

LXP vQ = LXP(QAdGA)

= (LXP QA)dGA + QALXP(dGA)

= Q′(P)AdGA + QAd(G′(P)A)

= Q′(P)AdGA + QAd(RP(G)A).

(57)

The last term can be simplified on E : QAd(RP(G)A)|E = QARP(dG)A|E = R∗P(Q)AdGA (mod total D).
This yields

LXP vQ|E = ((Q′(P)A + R∗P(Q)A)dGA)|E (mod total D) , (58)

completing the derivation.

There is an elegant formula, due to Cartan, for the Lie derivative in terms of the operations d and
c . This formula gives rise to two additional symmetry actions.

Theorem 3. The terms in Cartan’s formula

LXP vQ = d(prXPcvQ) + prXPc (dvQ) (59)

evaluated on E each yield an action of symmetries on adjoint symmetries. The action produced by the Lie
derivative term has the components (56), and the actions produced by the differential term and the hook term
respectively have the components

S1 P(Q) = R∗P(Q)A − R∗Q(P)A, (60)

S2 P(Q) = Q′(P)A + R∗Q(P)A. (61)

Proof. Consider the first term on right-hand side in the formula (59). It can be evaluated in two
different ways. Firstly, prXPc (QAdGA) = QAG′(P)A = QARP(G)A yields

d(prXPc (QAdGA))|E = d(QARP(G)A)|E = (QARP(dGA))|E = (R∗P(Q)AdGA)|E . (62)

Secondly, QAdGA = RQ(G)αΘα + QA(DiGA)dxi (mod total D) gives prXPc (QAdGA) =

prXPc (RQ(G)αΘα + QA(DiGA)dxi (mod total D) ) = RQ(G)αPα (mod total D). This yields

d(prXPc (QAdGA))|E = d(RQ(G)αPα (mod total D) )|E
= (RQ(dG)αPα (mod total D) )|E
= (R∗Q(P)AdGA (mod total D) )|E .

(63)
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Then, equating expressions (62) and (63) leads to the result:

((R∗P(Q)A − R∗Q(P)A)dGA)|E = 0 (mod total D)|E . (64)

This equation shows that the symmetry action (60) produces an adjoint-symmetry.
Now, consider the second term on the right-hand side in formula (59). Similarly to the first term,

it can be evaluated in two different ways. Firstly, dvQ = dQA ∧ dGA yields

prXPc (dQA ∧ dGA) = Q′(P)AdGA − G′(P)AdQA = Q′(P)AdGA − RP(G)AdQA. (65)

Hence, on E ,
(prXPc (dQA ∧ dGA))|E = (Q′(P)AdGA)|E . (66)

Secondly, dvQ = d(RQ(G)αΘα + QA(DiGA)dxi) (mod total D) gives

dvQ|E = (RQ(dG)α ∧Θα + QA(DidGA) ∧ dxi)|E (mod total D) . (67)

This yields
(prXPc (RQ(dG)α ∧Θα + QA(DidGA) ∧ dxi))|E
= (RQ(G′(P))αΘα − PαRQ(dG)α + QA(DiG′(P)A)dxi)|E
= −(R∗Q(P)AdGA)|E (mod total D).

(68)

Equating expressions (66) and (68) then gives the equation

((Q′(P)A + R∗Q(P)A)dGA)|E = 0 (mod total D)|E , (69)

showing that the symmetry action (61) produces an adjoint-symmetry.

Observe that the three actions (56), (60) and (61) are related by:

S1 P(Q) + S2 P(Q) = SP(Q). (70)

Each action is a mapping on the linear space of adjoint-symmetries QA. The algebraic properties of
these actions can be found in [13].

5. Geometrical Adjoint-Symmetries of Evolution Equations

A general system of evolution equations of order N has the form

uα
t = gα(x, u, ∂xu, . . . , ∂N

x u) (71)

where t is the time variable, xi, i = 1, . . . , n, are now the space variables, and uα, α = 1, . . . , m, are the
dependent variables. The space of formal solutions uα(t, x) of the system will be denoted E .

The developments for general PDE systems can be specialized to evolution systems, with Gα =

uα
t − gα via identifying the indices A = α (M = m). On E , since uα

t can be eliminated through
the evolution equations, the components of symmetries and adjoint-symmetries can be assumed to
contain only uα and its spatial derivatives in addition to t and xi. Hereafter, multi-indices will refer to
spatial derivatives.

A symmetry is thereby an evolutionary vector field,

XP = Pα(t, x, ∂xu, . . . , ∂k
xu)∂uα (72)

satisfying the linearization of the evolution system on E :

(prXP(uα
t − gα))|E = (DtPα − g′(P)α)|E = 0. (73)



Symmetry 2020, 12, 1547 12 of 17

Off of E , DtPα = (Pt + P′(g))α + P′(G)α, whereby RP = P′. Consequently, the symmetry determining
equation (73) can be expressed simply as:

(Pt + [g, P])α = 0. (74)

The determining equation for adjoint-symmetries Qα(t, x, ∂xu, . . . , ∂l
xu) is given by the adjoint

linearization of the evolution system on E :

(−DtQ− g′∗(Q))α|E = 0. (75)

Similar to the symmetry case, here, RQ = −Q′ off of E , and the adjoint-symmetry determining equation
simply becomes

(Qt + Q′(g) + g′∗(Q))α = 0. (76)

These two determining equations have a geometrical formulation given by a Lie derivative
defined in terms of a flow arising from the evolution system, similar to the situation for ODEs [8].
Specifically, observe that Dtuα|E = gα, and hence, Dt f |E = ft + f ′(g) for any differential function f .
This motivates introducing the flow vector field,

Y = ∂t + gα∂uα (77)

which is related to the total time derivative by prolongation,

prY = Dt|E = ∂t + (DI gα)∂uα
I
. (78)

Associated with this flow vector field is the Lie derivative

Lt := LprY (79)

which acts on differential functions by Lt f = prY( f ) = Dt f |E . On evolutionary vector fields (72),
this Lie derivative acts in the standard way as a commutator:

LtprXP = pr((prY(P)− prXP(g))α∂uα)

= pr((Pt + P′(g)− g′(P))α∂uα)

= pr((Pt + [g, P])α∂uα).

(80)

Thus, the symmetry determining equation (74) can be formulated as the vanishing of the Lie derivative
expression (80). This establishes the following well-known geometrical result.

Proposition 3. A symmetry of an evolution system (71) is an evolutionary vector field (72) that is invariant
under the associated flow (79).

In particular, the resulting Lie-derivative vector field

LtXP = (Pt + [g, P])α∂uα (81)

vanishes iff the functions Pα are the components of a symmetry.
A similar characterization will now be given for adjoint-symmetries, based on viewing the adjoint

relation between the determining equations (74) and (76) as a duality relation between vectors and
one-forms.

Introduce the evolutionary one-form:

ωQ = Qα(t, x, ∂xu, . . . , ∂l
xu)duα. (82)
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Its Lie derivative is given by

LtωQ = (LtQα)duα + QαLt(duα)

= (Qt + Q′(g))αduα + Qαd(Ltuα)

= (Qt + Q′(g))αduα + Qαdgα

= (Qt + Q′(g) + g′∗(Q))αduα (mod total D).

(83)

This shows that the adjoint-symmetry determining equation (76) can be formulated as the functional
vanishing of the Lie derivative expression (83).

Theorem 4. An adjoint-symmetry of an evolution system (71) is an evolutionary one-form (82) that is
functionally invariant under the associated flow (79).

In particular, the resulting Lie-derivative one-form

LtωQ = (Qt + Q′(g) + g′∗(Q))αduα (mod total D) (84)

functionally vanishes iff the functions Qα are the components of an adjoint-symmetry.
This one-form (84) is functionally equivalent to the adjoint-symmetry one-form (28) introduced for a
general PDE system. To see the relationship in detail, observe that:

vQ = QαdGα = Qαd(uα
t − gα)

= Qα(Dt(duα)− g′(du)α)

= −(DtQα + g′∗(Q)α)duα (mod total D)

= −LtωQ (mod total D).

(85)

An interesting question is how to extend this relationship to more general PDE systems.

Evolution Equations with Spatial Constraints

A wide generalization of evolution systems occurring in applied mathematics and mathematical
physics is given by systems comprised of evolution equations with spatial constraints. Some notable
examples are Maxwell’s equations, incompressible fluid equations, magnetohydrodynamical equations,
and Einstein’s equations.

The constraints in such systems in general consist of spatial equations

CΥ(x, u, ∂xu, . . . , ∂N′
x u) = 0, Υ = 1, . . . , M′ (86)

that are compatible with the evolution equation (71). Compatibility means that the time derivative of
the constraints vanishes on the solution space E of the whole system, (DtCΥ)|E = 0. For systems that
are regular [11], Hadamard’s lemma implies that the system obeys a differential identity,

DtCΥ = C′(G)Υ +D(C)Υ (87)

where Gα = uα
t − gα denotes the evolution equation (71), and where D is a linear differential spatial

operator whose coefficients are non-singular on E . Equivalently, the constraints must obey the identity
C′(g)Υ = D(C)Υ. A comparison of the differential order of each side of this identity shows that D is of
the same order N as the evolution equations, namely:

D = ∑
0≤|I|≤N

RI Υ
ΛDI . (88)
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The full system consists of n + M′ equations Gα = 0, CΥ = 0. Note that, in the previous
notation (22), (Gα, CΥ) = (GA) with A = (α, Υ).

The symmetry determining equation is given by the linearization of the full system on E , which is
comprised by the evolution part (73) and the constraint part

(prXPCΥ)|E = C′(P)Υ|E = 0. (89)

Off of E , C′(P)Υ = RC(C)Υ, where RC is a linear differential spatial operator whose coefficients are
non-singular on E . Hence, the determining equations (73) and (89) can be stated as:

(Pt + [g, P])α|EC = 0, C′(P)Υ|EC = 0 (90)

where EC denotes the solution space of the spatial constraint equation (86).
The adjoint-symmetry determining equation is given by the adjoint linearization of the full system

on E , which comprises evolution terms and additional constraint terms:

(−DtQ− g′∗(Q) + C′∗(q))α|E = 0. (91)

Here, the components of an adjoint-symmetry consist of

(Qα(t, x, ∂xu, . . . , ∂l
xu), qΥ(t, x, ∂xu, . . . , ∂l′

x u)) (92)

with Qα being associated with the evolution equations as before, while qΥ is associated with the
constraint equations. Similar to the symmetry case, the determining equation can be stated as:

(Qt + Q′(g) + g′∗(Q)− C′∗(q))α|EC = 0. (93)

These determining equations for symmetries and adjoint-symmetries have a geometrical
formulation in terms of a constrained flow (77), generalizing the previous formulation for evolution
systems as follows.

Theorem 5. A symmetry of a constrained evolution system (71) and (86) is an evolutionary vector field (72)
that is invariant under the associated constrained flow (79) and that preserves the constraints.

The proof of this result is simply the observation that, first, the determining Equation (89)
corresponds to the constraints being preserved, and second, the Lie derivative of the symmetry
vector field (81) along the flow vanishes on the constraint solution space.

Theorem 6. An adjoint-symmetry of a constrained evolution system (71) and (86) is an evolutionary
one-form (82) that is functionally invariant under the associated constrained flow (79), up to a functional
multiple of the normal one-form dCΥ arising from the constraints.

The proof is given by the earlier computation (84) for the Lie derivative of the adjoint-symmetry
one-form. This computation shows that the adjoint-symmetry determining Equation (93) now can be
expressed as:

LtωQ|EC = (C′∗(q)αduα)|EC = (qΥdCΥ)|EC (mod total D) (94)

where dCΥ is the normal one-form given by the constraints viewed as surfaces in jet space.
The Lie-derivative one-form (94) is functionally equivalent to the adjoint-symmetry one-form (28)

introduced for a general PDE system. In the present notation, the full system of evolution and
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constraint equations (71) and (86) consists of (Gα, CΥ) = 0, and the corresponding one-form associated
with this system is given by vQ,q = QαdGα + qΥdCΥ. Now, using the relation (85), observe that:

vQ,q = qΥdCΥ −LtωQ (mod total D). (95)

There is a class of adjoint-symmetries arising from the summed product of arbitrary functions
χΥ(t, x) and the components of the the differential identity (87). This yields, after integration by parts,

0 = χΥ(DtCΥ − C′(G)Υ −D(C)Υ)

= Dt(χΥCΥ) + DiΨi(χ, G; C)− DiΦi(χ, C; R)− (Dtχ +D∗(χ))ΥCΥ − C′∗(χ)αGα
(96)

where Φi(χ, C; R) = ∑0≤|I|≤N−1(−1)|J|DJ(χΥRiI Υ
Λ)DI/JCΛ from expression (88). Hence,

Dt(χΥCΥ) + Di(Ψi(χ, G; C)−Φi(χ, C; R)) = C′∗(χ)αGα + (Dtχ +D∗(χ))ΥCΥ (97)

has the form of a conservation law off E , with (C′∗(χ)α, (Dtχ +D∗(χ))Υ) being the multiplier. As is
well known, every multiplier for a regular PDE system is an adjoint-symmetry [1,3,11,17,18]. This can
be proven here by applying the Euler operator Euα and using its product rule. Consequently,

Qα = C′∗(χ)α, qΥ = (Dtχ +D∗(χ))Υ (98)

are components of an adjoint-symmetry, involving the arbitrary functions χΥ(t, x).
Such adjoint-symmetries are a counterpart of gauge symmetries, and accordingly are called
gauge adjoint-symmetries [11].

The corresponding gauge adjoint-symmetry one-form is given by

ωχ = C′∗(χ)αduα = χΥdCΥ (mod total D) (99)

and satisfies the geometrical relation

Ltωχ|EC = ((Dtχ +D∗(χ))ΥdCΥ)|EC (mod total D). (100)

This establishes the following geometrical result.

Theorem 7. A gauge adjoint-symmetry (98) is functionally equivalent to a normal one-form ωχ associated
with the constraint equation (86). Under the evolution flow, it is mapped into another normal one-form.

The preceding developments for general systems of evolution equations with spatial constraints
have used the classical notion of symmetries and adjoint-symmetries. It would be interesting to extend
the formulation and the results by considering a notion of conditional symmetries and corresponding
conditional adjoint-symmetries based on the spatial constraints.

Specifically, on the solution space of the full system, consider a symmetry given by an evolutionary
vector field (72) that satisfies

(Pt + [g, P])α|EC = 0 (101)

where EC denotes the solution space of the spatial constraint Equation (86). Such conditional
symmetries (101) differ from classical symmetries (90) by relaxing the condition that the constraints
are preserved. Their natural adjoint counterpart is given by an evolutionary one-form (82) satisfying

(Qt + Q′(g) + g′∗(Q))α|EC = 0. (102)

which is the adjoint of the determining Equation (101). Such conditional adjoint-symmetries (102)
differ from classical adjoint-symmetries (93) by excluding the terms arising from the spatial constraints.
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This notion of conditional symmetries and adjoint-symmetries is more general than the classical
notion because the conditional determining equations hold on EC instead of the whole jet space.

6. Concluding Remarks

The main results showing how adjoint-symmetries correspond to evolutionary one-forms with
certain geometrical properties provides a first step towards giving a fully geometrical interpretation
for adjoint-symmetries. In particular, for systems of evolution equations, adjoint-symmetries can be
geometrically described as one-forms that are invariant under the flow generated by the system on the
solution space. This interesting result has a straightforward generalization to systems of evolution
equations with spatial constraints. Consequently, the results presented here are applicable to all PDE
systems of interest in applied mathematics and mathematical physics.

One direction for future work will be to translate and generalize these results into the abstract
geometrical setting of secondary calculus [2,19] developed by Vinogradov and Krasil’shchik and
their co-workers.

It will also be interesting to fully develop the use of adjoint-symmetries in the study of specific
PDE systems, as outlined in the Introduction: finding exact solutions, detecting and finding mappings
into a target class of PDEs, and detecting integrability, which are the counterparts of some important
uses of symmetries. Another use of adjoint-symmetries, which has been introduced very recently [20],
is for finding pre-symplectic operators.

Author Contributions: Conceptualization, S.C.A. and B.W.; methodology, S.C.A. and B.W.; writing, original
draft preparation, S.C.A.; writing, review and editing, S.C.A. and B.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: S.C.A. is supported by an NSERC Discovery grant. W.B. thanks the Department of
Mathematics & Statistics, Brock University, for support during a research visit when this work was completed.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bluman, G.W.; Cheviakov, A.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations;
Springer: New York, NY, USA, 2009.

2. Krasil’shchik, I.S.; Vinogradov, A.M. (Eds.) Symmetries and Conservation Laws for Differential Equations of
Mathematical Physics; Translations of Math. Monographs 182; American Mathematical Society: Providence,
RI, USA, 1999.

3. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993.
4. Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982.
5. Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Springer: New York,

NY, USA, 2002.
6. Sarlet, W.; Cantrijn, F.; Crampin, M. Pseudo-symmetries, Noether’s theorem and the adjoint equation. J. Phys.

A Math. Gen. 1987, 20, 1365–1376. [CrossRef]
7. Sarlet, W.; Bonne, J.V. REDUCE procedures for the study of adjoint symmetries of second-order differential

equations. J. Symb. Comput. 1992, 13, 683–693. [CrossRef]
8. Sarlet, W. Construction of adjoint symmetries for systems of second-order and mixed first- and second-order

ordinary differential equations. Math. Comput. Model. 1997, 25, 39–49. [CrossRef]
9. Anco, S.C.; Bluman, G. Direct construction of conservation laws from field equations. Phys. Rev. Lett.

1997, 78, 2869–2873. [CrossRef]
10. Anco, S.C.; Bluman, G. Direct construction method for conservation laws of partial differential equations

Part II: General treatment. Eur. J. Appl. Math. 2002, 41, 567–585. [CrossRef]
11. Anco, S.C. Generalization of Noether’s theorem in modern form to non-variational partial differential

equations. In Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science;
Springer: New York, NY, USA, 2017; Volume 79, pp. 119–182,

http://dx.doi.org/10.1088/0305-4470/20/6/020
http://dx.doi.org/10.1016/S0747-7171(10)80017-3
http://dx.doi.org/10.1016/S0895-7177(97)00057-5
http://dx.doi.org/10.1103/PhysRevLett.78.2869
http://dx.doi.org/10.1017/S0956792501004661


Symmetry 2020, 12, 1547 17 of 17

12. Anco, S.C. On the incompleteness of Ibragimov’s conservation law theorem and its equivalence to a standard
formula using symmetries and adjoint-symmetries. Symmetry 2017, 9, 33. [CrossRef]

13. Anco, S.C.; Wang, B. Algebraic structures for adjoint-symmetries and symmetries of partial differential
equations. arXiv 2020, arXiv:2008.07476.

14. Nestruev, J. Smooth Manifolds and Observables; Graduate Texts in Mathematics 220; Springer: Berlin,
Germany, 2002.

15. Anco, S.C.; Pohjanpelto, J. Classification of local conservation laws of Maxwell’s equations. Acta Appl. Math.
2001, 69, 285–327. [CrossRef]

16. Anco, S.C.; Pohjanpelto, J. Symmetries and currents of massless neutrino fields, electromagnetic and graviton
fields. In CRM Proceedings and Lecture Notes (Workshop on Symmetry in Physics); American Mathematical
Society: Providence, RI, USA, 2004; Volume 34, pp. 1–12.

17. Vinogradov, A.M. The C-spectral sequence, Lagrangian formalism, and conservation laws I. The linear
theory. J. Math. Anal. Appl. 1984, 100, 1–40. [CrossRef]

18. Vinogradov, A.M. The C-spectral sequence, Lagrangian formalism, and conservation laws II. The nonlinear
theory. J. Math. Anal. Appl. 1984, 100, 41–129. [CrossRef]

19. Vinogradov, A.M. Introduction to Secondary Calculus. In Proceedings of the Conference Secondary Calculus and
Cohomology Physics; Henneaux, M., Krasil’shchik, I.S., Vinogradov, A.M., Eds.; Contemporary Mathematics;
American Mathematical Society: Providence, RI, USA, 1998.

20. Anco, S.C.; Wang, B. A formula for symmetry recursion operators from non-variational symmetries of partial
differential equations. arXiv 2020, arXiv:2004.03743.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym9030033
http://dx.doi.org/10.1023/A:1014263903283
http://dx.doi.org/10.1016/0022-247X(84)90071-4
http://dx.doi.org/10.1016/0022-247X(84)90072-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Vector Fields, One-Form Fields, and Their Evolutionary Form
	Geometric Formulation of Symmetries and Adjoint-Symmetries
	Some Applications
	Conservation Laws from Symmetries and Adjoint-Symmetries
	Action of symmetries on adjoint-symmetries

	Geometrical Adjoint-Symmetries of Evolution Equations
	Concluding Remarks
	References

