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Abstract: The formulation of a universal theory for bulk viscosity and heat conduction represents a
theoretical challenge for our understanding of relativistic fluid dynamics. Recently, it was shown that
the multifluid variational approach championed by Carter and collaborators has the potential to be
a general and natural framework to derive (hyperbolic) hydrodynamic equations for relativistic
dissipative systems. Furthermore, it also allows keeping direct contact with non-equilibrium
thermodynamics, providing a clear microscopic interpretation of the elements of the theory.
To provide an example of its universal applicability, in this paper we derive the fundamental equations
of the radiation hydrodynamics directly in the context of Carter’s multifluid theory. This operation
unveils a novel set of thermodynamic constraints that must be respected by any microscopic model.
Then, we prove that the radiation hydrodynamics becomes a multifluid model for bulk viscosity or
heat conduction in some appropriate physical limits.

Keywords: relativistic fluid dynamics; general relativity; radiation

1. Introduction

The hydrodynamic modelling of dissipative systems should guarantee the stability of the
homogeneous perfect-fluid states under perturbations. Furthermore, a realistic model for dissipation
should be presented in a form which enables an unambiguous contact with microphysics:
this requirement, although not strictly necessary from the mathematical point of view, allows for
a clear implementation of microscopic inputs into the macroscopic description. For the case of
relativistic fluids the problem of finding a theory which fulfils both the requirements is still considered
unsolved [1].

The natural-looking relativistic generalization of the Navier–Stokes equations [2], which maintains
direct contact with the common notions of viscosity and heat conduction, was shown to admit runaway
solutions when the homogeneous perfect-fluid states are perturbed [3,4]. This was shown to be
a consequence of the fact that its equations do not admit a well posed initial-value problem [5].
Hence, this hydrodynamic description of relativistic viscous fluids is not suitable for computational
applications. On the other hand, the second-order theory of viscous fluids of Israel and Stewart [6]
introduces some phenomenological coefficients which have a clear microscopic interpretation only
in the ideal relativistic gas limit. Moreover, there are cases in which the model of Israel and Stewart
underestimates the number of non-equilibrium degrees of freedom, so that it cannot be considered a
universal approach to model relativistic dissipative fluids [7].

The multifluid formalism of Carter [8] may be the solution to this long-standing problem.
Partially arising from an action principle, Carter’s variational approach leads in a natural way to
a well-posed initial value problem governed by hyperbolic equations [1]. Thus, its mathematical
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structure has all the required properties to give rise to a causal and stable theory if the appropriate
equation of state is assumed [9].

Since the multifluid concept was explicitly developed to describe relativistic conducting
media [10], Carter’s formalism was successfully used as the natural scheme for modelling superfluidity
in a covariant framework [11–13]. In this context, the correspondence with microphysics was
completely established [14–17]. The formalism was applied to the study of the structure of superfluid
neutron stars [18–20] and to the formulation of a relativistic theory of vortex dynamics [21–23]
and represents a fundamental tool in relativistic modelling of pulsar glitches [24–26]. In addition,
it was recently proposed that a multifluid approach might find interesting application in cosmological
models [27,28].

For the case of relativistic dissipation, a general multifluid model was proposed by Carter [29].
This model satisfies the conditions of stability and causality (that coincide with the ones of the Israel and
Stewart [6] formulation) for small deviations from equilibrium [30]. Therefore, apart from superfluidity,
relativistic multifluids were also studied in the context of heat conduction [31–33]. These models,
however, still lack of a clear connection with microphysics and are thus not fundamentally preferable
to the one of Israel and Stewart [6].

Recently, by using arguments of non-equilibrium thermodynamics, it was shown that any
bulk-viscous fluid can always be described as a Carter’s multifluid if an appropriate choice of
thermodynamic variables is adopted [7]. Therefore, at least for the case of dissipation due to bulk
viscosity, this result represents a formal justification of the universality of the multifluid formalism and
provides a technique for connecting the hydrodynamic model with thermodynamics and kinetic theory.

In this paper our aim is to provide further insight into the connection of the multifluid theory
with microphysics and its universal applicability: we already discussed the link with the equilibrium
thermodynamics of a superfluid [17] and the link with kinetic theory for non-conducting bulk-viscous
fluids [7]. Here, we add another piece to the global picture by studying how to model a perfect fluid
interacting with a radiation fluid within the Carter multifluid framework. Due to its simplicity and
wide applicability in astrophysical contexts, this system was widely studied in the literature [34] and the
understanding of its properties can be considered satisfactory at every level: statistical mechanics [35],
kinetic theory [36], thermodynamics [37] and hydrodynamics [38]. Therefore, Carter’s theory (which
may provide a universal hydrodynamic framework) should be able to capture the essential physics
of this system. In this sense, investigating the properties of a fluid interacting with radiation in this
multifluid framework represents a fundamental test for its descriptive power.

In addition, it is well known that radiation hydrodynamics admits a diffusion-type limit which
reduces the theory to a conventional model for heat conduction [39,40]. This implies that the
matter-radiation fluid may be the first realistic heat-conducting fluid to be rigorously described
in Carter’s framework, giving us precious insights about the microscopic origin of the so-called
entrainment coupling (a non-dissipative coupling between the species in a multifluid) and the correct
implementation of the dissipation coefficients.

Throughout the paper we adopt the spacetime signature (−,+,+,+) and work in natural units
c = G = kB = 1. Moreover, the symbol γ is used to label the quantities related to the photon fluid and
should not be interpreted as a spacetime index.

2. Multifluid Hydrodynamics

We briefly review the basic ideas of the multifluid formalism. The general theory was formulated
in [8,10], see also [1] for a review. The formalism was also extended to incorporate shear viscosity [29]
and elasticity [41] but these effects will not be considered in the present work.
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2.1. Non-Dissipative Evolution of Relativistic Multifluids

The variational approach of Carter builds on the assumption that one can identify a set of
four-currents nν

x describing different flows in the system. Given the scalars

n2
xy := −nν

xnyν, (1)

an equation of state for the fluid must be provided in terms of a Lagrangian density

Λ = Λ(n2
xy) x ≤ y. (2)

The condition x ≤ y is imposed to avoid repeated arguments, since n2
xy = n2

yx. Introducing the
bulk coefficients

Bx := −2
∂Λ

∂n2
xx

(3)

and the anomalous coefficients

Axy := − ∂Λ
∂n2

xy
=: Ayx x < y, (4)

we can define the conjugate momenta of the currents as

µx
ν :=

∂Λ
∂nν

x
= Bxnxν + ∑

y 6=x
Axynyν. (5)

The anomalous coefficients (whose presence in a multifluid is the norm) incorporate the
entrainment effect, a non-dissipative coupling between the currents. Historically, the importance
of entrainment was first recognized in the context of superfluid mixtures [42,43], but it is a general
feature of Carter’s variational approach.

In the literature it is common to find an alternative procedure of differentiating the Lagrangian
density which includes also the terms with x > y and treats n2

xy and n2
yx as independent variables,

see e.g., [8,22]. We discuss the connection with the present approach in Appendix A.
A non-dissipative hydrodynamic model can be obtained by considering an action of the form

I =
∫ ( R

16π
+ Λ

)√
−g d4x, (6)

where R is the scalar curvature and
√−g is the square root of the absolute value of the determinant of

the metric. The domain of the action is set imposing that the currents are conserved,

∇νnν
x = 0, (7)

both on-shell and off-shell. To make sure that this is indeed satisfied, the variations of the currents are
taken in the Taub form [44]

δnν
x = ξ

ρ
x∇ρnν

x − nρ
x∇ρξν

x + nν
x

(
∇ρξ

ρ
x −

1
2

gρσδgρσ

)
, (8)

where the vector field ξν
x describes an arbitrary infinitesimal displacement of the world-lines of the

fluid elements of the species x. The Euler-Lagrange equations are obtained imposing the stationarity
of the action with respect to arbitrary infinitesimal variations δgνρ and displacements ξν

x. The first one
produces Einstein’s equations,

Gνρ = 8πTνρ, (9)
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where the energy momentum tensor has the form

Tν
ρ = Ψδν

ρ + ∑
x

nν
xµx

ρ . (10)

The scalar Ψ can be interpreted as a generalised thermodynamic pressure and is given by

Ψ = Λ−∑
x

nν
xµx

ν . (11)

Ignoring the boundary terms which do not contribute to the equations of motion, the variation of
the action produced by the displacements ξν

x has the form

δI =
∫ (

∑
x

f x
ν ξν

x

)√
−g d4x, (12)

where
f x
ν := 2nρ

x∇[ρµx
ν] (13)

can be interpreted as the force per unit volume acting to the species x. The condition δI = 0 for any
independent choice of ξν

x produces the Euler-Lagrange equations

f x
ν = 0 ∀x. (14)

Equations (7), (9) and (14) constitute a system which arises from a well posed action principle
and, therefore, are given in the form of an initial value problem [1]. Please note that from (7) and (10),
one can show that

∇ρTρ
ν = ∑

x
f x
ν . (15)

However, taking the divergence of (9), one immediately has the energy-momentum conservation

∇ρTρ
ν = 0. (16)

Therefore even in the case in which the forces f x
ν were not zero, their sum must vanish,

∑
x

f x
ν = 0, (17)

which is Newton’s third law. The formalism is easily extended to the case in which there are some
currents that are locked to each other. For example, assume that the species x and the species y interact,
and are coupled on time-scales much shorter than those we are interested in. In this case, we can take
them to be at rest with respect to each other. The motion is still adiabatic, but now it is subject to the
geometrical constraint

n[ν
x nρ]

y = 0. (18)

This is implemented by imposing the world-line displacements ξν
x and ξν

y to satisfy the constraint

ξν
x = ξν

y. (19)

Thus, from the variation (12) we find that f x
ν and f y

ν do not need to vanish separately, but the total
force density does,

f x
ν + f y

ν = 0. (20)

Again, this condition is Newton’s third law.
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2.2. Including Dissipation

The second law of thermodynamics is not automatically provided by the action principle, so that
the dissipative terms of the theory have to be supplied in some other way and inserted by hand into the
equations of motion. However, the study of the adiabatic regimes presented in the previous subsection
can be used as a guideline for a consistent inclusion of these additional terms.

The current conservation (7) in a dissipative regime may not hold, but chemical-type transfusions
may be allowed. Therefore, we need to replace Equation (7) with

∇νnν
x = rx, (21)

where rx describes the rate (per unit volume and time) of production of the species x. The second law
of thermodynamics is implemented by considering an additional current sν (interpreted as the entropy
current) whose production rate must satisfy the constraint

rs = ∇νsν ≥ 0 . (22)

The energy-momentum tensor is assumed to maintain the form (10) and we require it to still
satisfy Einstein’s equations. Now, its four-divergence takes the form

∇ρTρ
ν = ∑

x
Rx

ν , (23)

where
Rx

ν = f x
ν + rxµx

ν (24)

represent the dissipative generalization of the Lagrangian forces f x
ν . Comparison with (9) tells that

Newton’s third law is still valid,

∑
x
Rx

ν = 0, (25)

but the termsRx
ν do not need to vanish separately.

The quantities rx andRx
ν incorporate dissipation in the theory and have to be modelled according

to microphysical arguments. Now, consider Equation (24) for x = s,

Rs
ν = f s

ν + rsΘν, (26)

where we adopted the notation Θν := µs
ν for the conjugate momentum to the entropy current.

Contracting with the four-velocity

uν
s :=

sν√
−sρsρ

, (27)

and using Equation (25) we find

rs =
1

Θs
∑
x 6=s

uν
sRx

ν ≥ 0, (28)

where we introduced the quantity
Θs := −Θνuν

s . (29)

Thus, only the coefficients rx and Rx
ν for x 6= s need to be computed from microphysical

calculations. Then, rs andRs
ν are obtained through the identities (25) and (28).

Finally, there is a subtlety we need to remark on. We have introduced the forcesRx
ν as dissipative

contributions, but from (28) we see that this is not strictly necessary. In fact, one may in principle
design them in such a way that

∑
x 6=s

uν
sRx

ν = 0 (30)
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is guaranteed by construction, without requiring that the forces themselves vanish. Under this
condition, no entropy can be produced and the theory is still non-dissipative. We do not consider this
possibility in the following. However, we will be forced to come back to discuss this point in greater
detail in Section 6.3.

3. Heat Conduction and Bulk Viscosity

Relativistic models for heat conduction and bulk viscosity naturally arise as particular cases of
the general multifluid theory. In this section, we briefly summarize some results that were obtained up
to now.

3.1. Heat Conduction

Consider a fluid comprised of indistinguishable particles of a single type, whose number
four-current nν is conserved,

∇νnν = 0. (31)

In the presence of heat conduction, the entropy current sν is generally not aligned with the particle
flux. Therefore, we consider a minimal two-fluid model with two independent currents, nν and sν.
The Lagrangian density takes the form

Λ = Λ(n2, n2
ns, s2), (32)

whose differential is
dΛ = −B

2
d(n2)−Ad(n2

ns)−
C
2

d(s2). (33)

The conjugate momenta µν and Θν, to particle and entropy current respectively, are

µν = Bnν +Asν

Θν = Csν +Anν.
(34)

The pressure reads
Ψ = Λ− nνµν − sνΘν (35)

and the energy momentum tensor takes the form

Tν
ρ = Ψδν

ρ + nνµρ + sνΘρ. (36)

This energy-momentum tensor might not look similar to the ones adopted in conventional models
for heat conduction, but it shares the same geometrical structure. This is more easily seen by working
in the Eckart frame, namely by introducing the fluid four-velocity as

uν
n =

nν√
−nρnρ

(37)

and defining the quantities
sE := −unνsν ΘE := −Θνuν

n, (38)

where the first is the entropy density measured in the frame defined by the particle current.
Now, the heat-flux qν is given by means of the orthogonal decomposition

sν = sEuν
n +

qν

ΘE
qνuν

n = 0. (39)



Symmetry 2020, 12, 1543 7 of 36

By defining the internal energy density as the one measured in the frame of the particle current,

U = Tνρuν
nuρ

n, (40)

and the coefficient
D =

C
Θ2

E
, (41)

it is possible to show that the expression (36) decomposes into

Tνρ = (U + Ψ)uν
nuρ

n + Ψgνρ + 2q(νuρ)
n +Dqνqρ. (42)

At the first order in the heat flux, the above formula reduces to the energy-momentum tensor of
the Eckart heat-conducting fluid [3]. The additional term Dqνqρ is associated with the fact that the flux
of energy introduces an anisotropy along its direction which might in principle have an effect on the
stress tensor. However, since the stress tensor has to be invariant under the transformation qν → −qν,
this correction is second order in the heat flux.

The dissipative hydrodynamic equations take the form

Rn
ν = f n

ν

Rs
ν = f s

ν + rsΘν,
(43)

where we have used Equation (31) to set rn = 0. The dissipative tensors which have to be provided by
studying the microphysics of the system are Rn

ν , Rs
ν and rs. However, they are not all independent;

in fact from (25) and (28) we have that

Rs
ν = −Rn

ν rs =
uν

sRn
ν

Θs
, (44)

thus we only need to determineRn
ν . It is possible to further reduce the number of unknowns by means

of geometrical arguments. In the simplest model, proposed by Carter [10], it is assumed thatRn
ν is a

function of the currents nν and sν only (i.e., not of their derivatives). Then the force assumes the form

Rn
ν = αqν, (45)

where
α = α(n2, n2

ns, s2) ≥ 0, (46)

is a transport coefficient to be determined from kinetic theory. Equation (45) can be derived from
the fact that by isotropy, Rn

ν is a linear combination of sν and nν and, from the first equation of (43),
needs to be orthogonal to uν

n. The positivity of α is ensured by the equation

rs =
αqνqν

sΘsΘE
≥ 0, (47)

where we have assumed that ΘE and Θs are positive. In fact, they reduce to the usual notion of
temperature at equilibrium, so this is equivalent to assume that the system is sufficiently close to
thermodynamic equilibrium (out of equilibrium a rigorous definition of temperature does not exist
and only on equilibrium states ΘE and Θs both coincide with the thermodynamic temperature).

Equation (45) models the force Rn
ν as a viscous friction between the particle current and the

entropy current. Clearly, the effect of such a friction is to drive the system towards a state in which
the entropy and the particles flow together. Alternative models forRn

ν were proposed, which include
terms involving also the derivatives of the hydrodynamic quantities [32]. As a result, in this case the
force also has a component which is orthogonal to both nν and sν. For small deviation from equilibrium
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the two models coincide and both reduce to the one of [6]. In this section, we adopt the model of [10]
for its simplicity, but the possible existence of terms which contain derivatives cannot be ruled out in
principle. We will come back to this point in Section 6.3.

In both cases, this system of equations was shown to have the structure of a relativistic Cattaneo
equation [31,32,45]. It is given in a form which is naturally hyperbolic, and therefore compatible with
causality, and it becomes a good model for the second sound for high frequency perturbations [38].

When perturbations are slow, i.e., evolve on timescales that are longer than the characteristic
relaxation time-scale [31]

τr =
CsΘs

αΘ2
E

, (48)

the conventional Navier-Stokes model for heat conduction is recovered. In the Navier-Stokes limit of
Carter’s model the thermal conductivity coefficient is given by

κ =
sΘs

αΘE
, (49)

so that Formula (47), for the entropy production, acquires the more familiar form

rs =
qνqν

κ Θ2
E

. (50)

3.2. Bulk Viscosity

Bulk viscosity arises from the fact that the fluid has internal degrees of freedom which go out of
equilibrium due to expansion and contraction of the volume elements in the hydrodynamic evolution.
These degrees of freedom can always be modelled as additional currents nν

A, A = 1, ..., l − 1, which are
locked to the conserved particle current nν, provided that the volume element is locally isotropic
(which implies the absence of shear viscosity and heat conduction) in the particle rest-frame [7].
Hence, a bulk-viscous fluid can always be modelled as a multifluid whose currents nν, sν and nν

A are
all subject to the geometrical constraint (18). In this case, the Lagrangian density Λ reduces to

Λ = −U , (51)

where U is the internal energy of the fluid. Its differential is

dU = µdn + Θds−AAdnA, (52)

where we use the Einstein summation convention for the chemical index A = 1, ..., l − 1. It is easy to
prove that

µν = µuν Θν = Θuν µA
ν = −AAuν, (53)

where uν is the (unique) four-velocity of this non-conducting multifluid. Moreover, the pressure and
the energy-momentum tensor take the familiar perfect fluid forms

Ψ = −U + nµ + sΘ−AAnA

Tν
ρ = Ψδν

ρ + (U + Ψ)uνuρ.
(54)

The symbols −AA are adopted for the chemical potentials of the species A because the currents
nν

A exist only as a parametrization of the out-of-equilibrium states (see section II-B of [7]). In local
thermodynamic equilibrium, according to the minimum energy principle [46], they have the value
which minimizes the energy at fixed n and s, and this gives rise to the condition

AA = 0. (55)
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For this reason the AA can be interpreted as generalised chemical affinities, justifying the
adopted notation.

The collinearity condition (18), valid for all the currents, simplifies the equations of motion
considerably. The independent rates which need to be provided by microphysics are the coefficients
rA, which near equilibrium, can be expanded to the linear order in the affinities,

rA = ΞABAB. (56)

The (l − 1)× (l − 1) matrix ΞAB is symmetric as a result of Onsager’s principle. The remaining
equations of motion, which are needed to completely specify the hydrodynamic evolution, are given
by the particle and energy-momentum conservation

rn = 0 ∇ρTρ
ν = 0. (57)

Equations (56) and (57) can be combined, giving the formula for the entropy production:

Θrs = AArA = ΞABAAAB ≥ 0, (58)

which implies that ΞAB is definite non-negative (strictly positive if the ergodic assumption is made,
see e.g., [47]).

The model we have presented is constructed in a form that is naturally hyperbolic, and therefore
it is compatible with the basic requirement necessary for causality and stability. It was shown in [7]
that when l = 2 the above model reduces, for small deviations from equilibrium, to the bulk viscosity
prescription derived by Israel and Stewart [6], which is known to be (conditionally) causal and stable.

When the hydrodynamic evolution is slow enough compared to the microscopic equilibration
timescales, the model reduces to a relativistic Navier-Stokes description of bulk viscosity
(see sections II-D and VII in [7]), with a bulk viscosity coefficient given by

ζ = ΞAB ∂xeq
A

∂v

∣∣∣∣
xs

∂xeq
B

∂v

∣∣∣∣
xs

. (59)

Here the matrix ΞAB is the inverse of ΞAB, while xs = s/n is the entropy per particle and

xeq
A (v, xs) =

nA
n

∣∣∣∣
AB=0

, (60)

is the equilibrium fraction of the effective chemical species labelled by A.
It is, finally, important to remark a subtlety about the dissipation in a multifluid context. As can

be seen from the foregoing discussion, in a multifluid approach, heat conduction and bulk viscosity
are not implemented directly as small corrections to the stress-energy tensor but they are modelled in
a non-perturbative way by introducing further (non-equilibrium) degrees of freedom in the theory.
The immediate consequence is that heat conduction (i.e., the flow of energy in the matter’s rest-frame)
and bulk viscosity (i.e., the non-equilibrium correction to the pressure) are, in a generic multifluid,
interconnected (influencing each other at every order, higher than the first [6]) and cannot be completely
separated. For this reason, in the present paper, we have introduced the purely heat-conducting fluid
and the purely bulk-viscous fluid separately, while in principle a generic multifluid will contain both
the processes.

4. Radiation Hydrodynamics

We show that the equations of the radiation hydrodynamics in the M1 closure scheme [48–50]
can be conveniently obtained directly from Carter’s multifluid formalism. This alternative derivation
provides considerable thermodynamic and geometrical insight.
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Our study will be specifically devoted to photon radiation, so that we use the label γ to indicate
the quantities related to the radiation fluid. We remark, however, that the following discussion holds
in principle also for any kind of radiation which does not carry any conserved charge (for example,
it would apply also to the case of a real scalar boson or a Majorana fermion). In a thermodynamic
perspective, this condition corresponds to the requirement that the exchange of radiation between
matter elements is a pure phenomenon of heat transfer [51] and not a chemical transfusion.

Although Carter’s formalism could be used to model also neutrino radiation (which will be
studied in detail in future work), such a system would not admit a chemical-equilibrium limit that is a
model of heat conduction. Instead, it would become a charge-conducting fluid, where the transported
charge is the lepton number. Therefore, the presence of a conserved charge associated with the
radiation fluid is the reason neutrino radiation is physically different from the photon case.

4.1. The Hydrodynamic Model

We consider systems containing two particle currents, nν and γν (to avoid confusion, the labels n
and γ will always be used as chemical labels and never as space-time indices). The first is assumed to
be an exactly conserved current,

rn = ∇νnν = 0, (61)

and represents the flow of the matter component of the multifluid. The second, namely γν, is the
current density associated with photons, whose number is not conserved (it can change in absorption
and emission processes),

rγ = ∇νγ
ν 6= 0. (62)

We impose Boltzmann’s molecular chaos ansatz [35], namely that the statistical correlations
between matter and radiation can be neglected. This allows defining two separate entropy currents sν

n
and sν

γ associated with the matter and the radiation, whose sum gives the total entropy current [52]:

sν = sν
n + sν

γ. (63)

Please note that the second law requires that

∇νsν = ∇νsν
n +∇νsν

γ ≥ 0, (64)

but the two entropies do not need to grow separately.
To simplify the system we impose that the heat conduction parameters of matter and radiation

vanish, namely
n[νsρ]

n = 0 γ[νsρ]
γ = 0. (65)

Finally, we assume that the interactions between matter and the radiation have the form of local
collision processes, which occur for sufficiently short times that the statistical average of the interaction
term of the microscopic Hamiltonian can be neglected. This allows us to decompose the Lagrangian
density into a matter and a radiation part, for which we will adopt a simple separability prescription

Λ = −ρ(n, sn)− ε(γ, sγ), (66)

where ρ is a pure function of n =
√
−nνnν and sn =

√
−snνsν

n, while ε is a pure function of γ =
√
−γνγν

and sγ =
√
−sγνsν

γ.
By comparison with (51) we interpret ρ as the internal energy of the matter fluid measured in

its own rest-frame, that is identified by the four-velocity uν
n = nν/n. Therefore, its differential takes

the form
dρ = Θndsn + µdn, (67)
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where Θn and µ are the temperature and the chemical potential of the fluid. Analogously, ε is the
internal energy of the radiation fluid, measured in the frame defined by uν

γ = γν/γ, and its differential
has the form

dε = Θγdsγ −Aγdγ, (68)

where Θγ is the temperature of the radiation fluid. In the above equation we introduced the notation
µγ = −Aγ to recall that in thermodynamic equilibrium the chemical potential of the radiation fluid
µγ must vanish. In particular, if the emission/absorption process

n −−⇀↽−− n + γ, (69)

is interpreted as a chemical-type reaction between the matter and radiation, the affinity Aγ associated
with the above reaction is minus the chemical potential of photons.

Please note that the reaction (69) is possible only because the radiation does not carry any
conserved charge. For neutrino radiation this is no longer the case, due to the conservation of the
lepton number. As a result, the neutrino chemical potential does not vanish in chemical equilibrium [53]
and the present discussion does not apply.

It is possible to show that the conjugate momenta to the currents sν
n, nν, sν

γ and γν are, respectively,

Θn
ν = Θnunν µν = µunν

Θγ
ν = Θγuγν −Aγ

ν = −Aγuγν.
(70)

The generalised thermodynamic pressure given in (11) splits into

Ψ = Pn + Pγ, (71)

where
Pn = −ρ + Θnsn + µn (72)

is the pressure of the matter fluid, while

Pγ = −ε + Θγsγ −Aγγ (73)

is the pressure of the radiation fluid. Thus, the variational principle presented in Section 2.1 leads to a
completely decoupled energy-momentum tensor

Tνρ = Mνρ + Rνρ, (74)

where

Mνρ = (ρ + Pn)uν
nuρ

n + Pngνρ

Rνρ = (ε + Pγ)uν
γuρ

γ + Pγgνρ
(75)

are respectively the energy-momentum tensor of the matter and of the radiation fluid. The expressions
in (75) indicate that matter and photons are described as two perfect fluids, so that the stress-energy
tensor of the radiation fluid is isotropic in the radiation rest-frame. This is exactly the M1 closure
scheme described by Sadowski et al. [49].

Please note that up to this point, we have not made any assumption about the equation of state of
the radiation fluid.
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4.2. The Dissipative Terms

We have seen that the model is constructed with four currents, but the locking constraints (65)
imply that there are only two independent four-velocities. Combining this with Equation (25) we find
that there is only one independent four-force which needs to be provided by microphysics, which is

Gν := Rn
ν +Rsn

ν = −Rγ
ν −R

sγ
ν . (76)

Therefore, Equation (24) are given by

Gν = 2nρ∇[ρµν] + 2sρ
n∇[ρΘn

ν] + Θn
ν∇ρsρ

n

−Gν =− 2γρ∇[ρA
γ
ν]
−Aγ

ν∇ργ
ρ + 2sρ

γ∇[ρΘγ
ν]
+ Θγ

ν∇ρsρ
γ

(77)

where we have used the conservation of the matter current to remove the term µν∇ρnρ in the first
equation. The system above may seem unfamiliar at a first sight, but with a little algebra it can be
shown that it is equivalent to

∇ρ Mρ
ν = Gν

∇ρRρ
ν = −Gν .

(78)

Therefore, the covector Gν, representing the dissipative force of the theory, corresponds to the
radiation four-force density and we have finally recovered all the basic elements of the radiation
hydrodynamics [34].

The equations of motion given in the natural multifluid form (77) provide an immediate insight
into the thermodynamic interpretation of Gν. Let us make the orthogonal decomposition

Gν = Qunν + fν fνuν
n = 0. (79)

Compared to the first equation of (77), and considering that the first two terms are orthogonal to
uν

n, we obtain that
Q = Θn∇ρsρ

n fν = f n
ν + f sn

ν . (80)

The first equation implies that Q, the projection of Gν parallel to uν
n, can be interpreted as the

heat exchanged or produced by the matter as a result of the interaction with the radiation fluid.
This equation also shows us that the rate rsn does not need to be provided by microphysics, because it
must coincide with Q/Θn. From the second equation we see that fν can be seen as the part of the
radiation force which tends to accelerate the fluid element. More directly, this can be seen by projecting
the first equation of (78) orthogonally to uν

n:

(ρ + Pn)uρ∇ρunν = −(δρ
ν + uρ

nunν)∇ρPn + fν. (81)

This is nothing but Newton’s second law for a matter fluid element, the inertia of which is the
enthalpy and which is subject to the action of a pressure force and of the radiation force fν.

It is interesting to remark that from the thermodynamic point of view, Gν is the local version
(per unit space-time volume) of the heat four-vector acting on the matter fluid, in agreement with the
covariant definition proposed by [51]. Thus, Q and fν can be rigorously identified respectively with
the heat and the friction (per unit space-time volume) experienced by the matter element.

Now, let us turn our attention to the second equation of (77). If we contract it with uν
γ and invoke

the decomposition (79) we obtain

Θγ∇ρsρ
γ = Aγ∇ργ

ρ + fνuν
γ −QΓnγ, (82)
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where we have introduced the Lorentz factor

Γnγ = −unνuν
γ. (83)

Equation (82) implies that once Gν and rγ are provided by microphysics, rsγ is automatically
constrained. Thus, our analysis indicates that out of three reaction-type rates rsn , rsγ and rγ, only one
needs to be given as an external input. One of them, say rγ, should be provided by microphysics:
the independent degrees of freedom of the model are 10 (i.e., the two scalars sn, sγ and the eight
components nν, γν) but there are 5 conservation laws given by Equations (16) and (61). Hence,
there is room for 5 equations of motion. When the functional dependence of a dissipative term is
provided by means of microphysics, the relation which defines it (i.e., Equation (21) or (24)) becomes
an equation of motion. Therefore, we need 5 independent microphysical inputs to close the system,
namely the four components of Gν and the scalar rγ.

There is also a more physical argument to justify why microphysics should provide both the
force and rγ: Gν represents the energy-momentum exchange per unit time between the matter and
the radiation fluid, but the same exchange may be originated by scattering processes (which preserve
the number of radiation particles) and absorption/emission processes (which modify the number of
photons). This immediately tells us that the knowledge of the force Gν is not sufficient to constrain rγ.

In the standard approach which is used in the literature (see e.g., [49]) there is no need to provide
rγ and all the knowledge about the interaction processes between matter and radiation is incorporated
into Gν. This apparent contradiction with the multifluid approach disappears if the radiation fluid is
modeled as an ideal ultrarelativistic gas. In fact, under this condition, the relation

Pγ =
1
3

ε (84)

holds not only as an equation of state, but also as a kinematic identity (i.e., it is valid also out of
thermodynamic equilibrium). This implies that if there are two different thermodynamic states (γ , sγ)
and (γ′ , s′γ) such that

ε(γ, sγ) = ε(γ′, s′γ), (85)

then they will have also the same pressure (this is commonly enclosed in the statement that the second
viscosity coefficient of an ultrarelativistic ideal gas is always identically zero [7,54]). The mathematical
implication is that if in our model the degrees of freedom of the radiation fluid are 5 (i.e., γν and sγ),
the energy-momentum tensor

Rνρ =
4
3

εuν
γuρ

γ +
1
3

εgνρ. (86)

is degenerate and only 4 independent degrees of freedom have to be specified (i.e., ε and uν
γ).

Invoking the expression (86) for Rνρ, the 10 degrees of freedom can be reduced to 9. Therefore,
using the equation of motion in the form (78) together with the matter-particles conservation (61), it is
possible to obtain a closed system of 9 equations, in agreement with the standard approach.

We remark, however, that in doing so one is implicitly making the assumption that also Gν has
the same degeneracy, in particular that it is not affected by deviations of Aγ from zero. The conditions
under which this assumption is verified will be discussed in Section 4.4. For now we will keep our
analysis general, maintaining the general multifluid formulation based on 10 degrees of freedom.

4.3. Thermodynamic Analysis of the Dissipative Terms

One of the biggest advantages of working in the multifluid framework (with 10 degrees of
freedom) is that it keeps direct contact with the thermodynamics of the system. In this subsection
we show how it can be used to derive useful thermodynamic relations which remain hidden in
the standard formulation (based on 9 degrees of freedom) discussed in the previous subsection.
These relations can be particularly useful in those situations in which the radiation can have a finite
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chemical potential for a long time (like in scattering-dominated materials) in which the standard
approach may be inapplicable if Gν strongly depends on Aγ.

To provide a clear comparison with the existing literature it is convenient to work in the rest
frame of the matter fluid. To do this we define a tetrad (i.e., an orthonormal basis of the tangent space)
ea = eν

a∂ν which is comoving with the matter-fluid element, namely e0 = un. We use this tetrad to
decompose the radiation stress-energy tensor as

R00 = ε̂

R0j = Rj0 = Fj

Rjk = P̂jk ,

(87)

which are the radiation energy density, the radiation flux and the radiation pressure tensor
(or radiative stress) in the matter rest-frame [34]. By comparison with (86), we find that

ε̂ = (4Γ2
nγ − 1)

ε

3

Fj =
4
3

εΓ2
nγvj

P̂jk = (4Γ2
nγvjvk + η jk)

ε

3
,

(88)

where we have introduced the three-velocity vj = uj
γ/u0

γ. Please note that the pressure tensor P̂jk

can be written entirely in terms of ε̂ and Fj: correcting a typo in Equation (34) of Sadowski et al. [49],
in accordance with [55], we obtain

P̂jk =

(
1− z

2
η jk +

3z− 1
2
F jF k

F lFl

)
ε̂ , (89)

where F j is the reduced radiative flux and z is the Eddington factor [48],

F j =
Fj

ε̂
z =

3 + 4F lFl

5 + 2
√

4− 3F lFl
. (90)

Equation (89) contains both the essence and the limitations of the closure scheme: ε̂, Fj and P̂jk

are respectively the zeroth, the first and the second moment of the radiation specific intensity [34] and
we are closing the system by assuming that the last can be uniquely written in terms of the first two.
This has also the natural implication that in the reference frame of the matter element, the isotropy is
broken only along the direction identified by Fj. For this reason, if we use the tetrad ea to decompose
the radiation four-force,

G0 = Q Gj = f j, (91)

see Equation (79), it is legitimate to assume that

f j = χ Fj . (92)

The coefficient χ can be interpreted as the total opacity, a parameter that sets the attenuation rate
of the radiation flux in terms of the flux itself. If, now, we promote the three-vector Fj to a space-like
four-vector through the construction Fν := Fjeν

j , we have the orthogonal decomposition

Gν = Q unν + χ Fν. (93)

Therefore, using simple geometrical assumptions, the 5 independent dissipative terms of the
theory were reduced to 3: Q, χ and rγ.
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It is now possible to make a thermodynamic study of these terms near equilibrium. We can
rewrite Equation (64) using (80) and (82), obtaining the entropy production

∇ρsρ =
Aγ

Θγ
rγ +

Γnγ

Θγ
F∆χ +

(
1

Θn −
Γnγ

Θγ

)
Q ≥ 0, (94)

where we have introduced the relative speed ∆ and the scalar F, defined through the relations

Γnγ =
1√

1− ∆2
F =
√

FνFν. (95)

Equation (94) shows that the entropy production is the sum of three contributions. Since only
the total is constrained to be non-negative, in principle far from equilibrium rγ, χ and Q can have
arbitrary sign, provided that all the contributions compensate each other giving rs ≥ 0. However, if we
limit ourselves to near-equilibrium situations it is possible to obtain stronger constraints.

Fist of all, we assume that the 3 dissipative terms Q, χ and rγ are functions only of the
local thermodynamic state of the multifluid. This implies that in principle they are functions
of 5 independent thermodynamic variables (2 identifying the thermodynamic state of the matter,
2 identifying the thermodynamic state of the radiation, 1 identifying the relative motion). In particular,
we decide to work with the 5 state variables

(n , Θn , Aγ , F , Θγ −Θn) , (96)

that turn out to constitute a convenient choice since it is easy to check that the local thermodynamic
equilibrium state is given by

Aγ = 0 F = 0 Θγ −Θn = 0 . (97)

This makes Aγ, F and Θγ − Θn the natural variables that can be used to parametrise a
displacement of the system from local thermodynamic equilibrium. If we expand the dissipative terms
to the linear order in these variables we obtain

rγ = ΞγγAγ + ΞγT(Θγ −Θn)

χ = χo + χγAγ + χT(Θγ −Θn)

Q = kγAγ + kT(Θγ −Θn) .

(98)

Since Gν and rγ vanish at equilibrium, there are no zeroth order terms in the above expansions for
rγ and Q. Moreover, there are no contributions at the first order coming from F due to the symmetry of
the coefficients under a transformation Fj −→ −Fj. The 7 expansion coefficients are all functions of the
thermodynamic properties of matter only, i.e., n and Θn. Onsager’s principle imposes the reciprocal
relation (see Appendix C.1 for the proof)

kγ = Θn ΞγT . (99)

After rewriting the entropy production Equation (94) by using the expansion (98), keeping only
the second order in the displacement from equilibrium (which also implies Γnγ ≈ 1) and imposing the
positivity for all small deviation from equilibrium, we obtain the conditions

Ξγγ ≥ 0 χo ≥ 0 kT ≥ 0 (100)

and, making use of the reciprocal relation (99),

kT Ξγγ ≥ Θn Ξ2
γT . (101)
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The coefficients χγ and χT appear only in higher order terms in the equation for the entropy
production (94); for this reason they can be neglected in the present study.

The constraints (99), (100) and (101) hold independently from the details of the matter-radiation
interaction, so they can be used to check the thermodynamic consistency of any model of radiation
hydrodynamics.

4.4. Application: Deriving the Four-Force Gν from Thermodynamic Arguments

The radiation four-force is usually (see e.g., [38,40,56]) computed from the kinetic theory of
radiation assuming that

i the thermal coefficients obey the Kirchhoff law,
ii the scattering is isotropic and coherent,

iii the opacities have a grey-body form.

The line of reasoning which leads to an expression for Gν starting from the foregoing assumptions
is briefly sketched in Appendix B.

As a first application of our thermodynamic study, we now show that the same form of Gν can be
derived directly in a hydrodynamic framework if one requires that

i every dissipative process contributes additively to the transport coefficients and the
thermodynamic constraints presented in the previous subsection hold separately for every
microscopic contribution,

ii the degeneracy assumption we presented in Section 4.2, which allows reducing the degrees of
freedom of the model from 10 to 9, is fulfilled also by Gν.

Let us assume that this is the case, namely that the coefficients χ and Q can be written as functions
of 4 independent state variables only, instead of the 5 in (96). We retain the variables n and Θn because
they identify the state of the matter fluid. From (89) we know that the flux Fj and the energy density ε̂

can be used to identify the radiation energy-momentum tensor completely, which in turn constitutes
the reduced degree of freedom of the model. It follows that the natural choice of variables now is

(n, Θn, F, ε̂). (102)

As in the previous subsection, we can perform a linear expansion in the deviations from
equilibrium. As we saw, the deviations of χ are of higher order in the model (in Equation (36)
Fν is already a fist-order term), therefore we will not analyse them and we will focus our attention on
Q. Recalling that the symmetries of the problem impose that the linear corrections in F must vanish,
the expansion contains only one term, namely

Q = k(ε̂− ε̂eq). (103)

The function ε̂eq is the equilibrium value of the energy density, which by comparison with (97), is

ε̂eq = ε(Θγ = Θn,Aγ = 0). (104)

The assumption that the radiation fluid is an ultrarelativistic ideal gas implies

ε̂eq = 4πB̂(Θn) , (105)

where B̂(Θ) is the frequency integrated equilibrium intensity, which can be written as

B̂(Θ) =
aRΘ4

4π
. (106)
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The coefficient aR is a constant factor which depends on the type of radiation [40].
The expansion (103) is a particular case of (98). It is possible to relate k with kγ and kT considering

that to first order
ε̂ ≈ 4πB̂− 3γAγ + 3sγ(Θγ −Θn). (107)

This expression was obtained by computing the first-order expansion coefficients of ε̂ from the
equation of state (84), together with the fact that (73) defines the Legendre transformation

dPγ = sγdΘγ − γdAγ. (108)

Plugging this expansion into (103) we find

Q = −3γkAγ + 3sγk(Θγ −Θn), (109)

which by comparison with the general formula (98), gives the relations

kγ = −3γk kT = 3sγk. (110)

We recall that since we are making a linear study, the densities γ and sγ can be identified with
those in equilibrium, which for an ulrarelativistic ideal gas satisfy the relation

sγ = bRγ, (111)

where the specific entropy bR of the radiation gas is a constant (bR ≈ 3.6 for a Bose gas and bR ≈ 4.2
for a Majorana Fermi gas).

Therefore, we have proven that the multifluid formulation of the radiation hydrodynamics,
which is a theory with 10 degrees of freedom, reduces (for small deviations from equilibrium) to the
standard formulation based on 9 degrees of freedom if and only if

kT
kγ

= −bR . (112)

To complete the reduction to the standard theory and to see the implications of (112) we divide the
dissipative processes at the origin of Gν and rγ into three different categories. We call elastic scatterings
(e) those processes which conserve the number and the total energy of the radiation particles which
are involved (measured in the fluid rest-frame). These processes give no contribution to rγ and Q.
The inelastic scattering processes (I) are those in which only the number of radiation particles is
conserved. These do not give any contribution to rγ. Finally we have the absorption processes (A),
which do not conserve the radiation particle number. Please note that the absorption processes include
also the emission processes. In fact, absorption and emission processes are the time reversed of each
other and are mediated by the same matrix element, which implies that in thermodynamic equilibrium
they must obey the detailed balance. As a result, it is necessary to consider their joint action at a
thermodynamic level and they must not be separated. Using our assumption (i), we can, thus, split the
dissipative coefficients according to the different contributions as

rγ = rA
γ

Q = QA + QI

χ = χA + χI + χe.

(113)

This separation will also result into a kinetic subdivision of the expansion coefficients given in
(98) and (103).

From a purely thermodynamic point of view, the constraints (100) and (101) and the reciprocal
relation (99) hold in principle only for the total coefficients, not for the separate contributions.
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For example we have the constraint χA + χI + χe ≥ 0, but this does not necessarily imply the
separate non-negativity of all the three parts (because only the total appears in (94)). Our assumption
(i), on the other hand, consists of requiring that all the thermodynamic constraints hold separately,
so that in our example

χA ≥ 0 χI ≥ 0 χe ≥ 0, (114)

which is in agreement with their interpretation as opacities (and, therefore, as inverses of
mean-free-paths). Now, if we turn our attention to Onsager’s relation (99), for the case of the inelastic
scattering we find

kI
γ = 0, (115)

which using Equation (110), gives
kI = 0 . (116)

We have verified that in order for (103) to hold, one should assume that all the scattering processes
are elastic, giving QI = χI = 0. This is consistent with the assumption of coherent scattering invoked
by [38,40,56].

There is a final constraint we can impose on the kinetic coefficients which arises directly from the
assumption (103). Let us consider a situation in which all the radiation particles are in their equilibrium
distribution, but there is an excess of one particle of momentum q (measured in the rest frame of the
matter). This condition can be modelled as a state of the system in which

ε̂ = 4πB̂ + |q| Fj = qj. (117)

Ignoring the scattering processes, this particle will have a life-time τA before being absorbed.
The absorption process can be modelled as the action of the radiation four-force for a time τA,
giving the conditions

QτA = |q| f τA = |q|. (118)

Simplifying the energy of the particle with the aid of (103) and (92) we obtain kAτA = 1 and
χAτA = 1, which imply

kA = χA. (119)

Therefore, the multifluid approach is equivalent to the one presented by [38,40,56] if the radiation
four-force can be put into the form

Gν = χA(ε̂− 4πB̂)uν
n + (χA + χe)Fν, (120)

which is what we wanted to prove.

4.5. Deriving the Reaction Rate From Thermodynamic Arguments

If we assume Gν to be given by Equation (120), we are automatically assigning a value to ΞγT ,
as a result of the Onsager relation (99). On the other hand, Ξγγ remains undetermined, therefore we
are not constraining rγ completely. In Appendix B, however, we show that the same microscopic
assumptions which lead to (120) can be invoked to prove (assuming a non-relativistic relative speed
between the matter and the radiation fluid) that

rγ = χA(γeq − γ), (121)

where
γeq = γ(Θγ = Θn,Aγ = 0). (122)

This expression for the rate was adopted in the literature to model systems in which
photon-conserving processes are dominant (see e.g., [57]) and can be used to derive a formula for Ξγγ.
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Before doing this, however, as a second application of our formalism, we will prove that (121) is
consistent with the Onsager principle. More specifically, we will show that if one assumes that the rate
can be written in the generic form

rγ = Υ(γeq − γ), (123)

and Gν is given by (120), then the Onsager relation (99) demands

Υ = χA. (124)

To do this, we expand γ near equilibrium,

γ = γeq +
∂γ

∂Aγ
Aγ +

∂γ

∂Θγ
(Θγ −Θn), (125)

and compute the partial derivatives of γ (in equilibrium) from the ideal gas equation of state, obtaining

∂γ

∂Aγ
= − cRγ

Θn
∂γ

∂Θγ
=

3γ
Θn , (126)

where cR is a constant coefficient (cR ≈ 1.37 for a Bose gas and cR ≈ 0.91 for a Majorana Fermi gas).
Please note that the second relation can be easily obtained taking the derivative with respect to Θγ of
the (equilibrium) relation (111).

Employing the expansion (125), Equation (123) can, therefore, be rewritten as

rγ =
cRγΥ

Θn Aγ − 3γΥ
Θn (Θγ −Θn). (127)

Comparing with (98) we obtain

Ξγγ =
cRγΥ

Θn ΞγT = −3γΥ
Θn (128)

The Onsager relation (99), then, implies

kγ = −3γΥ, (129)

which can be compared with (110). Recalling that k = χA, we finally obtain Υ = χA, which is what we
wanted to prove.

In conclusion, we have shown that (if one negects the compton scattering) the model for radiation
hydrodynamics adopted by Sadowski et al. [57] can be translated into the multifluid framework
by imposing

Ξγγ =
cRγχA

Θn ΞγT = −3γχA

Θn

kγ = −3γχA kT = 3bRγχA

χ = χA + χe,

(130)

and that this choice respects all the thermodynamic constraints we derived in Section 4.3. In fact,
the only non-trivial inequality which is left to check is (101), which in our case reduces to

bRcR ≥ 3 (131)

and is satisfied by both the Bose gas (bRcR ≈ 4.93) and the Majorana Fermi gas (bRcR ≈ 3.83).
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5. Radiation as a Source of Bulk Viscosity

In Section 3 we anticipated that relativistic models for heat conduction and bulk viscosity can be
naturally obtained as particular cases of the general multifluid theory. Hence, also any hydrodynamic
model which is formulated in a multifluid framework can be interpreted as a heat-conducting or a
bulk-viscous fluid whenever it arises from a Lagrangian density of the form (32) or (51) and there is only
one strictly conserved current nν. It is clear that the model for radiation hydrodynamics we presented
fails to satisfy the first condition and therefore does not admit a straightforward interpretation as a
heat-conducting or as a bulk-viscous fluid. It is possible, however, to impose further constraints, besides
those given in Equation (65), to recover the canonical models for dissipation given in Section 3. In this
subsection we focus on the possibility of transforming the presence of radiation into a contribution to
bulk viscosity.

First, to recover a model for pure bulk viscosity the system should be non-conducting.
To implement this physical requirement, we impose the constraint

n[νγρ] = 0, (132)

which implies uν
n = uν

γ. This can be obtained at a dynamic level taking the limit χ −→ +∞ and it
corresponds to the infinitely optically thick regime in which

Fν = 0 . (133)

Under this condition the radiation fluid is completely advected by the matter fluid (i.e., there is
no net conduction of photons in the matter frame). Since now matter and radiation have the same
rest-frame, then it is possible to define the conglomerate internal energy

U = ρ + ε, (134)

which by comparison with (75), is the total energy density measured in the common rest-frame.
By comparison with (66) we see that the Lagrangian density has the form (51): we have constructed a
bulk-viscous fluid.

An alternative way of seeing the emergence of bulk viscosity is to start from Equations (67) and (68)
and to write

dU = Θndsn + µdn + Θγdsγ −Aγdγ, (135)

which can be recast as
dU = µdn + Θγds−Aγdγ+ (Θn −Θγ)dsn. (136)

Making the identifications

Θ = Θγ Asn = Θγ −Θn, (137)

the differential of the internal energy (136) has the form (52). The equilibrium conditions (97) tell us
that the displacement of the matter-radiation multifluid from local thermodynamic equilibrium is
given by a non-vanishing value of the generalised affinities Aγ and Asn . These affinities are associated
with the densities γ and sn, which are in turn interpreted as generalised reaction coordinates. This is in
agreement with the equilibrium condition (55) for bulk-viscous fluids.

The pressure and energy-momentum tensor, which for the matter-radiation multifluid are equal
to (71) and (74), coincide with the ones calculated according to the prescription (54), namely

Ψ = −U + µn + Θs−Aγγ−Asn sn

Tνρ = Ψgνρ + (U + Ψ)uν
nuρ

n.
(138)
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This is due to the fact that the variationally defined energy-momentum tensor (10) is invariant
under changes of chemical basis [8].

We can also map the dissipative expansion coefficients introduced in (98) into the reaction matrix
ΞAB presented in Equation (56). With the aid of Equation (80), we can rewrite (98) in the form(

rγ
rsn

)
=

[
Ξγγ ΞγT

kγ/Θn kT/Θn

](
Aγ

Asn

)
, (139)

which is the defining relation for the 2× 2 matrix ΞAB. The Onsager reciprocal relation (99) ensures
the symmetry condition ΞAB = ΞBA, while the thermodynamic constraints (100) and (101) imply the
non-negativity of ΞAB.

We can also compute the bulk viscosity coefficient (59) associated with the radiation processes
(the details of the calculations are reported in Appendix C.2), that turns out to be

ζ =
kT + 2bRΘnΞγT + b2

RΘnΞγγ

ΞγγkT −ΘnΞ2
γT

(
∂xeq

γ

∂v

∣∣∣∣
xs

)2

. (140)

The above formula is the general expression for the bulk viscosity of the multifluid for arbitrary
values of the kinetic coefficients kT , ΞγT and Ξγγ. If we impose the validity of the condition (112),
which combined with the Onsager relation (99) implies

kT = −bRΘnΞγT , (141)

together with the consequent expression for the four-force (120), we find that the bulk viscosity
coefficient simplifies to

ζ =
bRΘn

3γχA

(
∂xeq

γ

∂v

∣∣∣∣
xs

)2

. (142)

The coefficient Ξγγ simplifies and does not play any role in the final expression for the
bulk viscosity. This stems from the fact that the condition (112) is imposed to guarantee that the
hydrodynamic evolution is decoupled from the chemical evolution of the degree of freedom γ. The term
in the brackets in Equation (142) strongly depends on the equation of state of the matter fluid and
essentially nothing can be said a priori if ρ(n, sn) is not specified. In Appendix D we compute ζ

explicitly for the case of a non-degenerate gas in the ultra-relativistic and non-relativistic limits.
Equation (142) can be used to replace the multifluid with a Navier-Stokes (or Israel-Stweart)

bulk-viscous fluid (the final equations governing these fluids can be taken to be the ones presented
in section IV-C or VII of [7]) using the matter+radiation equilibrium equation of state and ζ as the
prescription for the bulk-viscosity coefficient.

6. Radiation Hydrodynamics as a Model for Heat Conduction

To obtain a model for heat conduction we need to consider an opposite situation with respect to
the bulk-viscous case. We need to assume that the radiation-particle production rate and the exchange
of energy in the rest-frame of the matter are faster than the hydrodynamic time-scale. In this way they
are always in equilibrium and do not contribute to the entropy production. This, compared with (94),
implies (assuming that the relative speed is non-relativistic)

Θn = Θγ Aγ = 0. (143)

This condition can be formally achieved by sending at least two out of the three coefficients
Ξγγ, ΞγT and kT to infinity. In the case in which the radiation four-force has the form (120), the limit
Ξγγ −→ +∞ can be safely imposed (even in those cases in which this is not a rigorous assumption)
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because the value of Ξγγ does not have any influence on the hydrodynamic evolution of the model
based on 9 degrees of freedom (nν, Θn, ε̂, Fν), which are usually the variables of physical interest.

For the other coefficients there is the complication that the constraint (119) implies that if
k −→ +∞, then also χ will diverge. However, in this case we would have also the locking condition
(132) and the multifluid would simply reduce to a single perfect fluid. Since we need to keep χ finite
to enable heat conduction, in the following we will simply assume that (143) holds as a mathematical
constraint, without specifying under which physical conditions this constraint is respected.

6.1. The Origin of the Entrainment

An easy way of studying the implications of the constraint (143) is to analyse its effect on the
Lagrangian density. From (5) and (70) we have that the variation of Λ under arbitrary variations of the
currents (at constant metric components) is

δΛ = Θn
ν δsν

n + µνδnν + Θγ
ν δsν

γ −Aγ
ν δγν. (144)

We can use (63) to rewrite this variation in the equivalent form

δΛ = Θνδsν + µνδnν −Asn
ν δsν

n −Aγ
ν δγν, (145)

where analogously with the notation (137), we have introduced the covectors

Θν = Θγ
ν Asn

ν = Θγ
ν −Θn

ν . (146)

Now we impose that the variations of the currents, which in principle may be all independent,
satisfy the constraints (65): we can write

sν
n = xsnnν

γν = y sν
γ = y(sν − xsnnν)

(147)

and a variation of the first expression reads

δsν
n = nνδxsn + xsnδnν. (148)

The variation of Λ becomes

δΛ = Θνδsν + µ̃νδnν −Asn
ν nνδxsn −Aγ

ν δγν, (149)

where we have introduced the momentum

µ̃ν = µν − xsnAsn
ν . (150)

Finally, we impose the constraints (143) on the non-varied state (i.e., the original state in which the
system is, before we make the variation), but not on the varied state. The meaning of this procedure
is that we are assuming a reference state which is solution of Equation (143), but the variations δsν,
δnν, δxsn and δy are completely arbitrary (the reason why we leave them arbitrary will be clarified in
the next subsection). It is easy to see that for non-relativistic relative speeds (143) is equivalent to the
chemical-type equilibrium conditions

Asn
ν nν = 0 Aγ

ν = 0, (151)

so that all the contributions arising from the arbitrary variations δxsn and δy vanish and (149) reduces to

δΛ = Θνδsν + µ̃νδnν. (152)
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This proves that the variation of the Lagrangian density is indistinguishable from the one of a
heat-conducting fluid, provided that we interpret the momenta Θν and µ̃ν as the conjugate momenta
respectively to the entropy and particle current (cfr. with Section 3.1). These momenta, written in
terms of the currents sν and nν, are respectively

Θν =
Θγ

sγ
(sν − xsnnν)

µ̃ν =

(
µ

n
+ xsn

Θn

n
+ x2

sn
Θγ

sγ

)
nν − xsn

Θγ

sγ
sν,

(153)

which lead to the identification of the bulk coefficients

B =
µ

n
+ xsn

Θn

n
+ x2

sn
Θγ

sγ
C = Θγ

sγ
(154)

and of the anomalous coefficient Asn, which encodes the entrainment phenomenon, see Equation (5),

Asn = Ans = −xsn
Θγ

sγ
. (155)

It is useful, now, to summarize what we have obtained so far. We started with the model (66) which
was built considering 4 currents. No entrainment was assumed in this model, namely the conjugate
momenta to all the currents were collinear with the respective currents. Then we have reduced the
dynamical degrees of freedom to 2 independent currents invoking 2 collinearity constraints (65) and
2 chemical-type equilibrium conditions (151). We have found that the reduced theory, described
using only 2 independent four-currents, reproduces a fluid with entrainment (i.e., a fluid in which the
conjugate momenta are linear combinations of both the currents, see Section 2.1).

This gives us a deep insight on the fundamental nature of the entrainment. In fact, the anomalous
coefficient (155) is proportional to xsn, which represents the entropy per-particle carried by the matter
fluid (see (147)), a quantity that comoves with nν. Thus, we see that the entrainment between two
currents may arise also in a theory which originally does not admit it: an effective entrainment coupling
emerges whenever a fraction of the constituents of one current is forced to comove with the second
current and the processes which tend to alter this fraction are in equilibrium.

As a final remark, we note that for the case of the superfluid Helium, this mechanism for the
emergence of entrainment is at the origin of the equivalence between the Tisza-Landau two-fluid
model and the multifluid model of Carter and Khalatnikov [15]. In the Landau model it is assumed
that the Helium current can be split into two non-conserved and non-entrained currents, one of
which (the so-called normal current) is locked with the entropy current. On the other hand, in model
of Carter and Khalatnikov this splitting is not explicitly done, but its existence is reflected into a
non-vanishing entrainment between the entropy and the total particle current. The steps of the proof
of the equivalence between these two approaches are analogous to the calculations performed in this
subsection [15].

6.2. Energy-Momentum Tensor

The energy-momentum tensor introduced in Section 2.1 can be equivalently defined as

Tνρ =
2√−g

δ(
√−gΛ)

δgνρ

∣∣∣∣
?nx

(156)

where the variation is performed keeping constant the components of the Hodge duals of the currents

(?nx)νρσ = ελνρσnλ
x . (157)
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In Section 4 the energy-momentum tensor was computed treating the currents sν
n and γν as

independent variables, therefore in the calculation of the derivative (156) their Hodge duals where
held fixed, imposing the condition

δxsn = δy = 0 . (158)

On the other hand, if we want to eliminate these currents from the set of possible degrees of
freedom and work with a theory in which the only two fundamental currents are nν and sν, we have
to impose the constraints (143) also in the varied state. This implies that xsn has to be considered a
function of the three fundamental scalars of the model, giving

δxsn =
∂xsn

∂n2 δ(n2) +
∂xsn

∂s2 δ(s2) +
∂xsn

∂n2
ns

δ(n2
ns). (159)

The same argument should in principle hold also for y; however we know from microphysics that in
equilibrium y = 1/bR, therefore the condition δy = 0 is left unchanged.

However, in deriving the formula of the variation (152) no assumption on the variation of xsn

and y was made (they were completely arbitrary). This means that the energy-momentum tensor
we obtain from the formula (156) is the same both in the original model with 4 currents, imposing
the constraints only at a dynamical level, and in the reduced model with 2 currents, in which the
constraints hold also off-shell (and therefore remain valid when the variation is performed, see section 4
of [15]). The implication is that the pressure (71) and energy-momentum tensor (74) can be equivalently
rewritten from (152) in the canonical forms (11) and (10):

Ψ = Λ− nνµ̃ν − sνΘν

Tν
ρ = Ψδν

ρ + nνµ̃ρ + sνΘρ.
(160)

This can also be checked with direct calculations. Thus, we have proven that the energy-momentum
tensor of the radiation hydrodynamics assumes the form of the energy-momentum tensor of a
heat-conducting fluid, Equation (36), provided that we interpret the entrained momenta (153) as the
canonical conjugate momenta to the entropy current and to matter-particle current respectively.

Let us perform the Eckart-frame decomposition (42). We note that the Eckart four-velocity identifies
the matter rest-frame. However, the decomposition of the radiation stress-energy tensor has already been
performed in Section 4.3. Comparing (42) with (89) we have the straightforward identifications

U = ρ + ε̂ qν = Fν, (161)

so we see that Eckart’s heat-flux is simply the radiation flux. In Appendix C.3 we show that this
identification (which we have obtained from the comparison of the energy-momentum tensors) is also
consistent with the Eckart-frame decomposition (39) of the entropy current (63).

Finally, we can study the second order term in (42), whose coefficient D, introduced in (41),
is given by

D =
1

Γ2
nγsγΘγ

, (162)

where we have used the second equation of (154). It is easy to prove that the pressure tensor P̂jk

introduced in Section 4.3 can be written as

P̂jk = Pγη jk +Dqjqk, (163)

which provides, in the case of radiation hydrodynamics, an immediate microscopic interpretation
of the phenomenological second order term appearing in (42) as the anisotropic contribution to the
radiation pressure tensor.
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6.3. The Hydrodynamic Equations

The equations of motion (77) describe the dissipative interaction between the currents nν, sν
n and

the currents γν, sν
γ. To complete the construction of the model for heat conduction we need to recast

these equations into the form (43), which describes the dissipative interaction between nν and sν.
Before doing this, however, there is an important remark to make, which was pointed out in [8].

Let us consider a generic multifluid and define the forces

Ry
xν = 2nρ

x∇[ρµ
y
ν]
+ µ

y
ν∇ρnρ

x. (164)

They might be thought to constitute a (1, 1) tensor in the chemical species index x. In fact, if we
change the fundamental currents of our theory through a change of chemical basis, i.e., a transformation

ñν
x = Ny

xnν
y, (165)

where the coefficients Ny
x are some constants, then the conjugate momenta transform according to the

contravariant law
µ

y
ν = µ̃x

ν Ny
x (166)

and the forces (164) will consequently have a mixed transformation law. Since, from (24), we have that

Rx
ν = Rx

xν, (167)

the dissipative forces represent only the diagonal part of the tensorRy
xν. As a result, after a change of

basis the new forces R̃x
ν will not be linear combinations of the old forcesRx

ν only, but the summation
will involve also off diagonal termsRy

xν with x 6= y. This has two remarkable consequences.
The first consequence is that if we imposeRx

ν = 0 for all x in the non-dissipative limit, in principle
this will cease to hold if we change the chemical basis (R̃x

ν 6= 0), due to the presence of mixed terms
Ry

xν 6= 0, for x 6= y. This shows that in general, there is no way to guarantee that the forces Rx
ν

vanish in a non-dissipative theory, unless one has a microscopic argument to support the choice of a
preferred chemical basis in which this occurs. This is related to the problem we presented at the end
of Section 2.2, namely the fact that one can impose the vanishing dissipation condition (30) even in a
context in whichRx

ν 6= 0.
The second consequence is that since the termsRy

xν contain derivatives (both in space and time),
if one imposes that the forcesRx

ν depend only on the value of the hydrodynamic fields in the point and
not on their derivatives, this will be no longer true when we change chemical basis. Therefore, as we
have already pointed our in Section 3.1, one cannot impose that the forces do not depend on the
derivatives of the hydrodynamic fields without a microscopic justification.

Now, we can study the heat-conductive limit of radiation hydrodynamics, knowing that both these
complications may arise (in fact, we are going to perform substantially a change of chemical basis).

Let us take the second equation of (77) and use the second constraint of (143) to remove the terms
proportional to Aγ

ν :
− Gν = 2sρ

γ∇[ρΘγ
ν]
+ Θγ

ν∇ρsρ
γ. (168)

From the second equation of (43), we know that

Rs
ν = 2sρ∇[ρΘν] + Θν∇ρsρ. (169)

Recalling the first definition of (146), we can use (168) to rewriteRs
ν in the form

Rs
ν = 2sρ

n∇[ρΘν] + Θν∇ρsρ
n − Gν. (170)
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We can further simplify this expression by invoking the decomposition (93), which recalling the
second equation of (146), gives us the final formula

Rs
ν = 2sρ

n∇[ρΘν] +Asn
ν ∇ρsρ

n − χFν. (171)

The equation for the entropy production (94), on the other hand, reduces in our case to

∇ρsρ =
F∆χ

Θγ
≥ 0. (172)

Therefore, we see that if χ = 0 the theory is non-dissipative, even if Rs
ν 6= 0. Furthermore we

note that having imposed that χFν depends only on the value of the hydrodynamic variables in the
point, the forceRs

ν contains terms which are linear in the derivatives. We also note that Equation (171)
describes a force which is not necessarily a linear combination of nν and sν, but contains a component
which is orthogonal to both. This is in agreement with the discussion in [58].

6.4. Heat Conductivity Coefficient

We conclude the section by calculating the coefficient of thermal conductivity. This is conveniently
done by comparing the formulas for the entropy production (50) and (172). Imposing the equality of
the two, we find the condition (neglecting the Lorentz factors)

∆χ =
F

κΘγ
. (173)

However, from (A40) and (A41) we obtain

F = Θγsγ∆, (174)

which plugged into (173), gives

κ =
sγ
χ

=
4
3

aRΘ3

χA + χe . (175)

It is well known that the radiation hydrodynamics have a diffusion-type limit which makes
it analogous to a phenomenon of heat conduction. Shapiro [39] and Farris [40] have computed
explicitly the corresponding coefficient κ, obtaining the formula (175). We have generalized this result,
showing the complete formal analogy between the two systems in the framework of the multifluid
formalism.

7. Limitations of the Model

We conclude with a few comments about the limitations of our model. We have seen that assuming
the Lagrangian density (66) as a starting point for Carter’s approach implies that the matter and the
photons are both described as two perfect fluids. The fact that the matter can be modelled as a perfect
fluid is justified if the collisions between matter-particles are faster than the hydrodynamic time-scale.
However, the same argument cannot be applied to the radiation fluid, whose particles typically do
not interact with each other and, therefore, an H-theorem for the radiation gas alone does not exist.
This implies that the closure scheme cannot, in general, be justified using thermodynamic or kinetic
arguments. Indeed, it is well-known that the local properties of the radiation stress-energy tensor
depend on the global structure of the radiation field (in particular on the disposition of its sources)
and, as a consequence, the M1 closure scheme fails the multiple-source shadow test [49].

Given the fact that it is not possible to justify the closure scheme as a physical limit (and therefore
it is not guaranteed to provide an accurate description of reality), we can understand its appearance in
the multifluid theory as a byproduct of applying the principles of information theory in the context
of Carter’s formalism. In fact, one is required to provide a limited set of macroscopic parameters
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(the radiation particle total current γν and the rest-frame energy density ε, both appearing in the
Lagrangian density (66)) and all the remaining properties of the radiation field need to be written
in terms of this limited (local) information. Then, following the philosophy of information theory,
well summarised by Jaynes [59], we have to assume that the system is in the microstate that maximizes
the entropy (or, equivalently, minimizes the information) compatibly with the values of the macroscopic
parameters which are known. Thus, denoting the microscopic single-particle-state occupation numbers
by N(p), the Shannon entropy sγ, which for an ideal gas is the opposite of Boltzmann’s H-function,
is given in the radiation rest-frame by

sγ = −
∫ [

N log N + j(1− jN) log(1− jN)

]
g d3 p

h3
p

, (176)

where j = −1 for Bosonic radiation and +1 for Fermionic radiation, g is the spin degeneracy and hp is
Planck’s constant. The particle and energy density are

γ =
∫

N
g d3 p

h3
p

ε =
∫

N|p| g d3 p
h3

p
. (177)

Hence, the most probable state must be obtained imposing

δsγ + α δγ− β δε = 0, (178)

where α and β are two Lagrange multipliers. This operation gives the Bose-Einstein/Fermi-
Dirac occupation

N(p) =
1

e−α+β|p| + j
, (179)

which justifies the interpretation of sγ, Θγ = β−1 and−Aγ = αβ−1 as respectively the thermodynamic
entropy, temperature and chemical potential of the radiation gas.

To summarize, the multifluid formalism forces us to assume that the currents and the Lagrangian
density are the only information we are given (it is our macroscopic knowledge about the system),
and this leads to a fluid-model of the radiation gas.

Apart from failing the multiple-source shadow test, this approach has also clear limitations when
the opacity has a strong dependence on the frequency. In fact, under this condition, the expression
(120) for the radiation four-force ceases to hold and a hydrodynamic approach may be inapplicable.
In this situation one should follow the evolution of each radiation frequency separately, requiring a
kinetic theory approach.

Furthermore, even in the case in which there was only one relevant radiation frequency,
which in principle may still allow the use of a hydrodynamic treatment, the M1 closure scheme
of Sadowski et al. [49] would be inconsistent with the given information. This was shown in the
context of information theory by Minerbo [60], who worked in the rest frame of matter and considered
a monochromatic radiation flux with a given frequency (measured in the matter’s frame). By choosing
the energy ε̂ and the components radiation flux Fj as basic information about the system, he found
a maximum entropy distribution which produces an energy-momentum tensor which obeys to a
different closure scheme (see also [48] for a comparison between the different closure schemes).

8. Conclusions

We have studied how radiation hydrodynamics can be modelled in the context of Carter’s
multifluid formalism. The radiation stress-energy tensor was found to obey to the M1 closure scheme
presented by Sadowski et al. [49] and the hydrodynamic equations were shown to be equivalent to
those which are often employed in the literature [34]. Moreover, we connected the hydrodynamic



Symmetry 2020, 12, 1543 28 of 36

theory with non-equilibrium thermodynamics and performed an Onsager analysis of the dissipative
terms of the model.

As an immediate application, we showed that the grey-body radiation four-force [38,40,56] is the
only thermodynamically consistent expression for the force between the matter and the radiation fluid
which can be used in a model with 9 independent degrees of freedom.

The multifluid formalism, therefore, perfectly captures and describes the physics of radiation
hydrodynamics in detail, offering novel insight into a well understood subject.

In the second part of the paper, we reinterpreted radiation hydrodynamics as a particular case of
relativistic dissipation and we used this reformulation to gain new understanding in the latter. In the
infinitely optically thick limit, the interaction between the matter and the radiation fluid was shown to
become a source for bulk viscosity. This is in accordance with the more general result that any locally
isotropic fluid is a Carter bulk-viscous multifluid [7].

In the opposite limit, in which the radiation fluid is assumed to be in chemical equilibrium with
respect to particle production processes and to have a rest-frame temperature equal to the one of the
matter fluid, the multifluid reduces to a model for heat conduction. We found that the entrainment
between the entropy and the matter current arises naturally from the original splitting of the entropy
current into a matter part and a radiation part which were not entrained. When we used the condition
of equal temperature to reduce the number of degrees of freedom of the model, the momentum
associated with the entropy of matter was naturally divided into two parts which were redistributed
between the currents, generating an effective entrainment in a theory that originally (because of the
assumed form (66) of the Lagrangian density) was entrainment-free.

The equations of motion of the resulting heat-conducting fluid have, in the parabolic limit,
the well known diffusive form of the radiative transport [39,40] and we verified the correspondence
of the respective transport coefficients. In the hyperbolic regime, however, beyond first order in the
deviations from equilibrium, the model was shown to be different from all the proposed universal
models for heat conduction [6,10,32]. In fact, the structure of the hydrodynamic equations (determined
by the expression of the four-force acting between the currents) preserves many details of the physics
of the radiation hydrodynamics and no universal available theory for the heat conduction is so general
to be able to encompass all these details.

This paper constitutes a further step forward towards the global unification of the relativistic
hydrodynamics, showing with a concrete example how multifluids and dissipative single-fluids can
arise as two different mathematical descriptions of the same theory. In particular, our study might
constitute the beginning of the construction of a bridge between the hydrodynamic models employed
in simulations of super-novae (where a multifluid approach is usually adopted) and those employed
in simulations of neutron-star mergers (where a single-fluid approach is preferred).
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Appendix A. Triangular vs. Square Formulation

Consider for simplicity the case with two currents, nν
A and nν

B. According to (2), the Lagrangian
density has the form

Λ = Λ(n2
AA, n2

AB, n2
BB), (A1)
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whose differential, recalling (3) and (4), is

dΛ = −B
A

2
d(n2

AA)−AAB d(n2
AB)−

BB

2
d(n2

BB). (A2)

This representation of the equation of state gives Λ as a function of the upper triangle x ≤ y of
the matrix n2

xy and for this reason it may be called triangular formulation. An other approach consists
of considering Λ as a function of the whole square matrix (and for this reason we can call it square
formulation) trough the equation

Λ(n2
AA, n2

AB, n2
BA, n2

BB) := Λ
(

n2
AA,

n2
AB + n2

BA
2

, n2
BB

)
, (A3)

where in the right-hand side we are using the functional dependence of Λ presented in Equation (A1).
Equations (A1) and (A3) describe the same physical quantity, in fact in any real state n2

AB = n2
BA.

However in the square formulation n2
AB and n2

BA are treated in the equation of state as independent
variables. This allows writing the differential of Λ in the more compact form

dΛ = −1
2 ∑

x,y
Kxyd(n2

xy), (A4)

where the coefficients Kxy form the symmetric 2× 2 matrix

Kxy =

[
BA AAB

ABA BB

]
. (A5)

From (A4) it is immediate to prove (5), in fact one can easily see that

∂Λ
∂nν

x
= ∑

y
Kxynyν, (A6)

leading to an explicit expression for the momenta in the matrix form(
µA

ν

µB
ν

)
=

[
BA AAB

ABA BB

](
nAν

nBν

)
, (A7)

which is equivalent to Equation (5).
The distinction between the triangular and the square formulation is never explicitly discussed in

the literature and the two are used interchangeably according to convenience. However it is important
to keep the distinction clear in mind, because in the square formulation

AAB = −2
∂Λ

∂n2
AB

, (A8)

while in the triangle formulation

AAB = − ∂Λ
∂n2

AB
. (A9)

There is no contradiction between the two, because in the first case the derivative is performed
keeping n2

BA constant, while in the second case it is performed along the curve n2
AB = n2

BA,
producing a double variation of Λ.
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Appendix B. The Relaxation-Time Approximation

Following [34], we assume that the photon distribution function f is governed by the
transport equation

pµ∂µ f = σ− α f . (A10)

We are working for simplicity in a flat space-time, with global inertial coordinates. We can
interpret σ as a source term, while α plays the role of an absorption coefficient (however it includes
also a negative contribution coming from the stimulated emission, see e.g., [36]). In this appendix,
for simplicity, we will focus only on the thermal absorption/emission processes and we will ignore
completely the scattering. It is clear that if the scattering is isotropic and coherent, it will just produce
an additional term χeFν to be included in the total force Gν.

If the photon gas was in local thermodynamic equilibrium (together with the matter element) its
distribution function would be

feq =
g

h3
p

1

e−uµ
n pµ/Θn − 1

. (A11)

where g = 2 accounts for the spin degeneracy and hp is the Planck constant. Imposing the Kirchhoff
law consists of assuming that

σ = α feq. (A12)

The frequency ν of a photon measured in the matter rest-frame is related to the four-momentum
pµ through the relation

hpν = −uµ
n pµ. (A13)

This relation can be used to prove that the specific intensity Iν and the absorption opacity χA can
be obtained using the relations [34]

f =
Iν

h4
pν3 α = hpνχA. (A14)

The coefficient χA in principle depends on the frequency, the grey-body assumption consists of
requiring that

χA(ν) = const. (A15)

This allows us to rewrite Equation (A10) in the Anderson-Witting [61,62] relaxation-time form

pµ∂µ f = −pµunµ
feq − f

τA
, (A16)

where
τA =

1
χA (A17)

is the relaxation time-scale towards equilibrium of the radiation gas.
The generic moment of the radiation distribution function is defined as

ϕµα1...αN :=
∫

pα1 ...pαN pµ f
d3 p
p0 . (A18)

It is easy to show that (A16) implies

∂µ ϕµα1...αN = −unµ
ϕ

µα1...αN
eq − ϕµα1...αN

τA
. (A19)

Considering that
ϕµ = γµ ϕµα = Rµα, (A20)
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we finally obtain
rγ = χA(γ̂eq − γ̂), (A21)

where we have defined γ̂ = −unµγ
µ, and

Gµ = χA(ε̂− ε̂eq)u
µ
n + χAFµ. (A22)

Appendix C. Calculations

In this appendix we report in detail the calculation which were omitted from the main text.

Appendix C.1. Onsager Symmetry of the Dissipative Coefficients

We consider a homogeneous matter-radiation multifluid prepared in an initial state such that
both the components are at rest. Under this condition we can combine Equations (67) and (68) to write
the differential of the total entropy as

ds =
dρ

Θn −
µ

Θn dn +
dε

Θγ
+

Aγ

Θγ
dγ. (A23)

Imposing the conservation of energy and particle number,

dn = 0 dε = −dρ, (A24)

we obtain the differential

ds =
(

1
Θn −

1
Θγ

)
dρ +

Aγ

Θγ
dγ. (A25)

Therefore we are able to identify the thermally fluctuating variables

y1 = ρ y2 = γ (A26)

and their conjugates

C1 =
1

Θn −
1

Θγ
C2 =

Aγ

Θγ
. (A27)

Onsager principle states that if we write the evolution of the variables yA in the form

ẏA = ∑
B

LABCB, (A28)

then LAB is symmetric.
From (62) and (80) we find that in homogeneous configurations and in the absence of a

relative flow
ρ̇ = Q γ̇ = rγ, (A29)

which recalling (98), gives the formulas

ρ̇ = kγAγ + kT(Θγ −Θn)

γ̇ = ΞγγAγ + ΞγT(Θγ −Θn).
(A30)

It is easy to rewrite this system in the form (A28):

ẏ1 = ΘγkγC2 + ΘγΘnkTC1

ẏ2 = ΘγΞγγC2 + ΘγΘnΞγTC1,
(A31)

which produces the reciprocal relation
kγ = ΘnΞγT . (A32)
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Appendix C.2. Computation of the Bulk Viscosity Coefficient

The chemical-transfusion matrix is

ΞAB =

[
Ξγγ ΞγT

kγ/Θn kT/Θn

]
. (A33)

The inverse chemical matrix is, therefore,

ΞAB =
Θn

ΞγγkT −ΘnΞ2
γT

[
kT/Θn −ΞγT
−ΞγT Ξγγ

]
. (A34)

The equilibrium fractions are given by

xeq
γ =

γ

n

∣∣∣∣
Aγ=0,Θn=Θγ

xeq
sn =

sn

n

∣∣∣∣
Aγ=0,Θn=Θγ

. (A35)

We note that the relation (111) implies

∂xeq
sn

∂v

∣∣∣∣
xs

= −bR
∂xeq

γ

∂v

∣∣∣∣
xs

. (A36)

Plugging (A34) and (A36) into (59), we obtain

ζ =
kT + 2bRΘnΞγT + b2

RΘnΞγγ

ΞγγkT −ΘnΞ2
γT

(
∂xeq

γ

∂v

∣∣∣∣
xs

)2

. (A37)

Appendix C.3. Eckart Decomposition of the Entropy Current

From the definition (38) we have

sE = sn + sγΓnγ ΘE = ΘγΓnγ, (A38)

which plugged into (39), gives

sν = (sn + sγΓnγ)uν
n +

qν

ΘγΓnγ
. (A39)

Thus, in the tetrad which comoves with the matter element, we have

qj = ΘγΓnγsj. (A40)

On the other hand, in this basis sj
n = 0, so

sj = sγΓnγvj. (A41)

The equation of state (84) and the Legendre transform (73) imply that in chemical equilibrium
(Aγ = 0) we have the well-known formula

sγΘγ =
4
3

ε, (A42)

which combined with (A40) and (A41), gives

qj =
4
3

εΓ2
nγvj. (A43)
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By comparison with (88)we obtain
qν = Fν. (A44)

Appendix D. Radiation-Mediated Bulk Viscosity of Non-Degenerate Ideal Gases

Let us consider Equation (142) and let us assume that the matter fluid is a non-degenerate ideal
gas. Since all the coefficients in the formula for ζ are computed in equilibrium, in this appendix we
will impose Θn = Θγ = Θ and sγ = bRγ. Therefore we can write

xsn = log(vΘw) + const xsγ =
4
3

aRvΘ3, (A45)

where w = 3/2 if the matter-fluid is a non-relativistic gas and w = 3 if it is an ultra-relativistic gas.
Now, we immediately see that in the latter case

xs = xs(vΘ3), (A46)

thus the adiabatic curves are given by
vΘ3 = const. (A47)

Considering that

xγ =
4aR
3bR

vΘ3, (A48)

we find
∂xeq

γ

∂v

∣∣∣∣
xs

= 0 (A49)

and, therefore,
ζ = 0. (A50)

This result is in agreement with the well-known fact that in ultra-relativistic ideal gases the bulk
viscosity is identically zero [2,7].

Let us focus on the case w = 3/2 (non-relativistic matter-gas). Starting from the obvious relation

∂xs

∂v

∣∣∣∣
xs

=
∂xsn

∂v

∣∣∣∣
xs

+
∂xsγ

∂v

∣∣∣∣
xs

= 0, (A51)

we obtain, recalling (A45),
∂Θ
∂v

∣∣∣∣
xs

= −2Θ
3v

1 + xsγ

1 + 2xsγ
. (A52)

This can be used to show that
∂xeq

γ

∂v

∣∣∣∣
xs

= − γ

1 + 2xsγ
, (A53)

which plugged into (142), gives

ζ =
4Pγ

3χA(1 + 2xsγ)2 . (A54)

It is useful to rewrite this formula using more standard notation. To do this, we introduce the
pressure ratio

αP =
Pγ
Pn

=
xsγ

4
, (A55)
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where the second identity follows from the ideal gas assumption Pn = nΘ. Plugging it into (A52) we
recover the well-known formula [34]

∂ log Θ
∂ log v

∣∣∣∣
xs

= − 1 + 4αP
3/2 + 12αP

. (A56)

Finally, our expression for the bulk viscosity becomes

ζ =
4Pn

3χA
αP

(1 + 8αP)2 . (A57)

We see that the second fraction tends to suppress ζ as αP −→ 0 or αP −→ +∞. Intuitively,
this is due to the fact that since the bulk viscosity is due to the dissipative processes which tend to
equilibrate the temperatures of matter and radiation (which would depart from each other during
a fast expansion), it becomes important only if both the species give a relevant contribution to the
overall stress-energy tensor.
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