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Abstract: We study the solvability of nonlinear inverse problems of determining the low order
coefficients in the second order hyperbolic equation. The overdetermination condition is specified as
an integral condition with final data. Existence and uniqueness theorems for regular solutions are
proved (i.e., for solutions having all weak derivatives in the sense of Sobolev, occuring in the equation).
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1. Introduction

The article is devoted to the study of the solvability of some new nonlinear inverse coefficient
problems for partial differential equations.

Inverse coefficient problems for differential equations are problems in which, together with the
solution, it is also required to determine the equation itself, that is, unknown coefficients of the equation
or some unknown components of its right-hand side.

It is well known that for the solvability of inverse coefficient problems, alongside natural boundary
information generating a well-posed boundary value problem for the corresponding class of differential
equations, some additional conditions are required. These conditions are conditions of structural kind
and overdetermination conditions.

Among conditions pertaining to structural kind, one can distinguish two main cases. In the first
of them, it is assumed that the unknown coefficient does not depend on the time (distinguished)
variable, i.e., in fact it depends on the space variables (see, for example, [1–9] and many other
works); we refer to such inverse problems as space-type inverse problems. In the second case, it is,
on the contrary, assumed that the unknown coefficient depends only on the time (distinguished)
variable (see [1,10–17]) and we will refer to such inverse problems as time-type inverse problems.

In some investigations, which are not many in contrast to space, and time-type inverse problems
it is assumed that the unknown coefficient depends on all independent variables but in a special way
(namely, it depends on some a priori defined combination of the independent variables), see [3,6,18–20].

The problems studied in the present article differ from many that have been investigated before
as the unknown coefficients in them are constants (i.e., numbers) and not functions. This structural
condition means that the solvability conditions must be substantially different from those in space- or
time-type inverse problems.

The study of the solvabilitty of inverse problems for partial differential equations with unknown
constant coefficients began comparatively recently.

The works [21–27] were devoted to the solvability of inverse problems with unknown constant
coefficients for parabolic equations. In [21], a special linear final-integral overdetermination condition
was used, in [22–25] quadratic final-integral overdetermination conditions were utilized, and the
works [21–25] used the semigroup approach. In [26,27], linear final-integral overdetermination
conditions were used and the regularization and fixed point methods were applied.
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Note also the article [28], in which the solvability was studied of inverse problems of finding,
together with the solution of elliptic equations, the unknown constant defining the boundary regime.

As for inverse problems with unknown constant coefficients for hyperbolic equations, we can only
mention [29], where the inverse problem was studied for finding the lower coefficient in a telegraph
equation, and here the quadratic final-integral overdetermination condition was used.

In the present article, we will study the solvability of inverse problems with constant coefficients
for hyperbolic equations in the case of a linear final-integral overdetermination condition. As said
above, such problems have not been studied before.

An additional observations relates to problems in which some processes are described
by differential equations with constant coefficients appearing to be natural for a homogeneous
medium see for example, [30]. Furthermore, if some characteristics of the medium are unknown
a priori then the mathematical modeling of the corresponding process inevitably leads to the necessity
of investigating the solvability of inverse problems for differential equations with unknown constant
coefficients.

In Section 2, we give the statement of the problems under study. In Section 3, we prove existence
theorems for solutions. Section 4 is devoted to discussing the uniqueness of th solutions. Finally,
in Section 5, we give some comments to the obtained results, propose possible generalizations and
extensions of the results, as well as give examples.

2. Statement of the Problem

Throughout the article, we will use the usual Lebesgue spaces Lp, the Sobolev spaces W l
p, and also

the spaces Lp(0, T; X). The definitions and properties of these spaces can be found in [31,32].
Let Ω be a bounded domain in Rn with smooth (for simplicity, infinitely-differentiable)

boundary Γ, Q be the cylinder {(x, t) : x ∈ Ω, t ∈ (0, T)} of finite height T, and S be the lateral
boundary Q: S = Γ × (0, T). Everywhere below, αij(x), i, j = 1, . . . , n, α0(x), f (x, t), R(x), u0(x),
and u1(x) are given functions defined for x ∈ Ω, t ∈ [0, T]. Furthermore, let A be a differential
operator acting at a given function v(x) by the equality:

Av =
∂

∂xi

(
αij(x)vxj

)
+ α0(x)v

(here and below, repeated indices presume summation from 1 to n), R0, a, and b are real numbers,
R0 and one of the numbers a and b are assumed predefined.

Inverse Problem I: Find a function u(x, t) and a number a that satisfy the equation:

utt − Au + aut + bu = f (x, t) (1)

in the cylinder (here the number b is assumed predefined) and u(x, t) satisfies the conditions:

∂u(x, t)
∂νA

∣∣∣∣
S
= 0, (2)

u(x, 0) = u0(x), x ∈ Ω, (3)

ut(x, 0) = u1(x), x ∈ Ω, (4)∫
Ω

R(x)u(x, T) dx = R0 (5)

(here ∂u(x,t)
∂νA

= αij(x)uxj(x, t)νj(x), νj(x) are the components of the inward normal vector to Γ
at the current point).
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Inverse Problem II: Find a function u(x, t) and a number b such that they satisfy Equation (1)
in the cylinder Q (for a given number a) and the function u(x, t) enjoys conditions (2)–(5).

In Inverse Problems I and II, conditions (2)–(4) are the conditions of the usual second initial
boundary value problem for second-order hyperbolic equations, whereas condition (5) is a linear
final-integral condition, whose necessity is dictated by the presence in (1) of an additional unknown
value—the number a or the number b.

If, in Inverse Problems I and II, instead of condition (2), we define conditions of the first or third
initial boundary value problems then the essence of the results presented below on the existence
and uniqueness of solutions does not change in principle but, in some cases, the cumbersomeness
of the calculations increases. We will speak of that in Section 4.

3. Solvability of Inverse Problems I and II

Auxiliary constructions are then carried out (first, for Inverse Problem I).
Put:

f1(x, t) =
t∫

0

f (x, τ) dτ + u1(x),

R1 =
∫
Ω

R(x)u0(x) dx, F1 =
∫
Ω

R(x) f1(x, T) dx.

Further, denote by A0 the operator A− α0(x).
Equation (1) can be written down in the integro-differential form:

ut(x, t)−
t∫

0

A0u(x, τ) dτ + a[u(x, t)− u0(x)] +
t∫

0

[b− α0(x)]u(x, τ) dτ = f1(x, t).

Put in (1′) t = T, multiply by R(x), and integrate over Ω. We then obtain the equality:∫
Ω

R(x)ut(x, T) dx−
∫
Q

R(x)A0u(x, t) dx dt + a(R0 − R1)

+
∫
Q

[b− α0(x)]R(x)u(x, t) dx dt = F1.

Given a function w(x, t), we put:

ϕ1(w) =
∫
Q

R(x)Aw(x, t) dx dt− b
∫
Q

R(x)w(x, t) dx dt

−
∫
Ω

R(x)wt(x, T) dx.

Suppose the fulfillment of the condition:

R0 > 0, R1 < R0. (6)

This condition enables us to obtain a representation of the number a:

a =
1

R0 − R1
[F1 + ϕ1(u)]. (7)
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Consider an auxiliary boundary value problem: Find a function u(x, t) that is a solution
in the cylinder Q to the equation:

utt − Au +
F1 + ϕ1(u)

R0 − R1
ut + bu = f (x, t) (8)

and satisfies conditions (2)–(4). This problem is a second initial boundary value problem for a nonlinear
“loaded” differential equation (see [33,34]). The solvability of boundary value problems for such
equations has not been studied before.

It is a solution u(x, t) to the auxiliary problem (8), (2)–(4) that will enable us to construct a solution
to Inverse Problem I.

Introduce the notations:
f2(x, t) = (T − t) f (x, t),

N1 = 2‖ f2‖L2(Q),

N2 =
∫
Ω

{
u2

1(x) + αij(x)u0xi (x)u0xj(x) + [b− α0(x)]u2
0(x)

}
dx,

N3 = TN2, N4 =
1
2

(
N1 +

√
N2

1 + 4N3

)
,

N5 = 2

(
N2

4
T

+ N4‖ f ‖L2(Q)

)
,

N6 = T1/2N4


∫

Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+

∫
Ω

[b− α0(x)]R2(x) dx

1/2
+ N1/2

5 ‖R‖L2(Ω).

Theorem 1. Let the functions f (x, t), u0(x), and u1(x) be such that f (x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),
u0(x) ∈W2

2 (Ω), u1(x) ∈W1
2 (Ω) and suppose the fulfillment of condition (6) and also of the condition:

αij(x) ∈ C1(Ω), α0(x) ∈ C(Ω), R(x) ∈ C1(Ω); (9)

αij(x) = αji(x), i, j = 1, . . . , n, x ∈ Ω; (10)

αij(x)ξiξ j ≥ k0|ξ|2, k0 > 0, x ∈ Ω, ξ ∈ Rn; (11)

α0(x) ≤ 0 for x ∈ Ω; (12)

∂u0(x)
∂νA

=
∂u1(x)

∂νA
= 0 for x ∈ Ω; (13)

F1 > 0, b ≥ 0; (14)

N6 < F1. (15)

Then the boundary value problem (8), (2)–(4) has a solution u(x, t) such that u(x, t) ∈ L∞(0, T; W2
2 (Ω)),

ut(x, t) ∈ L∞(0, T; W1
2 (Ω)), utt(x, t) ∈ L∞(0, T; L2(Ω)).

Proof. Make use of the truncation method, the fixed point method, and the regularization method.
For a number β ∈ (0, F1] (the exact value of β will be specified below), define the truncating

function Gβ(ξ):
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Gβ(ξ) =


ξ if |ξ| < β,
β if ξ ≥ β,
−β if ξ ≤ −β.

Consider the boundary value problem: Find a function u(x, t) that is a solution in the cylinder Q
to the equation:

utt − Au +
F1 + Gβ(ϕ1(u))

R0 − R1
ut + bu = f (x, t) (16)

and satisfies conditions (2)–(4). Establish the solvability of this problem with the use
of the regularization method and the fixed point method.

Let ε be a positive number. Consider the boundary value problem: Find a function u(x, t) that is
a solution in Q to the equation:

utt − Au +
F1 + Gβ(ϕ1(u))

R0 − R1
ut + bu− εAut = f (x, t) (17)

and satisfies conditions (2)–(4). Using the fixed point method, demonstrate that, for fixed ε and f (x, t)
belonging to L2(Q), this problem has a regular solution (i.e., a solution having all weak derivatives
in the sense of Sobolev occurring in the equation).

Denote by V the linear space:

V = {v(x, t) : v(x, t) ∈ L∞(0, T; W2
2 (Ω)),

vt(x, t) ∈ L∞(0, T; W2
2 (Ω)), vtt(x, t) ∈ L2(Q)}.

Endow this space with the norm:

‖v‖V =
(
‖v‖2

L∞(0,T;W2
2 (Ω))

+ ‖vt‖2
L∞(0,T;W2

2 (Ω))
+ ‖vtt‖2

L2(Q)

)1/2
.

Obviously, with this norm, V is a Banach space.
Let w(x, t) be a function in V. Consider the problem: Find a function u(x, t) that is a solution in Q

to the equation:

utt − Au +
F1 + Gβ(ϕ1(w))

R0 − R1
ut + bu− εAut = f (18)

and satisfies conditions (2)–(4). As is well known (see [3,35,36]), for fixed ε and f (x, t) ∈ L2(Q),
this boundary value problem has a solution u(x, t) belonging to V (this fact is not hard to also
prove directly with the use of the classical Galerkin method with the choice of a special basis [37]).
Consequently, it generates an operator Φ taking V into itself: Φ(w) = u. Show that the operator Φ has
fixed points in V.

Observe first of all that, under the hypotheses of the theorem and for f (x, t) ∈ L2(Q), all possible
solutions u(x, t) to the boundary value problem (8′ε,w), (2)–(4) satisfy the estimate:

‖v‖V ≤ C0 (19)

with a constant C0 defined only by the functions f (x, t), R(x), u0(x), u1(x), αij(x), i, j = 1, . . . , n,
α0(x), the domain Ω, and also the numbers b, β, T, R0, and ε. This estimate in particular implies that
the operator Φ takes any ball of a radius greater than C0 into itself.

Show that Φ is continuous on each such ball.
Let {wm(x, t)}∞

m=1 be a sequence of functions in V converging in V to a function w0(x, t), um(x, t),
u0(x, t) are the images of wm(x, t) and w0(x, t) under the action of Φ. We have the equalities:



Symmetry 2020, 12, 1539 6 of 18

umtt − u0tt − A(um − u0) +
F1 + Gβ(ϕ1(u0))

R0 − R1
(umt − u0t) + b(um − u0)

=
Gβ(ϕ1(u0))− Gβ(ϕ1(um))

R0 − R1
umt, (x, t) ∈ Q, (20)

∂um(x, t)
∂νA

− ∂u0(x, t)
∂νA

∣∣∣∣
S
= 0, (21)

um(x, 0)− u0(x, 0) = 0, umt(x, 0)− u0t(x, 0) = 0 for x ∈ Ω. (22)

These equalities mean that the functions um(x, t)− u0(x, t) are a solution to the second initial
boundary value problem for the pseudohyperbolic Equation (17). Repeating for this problem the proof
of (16) and taking into account that the function Gβ(ξ) is Lipschitz continuous and that the function
family {um(x, t)}∞

m=1 is uniformly bounded in V, we obtain the inequality:

‖um − u0‖V ≤ C1|ϕ1(wm − w0)| (23)

with a number C1 defined only by the functions f (x, t), R(x), αij(x), i, j = 1, . . . , n, α0(x), the domain Ω,
and also by the numbers b, β, T, R0, and ε.

We have the equalities:

ϕ1(wm − w0) = −
∫
Q

αij(x)Rxi (x)(wm − w0)xjt dx dt

−
∫
S

R(x)αij(x)(wm − w0)xjtνi ds dt +
∫
Q

(α0(x)− b)R(x)(wm − w0) dx dt

−
∫
Ω

R(x)[wmt(x, T)− w0t(x, T)] dx.

These equalities and the convergence in V of the sequence {wm(x, t)}∞
m=1 to w(x, t) imply that

the right-hand side of (20) tends to zero as m → ∞. This means that Φ is continuous on the ball
of radius C0 of the space V.

Let us now prove that the operator Φ is compact on the ball of radius C0 in V.
Let {wm(x, t)}∞

m=1 be a family of functions in the above-mentioned ball and let {um(x, t)}∞
m=1

be the corresponding family of the images of the functions wm(x, t) under Φ. The boundedness
of the family {wm(x, t)}∞

m=1 in V means in particular that the families {wmxi (x, t)}∞
m=1, i = 1, . . . , n,

{wmt(x, t)}∞
m=1 are uniformly bounded in W1

2 (Q) and the family {wmt(x, T)}∞
m=1 is uniformly bounded

in W1
2 (Ω). The classical embedding theorems (see [31,32,38]) imply that there exists a sequence

{wmk (x, t)}∞
k=1 such that the sequences {wmkxi (x, t)}∞

k=1, i = 1, . . . , n, converge strongly in L2(Q)

and L2(S), and the sequence {wmkt(x, T)}∞
k=1 converges strongly in L2(Ω). The functions wmk (x, t)−

wml (x, t) and umk (x, t)− uml (x, t) (k, l are naturals) satisfy the equalities:

umktt − uml tt − A(umk − uml ) +
F1 + Gβ(ϕ1(wmk ))

R0 − R1
(umkt − uml t) + b(umk − uml )

=
Gβ(ϕ1(wml ))− Gβ(ϕ1(wmk ))

R0 − R1
uml t,

∂umk (x, t)
∂νA

−
∂uml (x, t)

∂νA

∣∣∣∣
S
= 0,

umk (x, 0)− uml (x, 0) = 0, umkt(x, 0)− uml t(x, 0) = 0 for x ∈ Ω.
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Repeating the proof of (16) and reckoning with the fact that the sequences {wmkxi (x, t)}∞
k=1,

i = 1, . . . , n, are Cauchy sequences in L2(Q) and L2(S), the sequence {umkt(x, T)}∞
k=1 is a Cauchy

sequence in L2(Ω), we conclude that these equalities imply that {umk (x, t)}∞
k=1 is a Cauchy sequence

in V. In other words, what has been proved implies that, for any sequence {wm(x, t)}∞
m=1 from the ball

of radius C0 in V, from the sequence {Φ(wm)}∞
m=1, one can extract a strongly convergent sequence

in V. This means that the operator Φ is compact on the ball of radius C0 in V.
Thus, the operator Φ takes the ball of radius C0 in V into itself, and is continuous and compact

on this ball. By Schauder’s theorem, Φ has at least one fixed point in the ball of radius C0: Φ(u) = u.
This fixed point is a solution from V to the boundary value problem (8′ε), (2)–(4). Showing that these
fixed points satisfy a priori estimates uniform over ε.

Multiply Equation (8′ε) by the function (T − t)ut and integrate over the cylinder Q. Using the
boundary conditions and the hypotheses of the theorem and applying Hölder’s inequality, we get
the inequality:

∫
Q

[
u2

t + αijuxi uxj +
2[F1 + Gβ(ϕ1(u))](T − t)

R0 − R1
u2

t + (b− α0)u2

]
dx dt

+2ε
∫
Q

(T − t)

[
αijuxituxjt − α0u2

t

]
dx dt

≤ N1

( ∫
Q

[
u2

t + αijuxi uxj +
2[F1 + Gβ(ϕ1(u))](T − t)

R0 − R1
u2

t

+(b− α0)u2

]
dx dt + 2ε

∫
Q

(T − t)

[
αijuxituxjt − α0u2

t

]
dx dt

)1/2

+ N3.

This inequality implies an a priori estimate of solutions u(x, t) to the boundary value
problem (8′ε), (2)–(4):

∫
Q

[
u2

t + αijuxi uxj +
2[F1 + Gβ(ϕ1(u))](T − t)

R0 − R1
u2

t + (b− α0)u2
]

dx dt

+2ε
∫
Q

(T − t)

[
αijuxituxjt − α0u2

t

]
dx dt ≤ N2

4 . (24)

At the next step, multiply (8′ε) by the function−(T− 2t)ut(x, t) and integrate it over the cylinder Q.
We obtain the equality:

T
∫
Ω

[
u2

t (x, T) + αij(x)uxi (x, T)uxj(x, T) + (b− α0)u2(x, T)

+u2
1(x) + αij(x)u0xi (x)u0xj(x) + (b− α0(x))u2

0(x)

]
dx

+
2[F1 + Gβ(ϕ1(u))]

R0 − R1

∫
Q

tu2
t dx dt + 2ε

∫
Q

[
t

(
αijuxituxjt − α0u2

t

)]
dx dt
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= 2
∫
Q

[
u2

t + αijuxi uxj +
F1 + Gβ(ϕ1(u))

R0 − R1
(T − t)u2

t + (b− α0)u2

]
dx dt

+2ε
∫
Q

(T − t)

[
αijuxituxjt − α0u2

t

]
dx dt.

This equality and estimate (21) imply the inequality:∫
Ω

u2
t (x, T) dx ≤ N5. (25)

Estimates (21) and (22) imply the boundedness of |ϕ1(u)|:

|ϕ1(u)| ≤ N6. (26)

Fix a number β: β = N6. For such a choice of β, we have the equality Gβ(ϕ1(u)) = ϕ1(u).
Consequently, a solution u(x, t) to Equation (8′ε) is a solution to the equation:

utt − Au +
F1 + ϕ1(u)

R0 − R1
ut + bu− εAut = f (x, t). (27)

Multiply (8′ε) by the function (T − t)Aut(x, t) and integrate it over Q. Using the boundary
conditions and inequalities (21) and (23), we conclude that solutions u(x, t) to the boundary value
problem (8′ε), (2)–(4) satisfy the estimate:∫

Q

(Au)2 dx dt + ε
∫
Q

(Aut)
2 dx dt ≤ C2 (28)

with a constant C2 determined only by the functions f (x, t), αij(x), i, j = 1, . . . , n, α0(x), R(x), u0(x),
and u1(x), and also by the domain Ω and the numbers b and T.

The last estimate: ∫
Q

u2
tt dx dt ≤ C3 (29)

obviously follows from (21), (23), and (25). The constant C3 in this estimate is determined only
by the functions f (x, t), αij(x), i, j = 1, . . . , n, α0(x), R(x), u0(x), and u1(x) and also by the domain Ω
and the numbers b and T.

Estimates (21), (25), and (26), the second main inequality for elliptic operators [38], the classical
embedding theorems (see the proof of the compactness of Φ), and the reflexivity of a Hilbert space
imply that there exist sequences {εm}∞

m=1 of positive numbers, of functions {um(x, t)}∞
m=1 that are

solutions to the boundary value problem (24), (2)–(4), and a function u(x, t) such that, as m → ∞,
we have the convergences:

εm → 0,

ϕ1(um)→ ϕ1(u),

um(x, t)→ u(x, t) weakly in W2
2 (Q),

εm Aumt(x, t)→ 0 weakly in L2(Q).

Obviously, the limit function u(x, t) is a solution to the boundary value problem (8), (2)–(4).
Moreover, this solution satisfies the inclusions u(x, t) ∈ L∞(0, T; W2

2 (Ω)), ut(x, t) ∈ L∞(0, T; W1
2 (Ω)),

utt(x, t) ∈ L∞(0, T; L2(Ω)).
The theorem is proved.
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Theorem 2. Let the functions f (x, t), u0(x), and u1(x) be such that f (x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),
u0(x) ∈ W2

2 (Ω)), u1(x) ∈ W1
2 (Ω), and suppose the fulfillment of conditions (6), (9)–(15). Then Inverse

Problem I has solution {u(x, t), a} such that:

u(x, t) ∈ L∞(0, T; W2
2 (Ω)), ut(x, t) ∈ L∞(0, T; W1

2 (Ω)),

utt(x, t) ∈ L∞(0, T; L2(Ω)), a > 0.

Proof. Let u(x, t) be a solution to the boundary value problem (8), (2)–(4). Define the number a by (7).
Obviously, this number and the function u(x, t) are related by Equation (1) in Q. Show that u(x, t)
satisfies the overdetermination condition (5).

Write down Equation (1) in integro-differential form (in the form of Equation (1′)), put t = T
therein, multiply it by R(x), and integrate over Ω. We obtain the equality:

F1 + ϕ1(u)
R0 − R1

∫
Ω

R(x)u(x, T) dx− R0

 = F1 + ϕ1(u).

Since F1 + ϕ1(u) 6= 0, we obtain the required condition:∫
Ω

R(x)u(x, T) dx = R0.

All what was said above means that the function u(x, t), which is a solution to the boundary value
problem (8), (2)–(4), and the number a defined from u(x, t) by (7) give a desired solution {u(x, t), a}
to Inverse Problem I.

The theorem is proved.

Turn to investigating Inverse Problem II without separating a theorem on the solvability
of the initial boundary value problem for the corresponding loaded equation.

The study of Inverse Problem II will again be carried out with the use of passing to a special
“loaded” differential equation, investigating the solvability of the corresponding initial boundary value
problem, and then constructing a solution to the initial inverse problem. The solvability of the auxiliary
boundary value problem will again be established with the use of the regularization method, the fixed
point method, and a priori estimates.

Suppose the fulfillment of the condition:

R0 > 0. (30)

From a fixed function w(x, t), define a function ϕ2(w):

ϕ2(w) =
∫
Ω

R(x) [wtt(x, T)− Aw(x, T) + awt(x, T)] dx.

Then define a number F2:
F2 =

∫
Ω

R(x) f (x, T) dx.

Put t = T in Equation (1). Condition (27) makes it possible to obtain a representation of
the number b:

b =
F2 − ϕ2(u)

R0
.

Consider the “loaded” differential equation:
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utt − Au + aut +
F2 − ϕ2(u)

R0
u = f (x, t).

A solution u(x, t) to the second boundary value problem for this equation will enable us
to construct a solution of Inverse Problem II.

Put:
M1 =

1
a

∫
Q

f 2 dx dt

+
∫
Ω

[
u2

1(x) + αij(x)u0xi (x)u0xj(x) +
(

F2

R0
− α0(x)

)
u2

0(x)
]

dx,

M2 =
1

R0

∫
Ω

u2
0(x) dx

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+

∫
Ω

|α0(x)|R2(x) dx

1/2
 ,

M3 =
1

R0
‖u0‖2

L2(Ω)‖R‖L2(Ω),

M4 = 2M1 + M2
2,

v0(x) = f (x, 0) + Au0(x)− au1(x)− F2

R0
u0(x),

M5 =
1
a

∫
Q

f 2
t dx dt +

∫
Ω

[
αij(x)u1xi (x)u1xj(x) +

(
F2

R0
− α0(x)

)
u2

1(x)
]

dx

+2‖v0‖2
L2(Ω) +

1
2R2

0
‖u1‖4

L2(Ω),

M6 =
1

R2
0

(
2‖u0‖2

L2(Ω) +
1
2
‖u1‖4

L2(Ω)

)
,

M7 = 2M6‖R‖2
L2(Ω),

M8 = 2M6

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+

∫
Ω

|α0(x)|R2(x) dx

1/2
 ,

M9 =
M5

1−M7
, M10 =

M8

1−M7
,

M11 = M9 + M4M10, M12 = 2M3M10,

M13 =
1
2

(
M12 +

√
M2

12 + 4M11

)
,

M14 = M4 + 2M3M1/2
13 .
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M15 = M1/2
13 ‖R‖L2(Ω) +

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+

∫
Ω

|α0(x)|R2(x) dx

1/2
M1/2

14 .

Theorem 3. Let the functions f (x, t), u0(x), and u1(x) be such that f (x, t) ∈ L2(0, T; W1
2 (Ω)),

ft(x, t) ∈ L2(Q), u0(x) ∈W2
2 (Ω), u1(x) ∈W1

2 (Ω). Moreover, suppose the fulfillment of conditions (9)–(13),
(27), and also the conditions:

F2 > 0, b ≥ 0;

M7 < 1, M15 < F2.

Then Inverse Problem II has a solution {u(x, t), b} such that:

u(x, t) ∈ L∞(0, T; W2
2 (Ω)), ut(x, t) ∈ L∞(0, T; W1

2 (Ω)),

utt(x, t) ∈ L∞(0, T; L2(Ω)), b > 0.

Proof. Let β be a number in (0, F2] and Gβ(ξ) be the truncating function defined in proving Theorem 1.
Using the regularized equation:

utt − Au + aut +
F2 − Gβ(ϕ2(u))

R0
u− εAut = f (x, t),

the fixed point method, a priori estimates of solutions to initial boundary value problems
for pseudohyperbolic equations and also using the standard procedure of choosing a convergent
sequence (based on the reflexivity of a Hilbert space), it is not hard to prove that,
under conditions (9)–(13) and (27), the initial boundary value problem for the equation:

utt − Au + aut +
F2 − Gβ(ϕ2(u))

R0
u = f (x, t) (31)

with conditions (2)–(4) has a solution u(x, t) such that u(x, t) ∈ L∞(0, T; W2
2 (Ω)), ut(x, t) ∈

L∞(0, T; W1
2 (Ω)), utt(x, t) ∈ L∞(0, T; L2(Ω)). Show that the solutions to this problem admit a priori

estimates sufficient for constructing a solution to Inverse Problem II.
For convenience, introduce the notations:

I1 =
∫
Ω

u2
tt(x, T) dx,

I2 =
∫
Ω

[
u2

t (x, T) + αij(x)uxi (x, T)uxj(x, T)− α0(x)u2(x, T)
]

dx.

Multiply Equation (1′′) by the function ut(x, t) and integrate over the cylinder Q. Using the
boundary conditions and applying Hölder’s inequality, it is not hard to conclude that a solution u(x, t)
to the boundary value problem (1′′), (2)–(4) satisfies the inequality:

I2 + a
∫
Q

u2
t dx dt ≤ 1

a

∫
Q

f 2 dx dt
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+
∫
Ω

[
u2

1(x) + αij(x)u0xi (x)u0xj(x) +
(

F2

R0
− α0(x)

)
u2

0(x)
]

dx

+
|ϕ2(u)|

R0
‖u0‖2

L2(Ω). (32)

We have the inequality:

|ϕ2(u)| ≤ ‖R‖L2(Ω) I1/2
1 +

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+

∫
Ω

|α0(x)|R2(x) dx

1/2
 I1/2

2 . (33)

Relations (28) and (29) imply the estimate:

I2 ≤ M4 + 2M3 I1/2
1 . (34)

The solutions u(x, t) to the boundary value problem (1′′), (2)–(4) satisfy the equality:

utt(x, 0) = v0(x) +
ϕ2(u)

R0
u0(x).

This equality implies:

∫
Ω

u2
tt(x, 0) dx ≤ 2‖v0‖2

L2(Ω) +
2ϕ2

2(u)
R2

0
‖u0‖2

L2(Ω). (35)

Furthermore, we have the equality:

1
2

∫
Ω

u2
tt(x, T) dx +

1
2

∫
Ω

[
αij(x)uxit(x, T)uxjt(x, T)− α0(x)u2

t (x, T)
]

dx

+a
∫
Q

u2
tt dx dt +

F2 − Gβ(ϕ2(u))
2R0

∫
Ω

u2(x, T) dx

=
∫
Q

ftutt dx dt +
1
2

∫
Ω

u2
tt(x, 0) dx

+
1
2

∫
Ω

[
αij(x)u1xi u1xj − α0(x)u2

1(x)
]

dx +
F2 − Gβ(ϕ2(u))

2R0

∫
Ω

u2
1(x) dx

(which is easy to validate using passage to the limit in the analogous equality for the regularized
equation). Applying Young’s inequality and estimate (31), it is not hard to pass from this equality
to the inequality:

I1 ≤ M5 + M6 ϕ2
2(u).

Using (31) and (29), we infer:

I1 ≤ M5 + M6

2‖R‖2
L2(Ω) I1 + 2

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2
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+

∫
Ω

|α0(x)|R2(x) dx

1/2


2

I2

 = M5 + M7 I1 + M8 I2.

The condition M7 < 1 gives the inequality:

I1 ≤ M9 + M10 I2. (36)

From (30) and (32) we obtain:
I1 ≤ M11 + M12 I1/2

1 ,

which implies the estimate:
I1 ≤ M13. (37)

This estimate and (30) in turn imply that I2 is bounded:

I2 ≤ M14. (38)

Finally, estimates (33) and (34) together with (29) give the following inequality for the solutions
u(x, t) to the boundary value problem (1′′), (2)–(4):

|ϕ2(u)| ≤ M15.

Fix β: β = M15. For such a choice of the parameter β, we have the equality Gβ(ϕ2(u)) = ϕ2(u).
Therefore, a solution u(x, t) to the boundary value problem (1′′), (2)–(4) is a solution to the equation:

utt − Au + aut +
F2 − ϕ2(u)

R0
u = f (x, t).

Defining the number b by the equality:

b =
F2 − ϕ2(u)

R0
,

we obtain a desired solution {u(x, t), b} to Inverse Problem II (the fulfillment of the determination
condition (5) for u(x, t) is proved as in Theorem 2).

The theorem is proved.

4. Uniqueness of Solutions

In Inverse Problem I, consider the case of α0(x) ≡ 0, b = 0 (the general case differs from this only
by more cumbersome calculations and conditions). Let K0 be a fixed positive number. Define the set:

VK0,1 = {v(x, t) : v(x, t) ∈ L∞(0, T; W2
2 (Ω)), vt(x, t) ∈ L∞(0, T; W1

2 (Ω)),

vtt(x, t) ∈ L∞(0, T; L2(Ω)), ‖vt(x, t)‖L2(Q) ≤ K0}.

Next, put:

N0 = T1/2

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2

+ ‖R‖L2(Ω).

Theorem 4. Suppose the fulfillment of all hypotheses of Theorem 1 and also of the conditions:

α0(x) ≡ 0 for x ∈ Ω, b = 0;
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2K0N0(T + 1)
R0 − R1

< 1.

Then two solutions {u1(x, t), a1} and {u2(x, t), a2} to Inverse Problem I such that ui(x, t) ∈ VK0,1 ,
ai > 0, i = 1, 2, coincide.

Proof. Since the functions u1(x, t) and u2(x, t) belong to the set VK0,1 , the numbers a1 and a2 satisfy
the equalities:

a1 =
F1 + ϕ1(u1)

R0 − R1
, a2 =

F1 + ϕ1(u2)

R0 − R1
.

The difference w(x, t) of u1(x, t) and u2(x, t) satisfies the equality:

wtt − Aw + a1wt = −
ϕ1(w)

R0 − R1
u2t (39)

in the cylinder Q. Moreover, w(x, t) satisfies the conditions:

∂w(x, t)
∂νA

∣∣∣∣
S
= 0, (40)

w(x, 0) = wt(x, 0) = 0, x ∈ Ω. (41)

We put:

I =
∫
Q

(
w2

t + αijwxi wxj

)
dx dt +

∫
Ω

w2
t (x, T) dx.

Multiply (35) by wt(x, t) and integrate it over Q. Using (36) and (37), applying Hölder’s inequality,
and reckoning with the membership of the function u2(x, t) in VK0,1 , we get the inequality

∫
Ω

w2
t (x, T) dx ≤ 2N0K0

R0 − R1
I. (42)

At the next step, multiply (35) by (T− t)wt(x, t) and integrate it over Q. Using (36) and (37) again,
applying Hölder’s inequality, and reckoning with the membership of u2(x, t) in VK0,1 , we conclude
that w(x, t) satisfies the inequality:∫

Q

(
w2

t + αijwxi wxj

)
dx dt ≤ 2N0K0T

R0 − R1
I. (43)

Summing up (38) and (39), taking into account the hypothesis, we obtain the equality I = 0.
This equality implies that the functions u1(x, t) and u2(x, t) coincide identically in Q. As a consequence,
the numbers a1 and a2 coincide.

The theorem is proved.

The uniqueness of solutions to Inverse Problem II will also be established in some simplified case.
The general case will differ from this case only by more cumbersome calculations and conditions.

Define the set:

VK0,2 = {v(x, t) : v(x, t) ∈ L∞(0, T; W2
2 (Ω)), vt(x, t) ∈ L∞(0, T; W1

2 (Ω)),

vtt(x, t) ∈ L∞(0, T; L2(Ω)), ‖v‖2
L2(Q) + ‖vt‖2

L2(Q) ≤ K0}.

Theorem 5. Suppose the fulfillment of the hypotheses of Theorem 3 and also of the condition:

α0(x) ≡ 0, u0(x) ≡ 0 for x ∈ Ω;
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2K0

aR2
0

a‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2


2

< 1.

Then two solutions {u1(x, t), b1} and {u2(x, t), b2} to Inverse Problem II such that ui(x, t) ∈ VK0,2 ,
bi > 0, i = 1, 2, coincide.

Proof. The difference w(x, t) of the functions u1(x, t) and u2(x, t) satisfies the equalities:

wtt − Aw + awt + b1w = − ϕ2(w)

R0
u2, (x, t) ∈ Q,

∂w(x, t)
∂νA

∣∣∣∣
S
= 0,

w(x, 0) = wt(x, 0) = wtt(x, 0) = 0, x ∈ Ω.

These equalities imply the integral relations:∫
Ω

[
w2

t (x, T) + αij(x)wxi (x, T)wxj(x, T)
]

dx + 2a
∫
Q

w2
t dx dt

+b1

∫
Ω

w2(x, T) dx = −2ϕ2(w)

R0

∫
Q

u2wt dx dt, (44)

∫
Ω

[
w2

tt(x, T) + αij(x)wxit(x, T)wxjt(x, T)
]

dx + 2a
∫
Q

w2
tt dx dt

+b1

∫
Ω

w2
t (x, T) dx = −2ϕ2(w)

R0

∫
Q

u2twtt dx dt. (45)

Put,
I =

∫
Ω

[
w2

t (x, T) + w2
tt(x, T) + αij(x)wxi (x, T)wxj(x, T)

]
dx.

Summing up (40) and (41), applying Young’s inequality and taking into account the membership
of u2(x, t) in VK0,2 , we get the inequality:

I ≤
2K0 ϕ2

2(w)

aR2
0

. (46)

Now, we have the inequality:

|ϕ2(w)| ≤

(a + 1)‖R‖L2(Ω) +

∫
Ω

αij(x)Rxi (x)Rxj(x) dx

1/2
 I1/2. (47)

Relations (42) and (43) and the hypothesis of the theorem obviously implies the equality I = 0.
But then the function w(x, t) satisfies the equation:

wtt − Aw + awt = 0.

This equation and the boundary conditions imply that the function w(x, t) is identical zero in Q.
This means that the functions u1(x, t) and u2(x, t), the numbers b1 and b2 coincide.

The theorem is proved.
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5. Comments and Appendices

1. A large number of notations and numerous connections between constants in the hypotheses
of Theorems 1–3 make it necessary to check the nonemptiness of the set of the initial data of Inverse
Problems I and II for which all conditions of the corresponding theorems are fulfilled.

Suppose that, in Inverse Problem I, we have α0(x) ≡ 0, u0(x) ≡ 0 for x ∈ Ω, b = 0, R(x) ≡ 1 for
x ∈ Ω, and let u1(x) be a function positive in Ω and f (x, t) be an arbitrary nonnegative function in Q.
The constants N1, N3–N6 vanish for T = 0. Consequently, for such data, the conditions F1 > 0, N6 < F1

are fulfilled for small T.
For Inverse Problem II, we also consider the case of α0(x) ≡ 0, u0(x) ≡ 0 for x ∈ Ω, a = 0,

R(x) ≡ 1 for x ∈ Ω. Suppose additionally that the function u1(x) is also identical zero in Ω,
f (x, t) is a function such that f (x, 0) ≡ 0 for x ∈ Ω, f (x, T) ≥ f0 > 0 for x ∈ Ω. For such data,
the numbers M2–M4, M6–M8, M10–M12 are zero, the number F2 is positive, and the condition M7 < 1
is fulfilled automatically. The fulfillment of the condition M15 < F2 is not hard to achieve assuming
that the number f0 is great.

More complicated examples can be given but those exposed above are quite enough for saying
that the set of initial data for which all hypotheses of the corresponding existence theorems are satisfied
is not empty.

2. Using the methods presented in this article, it is not hard to examine the solvability
of Inverse Problems I and II with the conditions of the first and third initial boundary value problems
on the surface S. For inverse problems with the condition of the first initial boundary value problem,
under the condition:

R(x) = 0 for x ∈ Γ,

all Theorems 1–5 are valid without change. If this condition is not fulfilled then the functions ϕ1(w)

and ϕ2(w) have a more complicated form and it is required to obtain some additional a priori estimates
(which increases the number of the conditions) but the essence of the result on existence and uniqueness
does not change in principle.

If, in Inverse Problems I and II, on the lateral surface S, the condition of the third boundary value
problem is defined then the technique of proving existence and uniqueness theorems does not change
in principle. Only the number of calculations and conditions slightly increases.

3. In Inverse Problems I and II, Equation (1) has a model form. Obviously, this equation can
also have a more general form. For instance, the model operator A can be replaced by a general
second-order elliptic operator and the numbers b in Inverse Problem I and a in Inverse Problem II can
be functions of the variables x and t.

Using the above technique, one can study the solvability of Inverse Problems I and II
with an operator A that is an elliptic operator of order 2m with all lower terms or a quasielliptic
operator (with a natural supplement of the necessary boundary conditions on the surface S) and the
use of the theory of anisotropic spaces [39].

4. Both in the model case considered in the article and in the more general case, the case
of Equation (1) with coefficients depending on the variables x1, . . . , xn and t (which is admitted, as
was observed above), the use of the method of separation of variables (the spectral method) faces
substantial difficulties.

5. The results on the solvability of initial boundary value problems for nonlinear “loaded”
hyperbolic equations obtained in the course of the study have an independent meaning in the
author’s opinion.

6. Theorems 4 and 5 speak of the uniqueness of a really existing solution. These theorems could
be formulated also as independent theorems without binding them to existence theorems.

7. Finally, the last observation: Some constants in the hypothesis of Theorem 3 are defined
by the author’s choice of the parameters in Young’s inequality. Changing these parameters,
it is possible to perturb the numbers Mi.
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