
symmetryS S

Article

COVID-19 Screening Using a Lightweight
Convolutional Neural Network with Generative
Adversarial Network Data Augmentation

Mohd Asyraf Zulkifley 1,*,† , Siti Raihanah Abdani 1,† and Nuraisyah Hani Zulkifley 2

1 Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia;
raihanah.abdani@siswa.ukm.edu.my

2 Community Health Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia,
Selangor 43400, Malaysia; GS52834@student.upm.edu.my

* Correspondence: asyraf.zulkifley@ukm.edu.my; Tel.: +603-8921-6699
† These authors contributed equally to this work.

Received: 21 August 2020; Accepted: 12 September 2020; Published: 16 September 2020
����������
�������

Abstract: COVID-19 is a disease that can be spread easily with minimal physical contact. Currently,
the World Health Organization (WHO) has endorsed the reverse transcription-polymerase chain
reaction swab test as a diagnostic tool to confirm COVID-19 cases. This test requires at least a day for
the results to come out depending on the available facilities. Many countries have adopted a targeted
approach in screening potential patients due to the cost. However, there is a need for a fast and
accurate screening test to complement this targeted approach, so that the potential virus carriers can
be quarantined as early as possible. The X-ray is a good screening modality; it is quick at capturing,
cheap, and widely available, even in third world countries. Therefore, a deep learning approach
has been proposed to automate the screening process by introducing LightCovidNet, a lightweight
deep learning model that is suitable for the mobile platform. It is important to have a lightweight
model so that it can be used all over the world even on a standard mobile phone. The model has been
trained with additional synthetic data that were generated from the conditional deep convolutional
generative adversarial network. LightCovidNet consists of three components, which are entry,
middle, and exit flows. The middle flow comprises five units of feed-forward convolutional neural
networks that are built using separable convolution operators. The exit flow is designed to improve
the multi-scale capability of the network through a simplified spatial pyramid pooling module. It is
a symmetrical architecture with three parallel pooling branches that enable the network to learn
multi-scale features, which is suitable for cases wherein the X-ray images were captured from all over
the world independently. Besides, the usage of separable convolution has managed to reduce the
memory usage without affecting the classification accuracy. The proposed method managed to get the
best mean accuracy of 0.9697 with a low memory requirement of just 841,771 parameters. Moreover,
the symmetrical spatial pyramid pooling module is the most crucial component; the absence of this
module will reduce the screening accuracy to just 0.9237. Hence, the developed model is suitable to
be implemented for mass COVID-19 screening.

Keywords: COVID-19 screening; lightweight deep learning model; separable convolution; spatial
pyramid pooling module; feed-forward layer

1. Introduction

As of 10th August 2020, COVID-19 disease has infected more than 20 million people all over
the world and caused more than 700,000 deaths (https://www.worldometers.info/coronavirus/).
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Generally, the elderly are more affected by the disease, especially the ones with prior health conditions,
whereas younger people rarely show any symptoms even if they have been infected. COVID-19 is a
type of respiratory illness that is caused by SARS-CoV-2 strain with three main symptoms, which are
fever, dry cough, and tiredness [1]. The disease is believed to have zoonotic origins; that means the
virus originated from an animal before being transmitted to humans; the first case was reported in
Wuhan, China [2]. At the moment, the vaccines are still in the development and testing stages; none of
them has passed through the Phase IV clinical trials (approval phase), which is a phase wherein a
vaccine is certified to be safe for public usage.

The average mortality rate of the disease is low, less than 5%, but it can be transmitted easily
from one person to others. Bampoe et al. [3] reported that COVID-19 spreads through respiratory
droplets from coughing and sneezing, while the risk of airborne transmission is very low. Hence, most
governments have mandated their citizens to wear masks in public spaces such as shopping malls,
public transportation hubs, schools, universities, worship places, etc. The term “social distancing” has
also been popularized; it is advisable for people to maintain a certain distance to the others to reduce
the infection rate of the disease. It is a crucial step in controlling the spread of the disease; some cases in
Japan have been attributed to sport activities that have not observed strict social distancing measures [4].
Thus, the prevention method is needed so that the hospitals will not be burdened with overcapacity
and lack of respiratory-related equipment.

Apart from that, accurate and efficient screening methods to detect COVID-19 are also needed to
limit the disease’s spread. Sometimes, a person does not know that he is already infected by the disease;
consider cases of those who are returning home after traveling abroad. By with a good detection
protocol, any patient can be identified and isolated early, so that the treatment can be administered
immediately. In many countries, the reverse transcription-polymerase chain reaction (RT-PCR) swab
test is the most common test to confirm COVID-19 as endorsed by the World Health Organization [5].
Due to the constraint of laboratory capacity and the large number of samples, the results rarely come
out on the same day. Thus, a good screening method that can give immediate–early results should
be developed to identify the potential COVID-19 patients so that they can be quarantined before the
confirmation results come out.

Since a severe case of COVID-19 will usually cause pneumonia [6], chest X-rays are a good
screening modality, which has been widely used to detect other types of viral pneumonia cases [7].
In [8], Moncada et al. found that the smallest details on the chest X-ray image are important to
identifying the pneumonia cases. They also found that an inexperienced observer will have a higher
misdetection rate of spotting the fine-details. Hence, these weaknesses in observation can be mitigated
through a deep learning-based automatic system. The work in [9] has also explained the sensitivity
relationship between pneumonia and chest X-ray images; it is the primary display of prevalence of
COVID-19 according to [10]. Moreover, Pereira et al. [11] has also stated that the chest X-ray is a faster
and cheaper approach to screening pneumonia cases compared to the CT-scan. Besides, it is widely
available in most hospitals, even in third world countries. The cost of X-ray imaging is also relatively
cheap; it costs only RM 10 in Malaysia compared to RM 350 for an RT-PCR test [12]. Hence, this paper
focuses on the development of an accurate deep learning algorithm to screen COVID-19 using chest
X-ray images. Figure 1 shows some samples of the X-ray images used in this study. A lightweight deep
learning model was the focus of our development, so that it could be implemented even on a mobile
platform. Therefore, the proposed model can be applied all over the world using just a standard mobile
phone without using any dedicated hardware. It will be useful for the countries that have chosen
targeted diagnoses, especially underdeveloped countries where they cannot bear the cost of mass
testing via RT-PCR. A lightweight screening model can be defined as a deep learning network that
requires low memory requirements for making the inference. Generally, there is no global definition of
a hard boundary that separates a lightweight model from others. Therefore, a maximum number of
20,000,000 parameters was defined to be the upper limit for a lightweight model. This value is in line
with most of the networks that have been purposely built for mobile applications [13,14].
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Figure 1. Image samples of the frontal chest X-ray scans. The first row shows X-ray images of COVID-19
patients, the second row shows X-ray images of patients with other types of viral pneumonia, and the
third row shows X-ray images of normal cases, which represents the control group.

In this work, synthetic data that were generated from a conditional deep convolutional generative
adversarial network (conditional DC-GAN) were used to augment the training dataset for the
COVID-19 class. This step was done to balance out the numbers of training data among the three
classes of COVID-19, viral pneumonia, and normal—around 1300 images per class. In this paper,
the viral pneumonia class refers to the pneumonia cases that are caused by viruses other than
SARS-CoV-2, which are all grouped into a single class. The proposed method implements three
main novel features to produce a lightweight classification model for an accurate COVID-19 screening
algorithm. Hence, the main novelties of the proposed model are three fold: data augmentation
through conditional DC-GAN, a multi-scale feature extractor with a symmetrical spatial pyramid
pooling module and three mirroring branches, and a lightweight model with separable convolution.
It uses less than 1,000,000 parameters with a low computational burden of just 1,679,643 floating-point
operations (FLOPs). The proposed algorithm, which we termed LightCovidNet can be categorized
as a compact architecture compared to other deep networks such as [15,16] that have more than
100 layers of convolutional neural networks (CNN). Compact networks such as in [17,18] are suitable
for the situations wherein the training data are limited, such as in the case of chest X-ray images of the
COVID-19 patients.

This paper is presented in five main sections. Section 2 describes the state-of-the-art deep
learning algorithms used for classification. Section 3 explains in detail the dataset used in this study,
and Section 4 explains the architecture of LightCovidNet, a lightweight deep learning model for
COVID-19 screening. Experimental results and discussion are given in Section 5; a concise conclusion
is summarized in the last section.

2. Related Work

2.1. Convolutional Neural Network Classifier

In 2012, the introduction of AlexNet popularized the usage of CNN for classification, which won
the ImageNet Large Scale Visual Recognition Challenge. The model is relatively compact compared
to other recent networks with five convolutional and four dense layers. However, it uses a total of
56,059,833 parameters, which is relatively a heavyweight model considering its compact structure.
SqueezeNet [19] reduces the memory requirement by introducing fire modules that employ a 1 × 1
convolution kernel, which reduces the total number of parameters to just 736,963. A compact network
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with transfer learning was also introduced in [20] with just three convolutional and three dense
layers. Then, a deeper model was introduced by Simonyan and Zisserman [21] that comprises
of 16 convolutional and three dense layers. GoogleNet [22] then introduced embedding inception
modules, which consist of parallel convolution layers but with different kernel sizes. As the networks
became deeper, the zero diminishing gradient problem led to the introduction of ResNet that uses
residual or skip connections between the convolutional layers. DenseNet then introduced feed-forward
connections—layers are combined through a concatenate operator rather than an addition operator
in ResNet. The spatial pyramid pooling is embedded in [23] to replace the last layer of DenseNet to
improve the multi-scale capability of the network.

MobileNet V1 [13] is the first classifier model that was specifically designed for a mobile platform.
It utilizes separable convolution that reduces the memory usage of the network; a standard convolution
is replaced with a set of depthwise and pointwise convolutions. Similarly, Xception is also built
based on separable convolution with the addition of residual connections. It has a much bigger
memory requirement with a total number of parameters of 20,867,627 compared to the Mobilenet V1
with just 3,231,939 parameters. Sandler et al. [14] then introduced an inverted residual module to
MobileNet, wherein the residual connection is passed through a pointwise convolution first before a
depthwise convolution. In [24], the MobileNet architecture was made more efficient by implementing
a hardware network architecture search that reduces the total number of parameters to just 1,665,501.
Another efficient network was introduced in [25] for the mobile platform by adding shuffle and group
convolution to the separable module. A variation of this work, ShuffleNet V2 [26], uses channel
splitting before performing a skip connection, instead of using channel shuffling between the separable
convolution components.

2.2. COVID-19 Classification Using Deep Learning Models

Generally, there are two approaches that have been used by researchers in using convolutional
neural networks (CNN)—either making a fixed non-trainable feature extractor [27] or trainable
end-to-end networks [28]. The work by Apostolopoulos and Mpesiana [29] has used a transfer learning
approach on VGG-19 architecture to classify chest X-ray images into one of the three classes: COVID-19,
other types of viral pneumonia, and normal. Panwar et al. [30] have also modified a variant of the
VGG network to reduce the number of parameters by altering the top layers. Global average pooling
is used to down-sample the feature maps before being passed to a two-layer dense classification
network. Apart from VGG-family network, ResNet architecture [31] has also been implemented
by several works [32,33] to identify the X-ray images as either belong ingto COVID-19 patients or
not. Narin et al. [32] used a standard ResNet-50 that was pre-trained using the ImageNet database.
Sethy and Behera [33] utilized the pre-trained parameters of ResNet-50 as a feature extractor module,
which was then classified using a support vector machine (SVM). Using the same approach, the work
in [11] extracted the features using a pre-trained Inception-V3 network. Instead of using a single model
as a feature extraction module, the work in [34] combined both MobileNet V2 and SqueezeNet bottom
layers and applied SVM as the classifier network to identify the COVID-19 cases.

An optimal SqueezeNet architecture was used in [35] to identify COVID-19 cases using optimized
hyperparameters through the Bayesian method. Since COVID-19 is a new type of virus, the number of
chest X-ray images for this case is still relatively low. The authors augmented the experimental data
with synthetic images that were generated through additive noise, a shearing process, and brightness
variations. Another compact architecture, DarkCovidNet, was proposed in [36]; it uses object detection
architecture YOLO V1 [37] as the basis. The network uses a low number of parameters of just
1,167,363 but has relatively high accuracy. Besides, CapsuleNet has also been used to design a
compact classifier network for screening COVID-19 cases with just three standard convolutional
layers [38]. Since X-ray images were acquired from all over the world, the scale of the images is
not consistent, and some images do include more background information compared to the others.
Hence, SPP-Covid-Net was introduced in [2] to include spatial pyramid pooling to replace the top
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layers in DarkCovidNet architecture. The network size is smaller but it reported higher accuracy
than DarkCovidNet. Another work in [7] also used parallel branches of CNN to capture multi-scale
information. The method, which is called CovXNet, uses several convolutional layers with different
dilation rates to capture different scales of features in the X-ray images. Apart from that, DCGAN has
also been used to augment the limited number of training data for COVID-19 cases [39]. Table 1 shows
the strengths and weaknesses of the reviewed COVID-19 classification methods.

Table 1. Strengths and weaknesses of the selected COVID-19 classification methods.

Method Network
Architecture Strength Weakness

Loey et al. [39] ResNet-18
• Uses a deep convolutional generative
adversarial network to produce
synthetic data.

• Does not produce unique synthetic
data as the network is trained separately
for each class.
• The newest benchmarked method is
ResNet-18, where many recent
state-of-the-art methods are
not compared.

Ucar et al. [35] SqueezeNet • Uses Bayesian optimization to tune the
hyper-parameters.

• Only 66 images of COVID-19 cases
were used for testing and training.

• Used basic data augmentation
methods: Shearing, flipping, contrast
variation and additive noise.

Panwar et al.
[30] nCOVnet

• Uses a combined architecture of
VGG-16 convolutional layers and five
trainable dense layers.

• The network is not trained until
convergence because the training loss
value is still reducing before the training
has ended.
• Only considers a simple two-class
problem of normal and COVID-19 cases
without reporting any performance
comparison to the other methods.

Mahmud et al.
[7] CovXNet

• Uses multi-dilation convolutional
layers, where group convolution is
performed using several dilation rates.

• Training convergence is very erratic,
where it fluctuates a lot after 45 epochs.
This is because all classes have only
305 images each and overfitting can
easily be spotted.

Sethy et al. [33] ResNet-50
• Uses ResNet-50 as the feature extractor
and support vector machine as the
classifier.

• Not end-to-end network with a very
low number of COVID-19 cases
(25 images).

Ozturk et al.
[36] DarkCovidNet • Inspired by DarkNet object detection

architecture.
• The network does not apply any
feedforward or residual connections.

• Performs rigorous testing using 5-fold
cross-validation.

• The network has not been trained until
convergence as the training loss and
training accuracy are still moving
downward and upward, respectively.

Abdani et al. [2] SPP-COVID-Net
• Applies spatial pyramid pooling
module to extract features of
various scales.

• The experiment has included X-ray
images taken from a side view for
COVID-19 cases, which will give
advantage for that class detection
performance.

Our Method LightCovidNet
• Applies data augmentation through a
conditional deep convolutional
generative adversarial network.

• Does not perform
hyper-parameters tuning.

• Applies separable convolution and
simplified spatial pyramid pooling
module to produce a lightweight
network.
• Uses the maximum available 446
images of COVID-19 cases and applies
5-fold cross-validation to compare
performance with the
state-of-the-art methods.

3. Material

3.1. Chest X-ray Dataset

This work focuses on a ternary classification problem, wherein the X-ray images are classified
into one of these classes: COVID-19, other types of viral pneumonia, and normal cases. This study
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only considers frontal chest area X-ray images. The images of COVID-19 cases consist of a set of X-ray
images that were captured from COVID-19 patients that exhibited pneumonia conditions of various
stages. The images for other types of viral pneumonia cases consist of X-ray images that were captured
from patients with pneumonia caused by viruses other than SARS-CoV-2. All COVID-19 X-ray images
were obtained from the COVID Chest X-ray dataset [40], which is still being continually updated with
new X-ray images. The dataset consists of X-ray images of COVID-19 patients from various countries
and ethnicities. We would like to clarify that the goal of this research was not to produce a diagnostic
method, as we focused only on the screening stage, which is a preliminary step before a diagnosis
is made [41]. Screening is done to reduce the number of mass screening tests of RT-PCR so that the
available equipment can be directed towards targeted patients, as has been practiced in Malaysia [42].
The screening method, which is based on an X-ray image is used to screen for the possibility of
COVID-19—since it is a cheap modality and is readily available in many countries—before diagnosis
through RT-PCR test [43]. The dataset has been verified by medical practitioners, as stated in [11],
as being suitable for COVID-19 screening of various severity levels.

The images were captured using a portable radiography unit to reduce the infection rate; they were
stored in either 8-bit or 24-bit depth formats. They were then cropped into several sizes with a
maximum resolution of 5623 × 4757; the minimum resolution was 331 × 324. The image resolution
depends on the machine used to capture the X-ray images; it will vary a lot since the data are
collected from various sources all over the world. The dataset has been annotated by several medical
practitioners, as stated in [40]. The subjects comprise males and females that cover an age range of
11–94 years old. Several images came from the same patients but were captured at different timestamps;
the images were sampled at times up to the 12th week of the COVID-19 disease. As of 1st August 2020,
there are 446 cleaned X-ray images of COVID-19 patients; the side chest X-ray images and computed
tomography (CT) scan images were removed from this study. Some of the removed samples are shown
in Figure 2. This removal was done to ensure that a fair comparison can be made with other types
of viral pneumonia and normal cases whose data have been captured from the frontal view only.
Otherwise, COVID-19 detection will become easier, as any side view X-ray and CT scan images will be
easily spotted as COVID-19 cases. The X-ray images for other types of viral pneumonia and normal
cases were taken from Kaggle platform [44]. Most of the data were extracted from their training folder;
we have selected 1345 and 1341 images of pneumonia and normal cases. Only 1345 images out of 3875
pneumonia cases were considered so that training data among the classes were uniformly distributed.
On the other hand, conditional DC-GAN was used to buff up the number of training data in the
COVID-19 class. All X-ray images were then saved in the Portable Network Graphics (PNG) format
with a standard size of 1024 × 1024.

3.2. Synthetic Data Generation through Conditional DC-GAN

Since the number of COVID-19 X-ray images was less than those for other classes, synthetic data
were generated such that the numbers of data in each class were almost equal during the training
process. Hence, conditional DC-GAN [45] has been designed to produce a set of synthetic data to
augment COVID-19 chest X-ray images. The conditional DC-GAN was trained using all data from
the three classes, but only the COVID-19 class were augmented with the synthetic data to reduce
training bias by balancing the number of samples among the classes. However, no synthetic data
were utilized during the testing phase. Contrary to the method in [39], no condition has been applied
and thus the data were generated solely using certain class information. However, we trained our
network through conditioning the network with the label information to ensure that the generated
images were unique to the targeted class. The proposed architecture of the conditional DC-GAN
is shown in Figure 3, where the discriminator and generator networks are symmetrical in design
with five sets of convolution and pooling operators each. Each of the generated samples had an
output size of 224 × 224 pixels, which is closed enough to the required input size for most of the deep
learning models.
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Figure 2. Some samples of X-ray images that were removed from this study. The first three images are
chest X-ray images that were captured from the side view, while the last two images were captured
using CT-scan modality.

Figure 3. The proposed conditional DC-GAN architecture that produces 224 × 224 synthetic images.
The top image is the architecture for the discriminator network, while the bottom image is the
architecture of the generator network.

Let define Xi be an input X of layer i with a size of 〈Wi, Hi, Ci〉 ∈ R3, where W, H, and C represent
the width, height, and channel, respectively. X0 for the discriminator network D is a concatenation of
the input image I and input label L that has been reshaped to match the I size.

XD0 = I ⊕ L, L ∈ R3 (1)

where⊕ represents the concatenate operator. Thus, the proposed discriminator network is a composite
function of five convolution units with a dense classification layer.

D = PD
5

∏
j=1

CDj XD0 (2)

where CD is a composite function convolution layer and leaky ReLU activation function, while PD is a
composite function of a DropOut unit, a dense layer, and softmax activation function. On the other
hand, the generator network G takes input from a concatenated layer of L and the latent variables V.

XG0 = I ⊕V, V ∈ R3 (3)

The size of the random latent features is set to 100, where both discriminator and generator
networks are trained by using binary cross-entropy loss function. Latent features are then upsampled
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using dense layers to the size of 7 × 7 × 256. The generator network comprises of five transposed
convolution units and one exit convolution layer.

G = EG
5

∏
j=1

TGj XG0 (4)

where TG is a composite function transposed convolution layer and leaky ReLU activation function,
while ED is an exit network flow of a convolution layer with a tanh activation function. The parameters
of the discriminator network are fixed when the combined generator-discriminator network is trained.
The Leaky ReLU activation function is used in both generator and discriminator networks. It allows
small non-negative gradient values to pass through the network, which provides stronger gradient
flows from the discriminator to the generator. Atrous convolution is also used to increase the
kernel reach while maintaining the same kernel size. Feature map upsampling in the generator
network is done through transposed convolution, while downsampling operation in the discriminator
network is done through a strided convolution operator, rather than a down-pooling operator.
An Adam optimizer [46] with a learning rate of 0.0002 and a momentum of 0.5 was used to train both of
the networks. The intensity values of the images were normalized to the floating-point representation
from −1.0 to 1.0 so that contrast variation among the X-ray images could be reduced. The networks
were trained in batches of 256 for 100 epochs using the NVIDIA Titan RTX graphics processing
unit. Figure 4 depicts some of the generated frontal chest X-ray images that were used to train our
lightweight deep learning classification model.

Figure 4. Samples of the generated frontal chest X-ray images for COVID-19 class using conditional
DC-GAN.

4. LightCovidNet: A Lightweight Deep Learning Model

The proposed network, LightCovidNet is a lightweight deep learning model with only
841,771 parameters. For comparison, a widely used deep learning model such as ResNet-50 uses
23,567,299 parameters, which requires 27 times more memory storage compared to the proposed
model. Due to the lightweight nature of the LightCovidNet, it can be processed at 1,679,643 FLOPs,
whereas ResNet-50 requires 47,028,459 FLOPs. The full architecture of the LightCovidNet is shown
in Figure 5. It comprises of three parts, which are the entry (F1), middle (F2), and exit (F3) flows with
a total of only 14 convolutional layers. Let us define the LightCovidNet classification network as Z ,
and thus:

Z = F3F2F1XZ0 (5)

where XZ0 is the input image with a size of 224 × 224 pixels. The selection of this input resolution
was inspired by many state-of-the-art lightweight models, such as those in [13,14,24–26]. It is small
enough to be implemented on a mobile platform but big enough to identify the pattern of COVID-19
cases. For the entry flow, LightCovidNet consists of two units of standard convolution unit, B. Let us
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define B to be a composite function of a convolution layer, batch normalization, leaky ReLU activation
function, and maximum down-pooling operator. Note that we maintain the usage of leaky ReLU
activation function from the conditional DC-GAN in this Z because it provides training stability when
a small gradient value of 0.2 is used.

F1 = B2B1XZ0 (6)

The convolution stride is maintained at 1 × 1 and the down-pooling step is performed using
a maximum pooling operator at the end of each CNN layer. The kernel size of the down-pooling
operator is to 2 × 2 with a stride step of 2. All convolution layers in the LightCovidNet are set to
3 × 3 kernel, which is the optimized kernel speed in TensorFlow. For the middle flow, the network
comprises of five layers of the feed-forward unit, K, which is inspired by DenseNet [15]. To be specific,
only a single feedforward layer is used for each K. However, a separable convolution S approach has
been adopted to reduce the memory usage while maintaining the 3 × 3 convolution layer. Therefore,
a single unit of K can be written as

K = B(SpointwiseSdepthwise ⊕ X0) (7)

In each K, the number of filters in B is twice the number of filters in Spointwise. The separable unit is
a composite function of a depthwise and pointwise convolution, where batch normalization and leaky
ReLU are applied after each operation. A maximum pooling operator is added at the end of K so that
the feature maps will be downsampled for four times except for the last unit. Thus, the feature map at
the end of the middle flow will have a reduced size by a factor 16 compared to its initial input size.
Figure 6 shows the architecture of a single middle unit, where the total number of filters used can be
found in Figure 5. Therefore, the middle flow can be represented by Equation (8).

F2 =
5

∏
j=1

Kj (8)

Figure 5. The proposed architecture of the LightCovidNet.



Symmetry 2020, 12, 1530 10 of 17

Figure 6. The feed-forward unit network with X representing the total number of the convolution filters.

The exit flow is designed such that the features are extracted symmetrically from compact
multi-scale layers that require low numbers of parameters. It is a simplified version of the spatial
pyramid pooling module with three symmetrical down-pooling branches that follows a similar network
flow as in the work by Abdani et al. [23]. It is a crucial step in improving the accuracy, which we
proved later, as shown in the ablation study subsection—the features are sampled from three scales
which provides better extracted features, knowing that the images are captured from various X-ray
machines. The multi-scale down-pooling unitM is used through a symmetrical network of average
pooling operations with three different kernel sizes. Thus, the exit flow can be written as

F3 = PZ (M1 ⊕M2 ⊕M3) (9)

where PZ follows the same definition in the discriminator network with a dense classification layer.
The resultant feature maps from M are then flattened and concatenated, which are then fed to the
dense classifier as the input features. DropOut [47] scheme is also added to reduce the probability of
network over-fitting, followed by a SoftMax activation function to decide the final likelihood of each
output class.

5. Results and Discussion

A five-fold cross-validation method was used to verify the LightCovidNet performance,
wherein the synthetic data were only added to the COVID-19 class to reduce bias during the training
process. The same images in each training fold were used for training and testing of all benchmarked
methods for a fair comparison. Similarly, the same set of synthetic images was also added while
training the other models. LightCovidNet was trained using an Adam optimizer for 200 epochs
with a learning rate of 0.0001. In general, all models were trained until convergence, as shown
by the graphs of training accuracy and loss in Figures 7 and 8. The loss function used in this
study was categorical cross-entropy and the network was processed in batches of 64 input images.
Tensorflow back-end with Keras front-end was used to model all benchmarked methods. Since the
objective of LightCovidNet development is to produce an accurate, lightweight COVID-19 screening
method, there were three performance measures used to rank the methods—mean accuracy (ACC),
total parameters, and floating-point operations (FLOPs). Mean accuracy is a metric that measures the
number of predictions that are correctly classified according to the ground truth label.

ACC =
∑(Lpredict == Lgt)

Nt
(10)

where Lpredict is the output class by predicted the deep learning network and Lgt is the ground truth
label that has been annotated by the medical practitioners; Nt is the total number of tested samples.
Thus, the only situation where the Lpredict and Lgt will be similar is for the case of a true positive
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for each class. Then, the accuracy metric is obtained through the ratio between the summation of
all true positive classes and the total number of samples. The total parameters metric refers to the
number of memory units used to store the deep learning model; a larger number of total parameters
indicates that the model requires bigger memory storage and vice versa. On the other hand, FLOPs is
a metric that measures the computational burden of processing the whole deep learning model. In this
study, several state-of-the-art deep learning models which have less than 20 millions parameters were
selected as the benchmarks, including MobileNet V1 [13], MobileNet V2 [14], MobileNet V3 [24],
Xception-41 [48], ShuffleNet V1 [25], and ShuffleNet V2 [26]. These selected benchmarked methods
have been specifically designed to be lightweight models, in which separable convolution units have
been applied to reduce the memory usage. Besides, several recent deep learning methods that have
been developed specifically for COVID-19 classification were also tested for performance comparisons,
including the methods by Ucar et al. [35], Oztruk et al. [36], Abdani et al. [2], Loey et al. [39],
Mahmud et al. [7], Narin et al. [32], and Panwar et al. [30].

Figure 7. Graph of the training accuracy of the LightCovidNet and its benchmarked models.

Table 2 shows the performance measures of the proposed LightCovidNet and its benchmarked
methods. LightCovidNet returned the best ACC of 0.9697, followed by Xception-41, Abdani et al.
method, and Ozturk et al. method. All top three methods have utilized separable convolutions with
skip connections to improve their models’ accuracies. Xception-41 also uniquely uses three separable
convolution schemes followed by a residual skip connection; its composite operators start with a ReLU
activation function, depthwise convolution, pointwise convolution, and batch normalization. It also
uses the same entry network as used in LightCovidNet with two CNN layers, but the feedforward
layers are combined through an addition operator, rather than a concatenation operator. The downside
of using the addition operator is the size of the feedforward network must be similar to the intended
combined layer. Hence, it limits the network’s flexibility as it grows deeper, which will not be a
problem if a concatenation operator is used. However, the total number of parameters used in
the concatenation operation is bigger compared to the addition operation, given that the network
flow is similar. The method by Ozturk et al. is the best-performing model that does not apply
any skip connection scheme, where all the convolution layers use the standard single network flow.
However, they apply squeeze and expansion schemes to better extract the latent variables, as used
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in SqueezeNet [19]. Therefore, their model size is still relatively low compared to the other methods
with just 1,167,363 parameters. On the other hand, the proposed LightCovidNet is also the second
lightest model with just 841,771 parameters, compared to Xception-41 with 20,867,627 parameters,
which requires more than 24 times memory storage. Our low memory usage can be attributed to
the simplified spatial pyramid pooling module, where various parallel branches are down-sampled
without applying any CNN layers; as such, the concatenated features are directly fed to the dense
classification layers.

Figure 8. Graph of the training loss of the LightCovidNet and its benchmarked models.

Table 2. Experimental results of the LightCovidNet and its benchmarked methods.

Method Mean FLOPs Total Trainable Non-Trainable
Accuracy Parameters Parameters Parameters

Loey et al. 0.8528 22,364,607 11,192,003 11,182,275 9728
Ucar et al. 0.8633 1,467,994 736,963 736,963 0

MobileNet V3 0.9033 3,304,513 1,665,501 1,653,477 12,024
MobileNet V2 0.9163 4,457,760 2,262,979 2,228,803 34,176
ShuffleNet V1 0.9237 1,801,092 939,531 900,363 39,168
MobileNet V1 0.9330 6,420,178 3,231,939 3,210,051 21,888
ShuffleNet V2 0.9387 10,702,449 5,384,859 5,351,143 33,716
Panwar et al. 0.9416 29,684,614 14,846,787 14,846,787 0

Mahmud et al. 0.9473 2,641,952 1,338,291 1,320,979 17,312
Narin et al. 0.9556 47,134,858 23,593,859 23,540,739 53,120

Ozturk et al. 0.9579 2,328,332 1,167,363 1,164,143 3220
Abdani et al. 0.9591 1,719,803 862,331 859,883 2448
Xception-41 0.9639 41,626,347 20,867,627 20,813,099 54,528

LightCovidNet 0.9697 1,679,643 841,771 839,803 1968
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The most lightweight model was produced by Ucar et al.’s method with 736,963 parameters but
the ACC performance was low with just 0.8633. It implemented eight layers of fire modules, which are
closely similar to the squeeze and expansion schemes used in the Ozturk et al. method. Their entry
network is also simple in design with just one CNN layer, while their exit network consists only of
one dense classification layer. There is no skip or residual connection is implemented; the widest
number of CNN filters applied was 64. This model is relatively thin compared to the LightCovidNet;
the latter uses 256 CNN filters in its last layer. Hence, with a slightly larger total number of parameters,
LightCovidNet manages to screen COVID-19 cases better, which is a crucial step in preventing the
disease from spreading. Apart from that, the network by Narin et al. used the biggest number of
parameters with the highest number of FLOPs, but still achieved a slightly lower accuracy compared
to the LightCovidNet. It is interesting to note that the first version of MobileNet returnd the best ACC
performance with 0.9330, which can be attributed to the number of parameters used compared to
its other versions. It is also worth noting that the inverted residual module in the MobileNet family
did not perform well; the performances for all three of them were relatively low compared to the
standard separable module. Their inverted scheme applies a pointwise convolution first, followed by
a depthwise convolution and another pointwise convolution, which are added together with a skip
connection.

The network by Loey et al. performed the worst with ACC of just 0.8528, even though the memory
usage was quite big with 11,192,003 parameters. Their method is based on ResNet with 18 layers of
CNN, which is still a deeper network compared to ours with just 14 CNN layers. Thus, the dense
feed-forward layer allowed LightCovidNet to reuse previous layers’ information efficiently and reduce
the likelihood of network overfitting. Moreover, the usage of separable convolution also managed
to reduce the memory usage without sacrificing much accuracy performance. Apart from the top
three models, the best-performing model that uses separable convolution and combines a depthwise
operator with a following pointwise operator was ShuffleNet V2 with an ACC of 0.9387. This model
shuffles the channels information, which is then processed through group convolutions. The smaller
number of group convolutions in ShuffleNet V2 performed better compared to the bigger number of
group convolutions in ShuffleNet V1.

A compact LightCovidNet performed relatively stably in identifying all the three classes, as shown
in the confusion matrix in Figure 9. This matrix details the experimental performance of the
LightCovidNet; the true positive, false positive, and false negative cases are shown according to
each respected class. The largest error happened when the model misclassified the normal cases to be
the other types of viral pneumonia, and the second largest error occurred when the model misclassified
the other types of viral pneumonia cases to be normal cases. Generally, LightCovidNet is a good
classifier for COVID-19 screening; it correctly identified 429 cases out of 446, which is an accuracy of
96.19%. Only seven cases of the COVID-19 images were wrongly identified as the other types of viral
pneumonia cases, while only five cases were wrongly identified as normal cases. Thus, the screening
rate of LightCovidNet is very high, which is 97.28%, which makes it suitable to be implemented as a
mass screening tool.

Table 3 shows the ablation study on the LightCovidNet. There are five components that have
been tested to quantify the extents of their performance contributions to the LightCovidNet, which are
a spatial pyramid pooling module, synthetic data generated by conditional DC-GAN, concatenated
feedforward layers, separable convolution, and a DropOut unit. The results indicate that the addition
of exit flow with spatial pyramid pooling improved the accuracy significantly compared to the standard
global average pooling; ACC has increased from 0.9237 to 0.9697. By having parallel branches with
different pooling kernels, the features were extracted from multiple scales of feature maps, which fits
the situation of our COVID-19 dataset that was collected from various sources. Note that the number
of parameters in LightCovidNet without the pyramid module was the highest because of a denser
connection in the classification layers. Concatenated feed-forward layers also improved the mean
accuracy performance; a single network flow without any residual connection returned ACC of just
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0.9493. On the other hand, the memory usage of a single network flow was significantly reduced to
just 450,091 parameters. However, a two percent improvement in ACC is important for the COVID-19
situation, and then LightCovidNet is still a lightweight model with less than one million parameters.
The lightweight nature of the proposed method can be attributed to the usage of separable convolution
that reduces the memory usage by more than 20% compared to the standard convolution operator.
Even more, the mean accuracy also slightly improved when separable convolution was utilized,
which fits the situation of our small number of COVID-19 X-ray images. The usage of synthetic data
through conditional DC-GAN also improved the network’s accuracy by a 2% margin. Similarly to
the previous reasoning, the smaller number of datasets in COVID-19 resulted in imbalanced data
distribution among the classes, which made the training process more biased towards the other classes.
Finally, the performance improvement due to the DropOut unit was minimal with just 0.5% accuracy
increment. However, the role of DropOut is important in avoiding overfitting issues due to the
lightweight nature of the proposed method.

Figure 9. Confusion matrix of the LightCovidNet classification performance using frontal chest
X-ray images.

Table 3. Performance results of the LightCovidNet ablation study.

Method Mean Accuracy FLOPs Total Parameters

LightCovidNet without spatial pyramid pooling 0.9237 2,364,607 1,192,003
LightCovidNet without synthetic data 0.9493 1,679,643 841,771

LightCovidNet without feed-forward layer 0.9499 896,283 450,091
LightCovidNet without Separable convolution 0.9637 2,022,511 1,012,731

LightCovidNet without DropOut 0.9642 1,679,643 841,771
LightCovidNet 0.9697 1,679,643 841,771

6. Conclusions

In conclusion, the proposed LightCovidNet managed to achieve the best mean classification
accuracy of 0.9697 with a low memory requirement of just 841,771 parameters. The model manages
to achieve high accuracy because of its compact feed-forward architecture that utilizes separable
convolution. A simplified spatial pyramid pooling module also improved the network’s capability
regarding extracting features from X-ray images of various conditions—some images were taken
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while leaning towards the left or right side, while some images were zoomed into the chest area.
The experimental results show that LightCovidNet without a spatial pyramid pooling module managed
to achieve only 0.9237 accuracy. Besides, our synthetic data that were generated from conditional
DC-GAN further improved classification accuracy from 0.9493 to 0.9697. Hence, LightCovidNet is a
fast and accurate mobile-based deep learning model for COVID-19 screening, where the input relies on
X-ray images that are readily available in most countries, even in the third world countries. This work
has not considered any network pruning techniques in reducing the number of redundant features due
to the limited number of COVID-19 X-ray images. The proposed model also requires input images with
good contrast values, such that the air pockets are visible—the main pneumonia symptom. For future
works, network pruning and more variants of the conditional DC-GAN will be explored to better
classify the COVID-19 cases.
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