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Abstract: This article presents a stability analysis of linear time invariant systems arising in system
theory. The computation of upper bounds of structured singular values confer the stability analysis,
robustness and performance of feedback systems in system theory. The computation of the bounds
of structured singular values of Toeplitz and symmetric Toeplitz matrices for linear time invariant
systems is presented by means of low rank ordinary differential equations (ODE’s) based methodology.
The proposed methodology is based upon the inner-outer algorithm. The inner algorithm constructs
and solves a gradient system of ODE’s while the outer algorithm adjusts the perturbation level with
fast Newton’s iteration. The comparison of bounds of structured singular values approximated
by low rank ODE’s based methodology results tighter bounds when compared with well-known
MATLAB routine mussv, available in MATLAB control toolbox.
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1. Introduction

The stability analysis of non-linear systems is an important problem in systems theory. A simple
non-linear system could be very unstable, while on the other hand, a very complex non-linear system
could be highly stable. The non-linearity of a system results in different behaviors, which makes
it difficult to analyze the stability of the system under consideration. In [1,2], new methods for the
stability analysis of non-linear system are very appealing, particularly in the process of designing the
system. There are two classical methods available in the literature to discuss the stability analysis of a
non-linear system. The first method is a “direct method” [1], which is based upon the usage of the
energy function to determine the stability of a non-linear system. The second method is an “indirect
method” [2], which is based on the idea of linearization of the system about it’s equilibrium point(s).

The structured singular value (SSV) is a versatile tool in systems theory that allows us to address
the central problem in the analysis of control systems. The SSV tool can be used to determine
the stability and instability of linear time invariant feedback control systems in the presence of
structured and unstructured perturbations. The structures addressed by SSV cover almost all kind
of uncertainties incorporated into linear time invariant feedback systems via complex or real linear
fractional transformations. The computation of SSV for complex matrices with respect to a family of
block diagonal pure complex matrices is introduced in [3].

In the µ-theory [4], for structured uncertainty there are m sources of uncertainty embedded for
each plant. ∆i(jw) denotes each of an uncertain element. Each ∆i(jw) can be considered as a linear
time invariant (LTI) value and such ∆i are known as complex uncertainties. The ∆i are known as
real uncertainties for ∆i ∈ [−1, 1]. If both real and complex uncertainties are present, then such ∆′is
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known as mixed uncertainties. For each ∆i = 0, refer to a nominal system; for ∆i 6= 0 refer to a
perturbed system.

Conceptually, SSV is a straight-forward generalization of singular values. Indeed, SSV provides
the tools necessary to examine the performance of input–output systems in linear control. These tools
are helpful to study stability analysis of structured eigenvalue perturbation theory and that of uncertain
linear control systems. We put our attention to the robust stability problem related to the standard
feedback interconnection of stable matrices M(s) and ∆(s) for some s ∈ C+. We write M(s) and ∆(s)
as M and ∆, respectively.

The instability of the feedback system is directly related to the measure of quantity (I −M ∆) to
be singular where I is the identity matrix with dimension similar to M and ∆. This restricts the choice
of ∆ in the sense of ‖∆‖∞, which causes instability to a closed loop system. For a stability analysis of
closed loop system ‖∆‖∞ < α, α ∈ R, α > 0.

The increase in α up to αmax allows the feedback system to be unstable. The quantity αmax yields
a robust stability margin of the feedback system. Since the stability analysis of a feedback system
depends on the fact that quantity (I −M ∆) remains non-singular for the values of M and ∆.

Toeplitz matrices is a class of matrices that have constant elements on the main diagonal and
off diagonals. The structure of Toeplitz matrices is very interesting not only in itself but also for
various theoretical properties involved by such a class of matrices. Toeplitz matrices arise in the
various fields of mathematical sciences. The structure of Toeplitz matrices may occur entry-wise in
the case of one-dimensional mathematical problems or for two-dimensional mathematical problems
that occur block-wise. Matrices also occur at nested levels in case of multidimensional problems.
Toeplitz matrices may have finite or infinite sizes. The impulse response of a dynamic system can be
written in the form of upper triangular or lower triangular matrix. Toeplitz matrices play a vital role
in the system theory in a variety of areas [5]. Due to their unique structure, they have always been
popular in regression analysis.

Overview of the Article

Section 2 provides the preliminaries of our article. In particular, we give the definitions of the
pseudo-spectrum of complex matrices and structured singular values for complex matrices in the
presences of structured and unstructured perturbations or uncertainties.

The definitions of structured epsilon spectral value sets to reformulate structured singular values
are presented in Section 3.

Section 4 of our article is devoted to discussing the proposed methodology based on two level
algorithms to compute the bounds of structured singular value of Toeplitz matrices, which occurs in
linear time invariant feedback control systems.

In Section 5 we give linear time invariant feedback control systems in the form of Toeplitz matrices.
Furthermore, we also discuss the Toeplitz matrices for inverse systems, white additive noise, additive
colored and white noise.

Finally, in Section 6, we discuss and compare the results for the computation of bounds of
structured singular values of Toeplitz matrices. Furthermore, we also present the pseudo-spectrum of
Toeplitz matrices.

2. Preliminaries

Definition 1. The spectrum of complex valued matrix M ∈ Cn,n is characterized as

Λ(M) = {λ ∈ C : | (λI −M) | = 0}.

Definition 2. The pseudo-spectrum of a complex valued matrix M ∈ Cn,n with a small real parameter ε > 0 is
given as

Λε(M) = {λ ∈ C : | (λI −M)−1 | ≥ 1
ε
}.
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Definition 3. Unstructured uncertainty B or structured uncertainty B is stable transfer matrix given by

B = {diag(δ1 I1, δ2 I2, . . . , δs IS; ∆1, ∆2, . . . , ∆F) : δi ∈ C, ∆j ∈ Cmj ,mj , ∀i = 1 : S, j = 1 : F}.

Definition 4. For M ∈ Cn,n and perturbation set B, µ-value is a mathematical quantity defined as

µB(M) =
1

min{‖∆‖2 : ∆ ∈ B, det(I −M∆) = 0} ,

and ∆ forces (I −M∆) to be singular matrix for which µB(M) = 0.

Definition 5. A Toeplitz matrix A is a matrix in which each descending diagonal from left to right is constant.
If i, j element of A is denoted with Ai,j, then we have

Ai,j = Ai+1,j+1 = ai−j.

Theorem 1 (Small Gain Theorem [6]). An input–output system is well-posed and stable for perturbation ∆
having 2-norm bounded above by 1 if and only if

‖M‖∞ : Sup(‖M(jw)‖) < 1,

for some frequency w ∈ R+.

Theorem 2 ([7]). For two structured uncertainties B1 ⊂ B2, then

µB1(‖M(jw)‖) < µB2(‖M(jw)‖).

The input–output system is well-posed and stable for perturbation ∆ ∈ B having matrix 2-norm
bounded by 1 if and only if Sup(M(jw)) < 1 for some w ∈ R+.

3. Reformulation of µ-Values

In this section we reformulate the definitions of structured singular values with the help of
structured spectral value sets. The structured spectral value sets contains the eigenvalues of the matrix
valued function εM∆(t). For the reformulation of structured singular values, we shift the largest
eigenvalue in magnitude, that is, λmax, so that new obtained eigenvalue η(t) = 1− λ(t) will take
minimum value to be 0 at λmax = 1 and 1 at λmax = 0. Thus, we reformulate the structured singular
values as below.

Definition 6. For M ∈ Cn,n and an admissible perturbation level ε > 0, structured spectral value set is
denoted by ΛB

ε (M) and defined as

ΛB
ε (M) = {λ ∈ Λ(εM∆), ∆ ∈ B, ‖∆‖2 ≤ 1}.

where the quantity Λ(εM∆) is the spectrum of (εM∆).

Definition 7. The structured epsilon spectral value set of M ∈ Cn,n and ε ≥ 0, is defined as

ΣB
ε (M) = {η : 1− λ : λ ∈ ΛB

ε (M)}.

Definition 2 allows us to reformulate structured singular value as,
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Definition 8. For M ∈ Cn,n and perturbation set B, structured singular value is defined as

µB(M) =
1

arg minε>0
{

max|λ| = 1, λ ∈ ΛB
ε (M)

} .

4. Proposed Methodology

In order to solve the optimization problem presented in Definition 8, we use an iterative method
based on low-rank ordinary differential equations [8]. The iterative method is based on the inner–outer
algorithm. The purpose of the inner algorithm is to first construct and then solve a gradient system of
ordinary differential equations, whereas the outer algorithm allows us to determine an appropriate
perturbation level ε > 0. The fast Newton’s iteration is used for the computation of perturbation
level. Furthermore, the outer algorithm determine an exact derivative of an extremizer, that is, ∆(ε) for
∆ ∈ B and ε > 0.

Next, we discuss the computation of an extremizer. For this purpose, we first approximate
the derivative of an eigenvalue matrix Λ(p) of a smooth matrix family say A(p) for some fixed
parameter p.

4.1. Inner Algorithm

4.1.1. The Basic Theory

Let p be a small parameter and let A(p) ∈ Cn,n be a smooth matrix family. For the matrix family
A(p), let the matrices be Λ(p) ∈ Cn,n and X(p) ∈ Cn,n, which stacks the eigenvalue and eigenvector,
respectively. The matrix equation is of the form

A(p)X(p) = X(p)Λ(p). (1)

In Equation (1), the computation of X(p) is unique if eigenvectors remains fixed; however, for the
computation of distinct eigenvalues all eigenvectors are determined up to a fixed constant multiplier.

Theory of determining the eigenvector matrix X(p) is extended [9] if eigenvalue derivatives are
repeated. The second order derivatives of all eigenvalues remains distinct. This theory is further
generalized to Hermitian matrices, for complete detail see [6] and the references therein.

The ′ symbol denotes the derivative throughout the article and we write A = A(p) and omit the
dependency on p. By differentiating Equation (1), we have

A
′
X + AX

′
= X

′
Λ + XΛ

′
,

or
A
′
X− XΛ

′
= −AX

′
+ X

′
Λ. (2)

The matrix Λ
′

is obtained as,
Λ
′
= X−1 A

′
X.

For computation of Λ
′

for the case when eigenvalues are distinct, repeated eigenvalues with distinct
eigenvalue derivatives and repeated eigenvalue with repeated eigenvalue derivatives, we refer to [6]
and the references therein.

4.1.2. Approximation of an Extremizers

The admissible perturbation ∆ ∈ B with ‖∆‖2 ≤ 1 and matrix (I − εM∆) have the smallest
eigenvalue that minimizes the modulus of structured spectral vale set ∑B

ε (M) is known as local
extremizer. Theorem 3 allows us to compute local extremizer for the smallest eigenvalue which
belongs to the set ∑B

ε (M).



Symmetry 2020, 12, 1518 5 of 14

Theorem 3. For an admissible perturbation matrix ∆ ∈ B having the block diagonal structure, that is,

∆ = {diag(δ1 I1, . . . δs′ Is′ , δs′+1 Is′+1, . . . δS IS; ∆1, . . . , ∆F},

and ‖∆‖2 = 1, acts as a local extremizer of structured spectral value set. The simple eigenvalue λ = |λ|eιθ , θ ∈
R of matrix valued function (I − εM∆) have right and left eigenvectors x and y scaled as S = eιθy∗x.
Let z = M∗y. The non-degeneracy conditions

z∗k xk 6= 0, ∀k = 1 : S
′
,

Re(z∗k xk) 6= 0, ∀k = 1 : S
′
+ 1 : S,

and ||zs+h||.||xs+h|| 6= 0, ∀h = 1 : F,

holds true. Then the magnitude of each and every complex scalar δi = 1 ∀i = 1 : s is 1. Furthermore, each and
every full block has a unit 2-norm.

4.1.3. Gradient System of ODE’s

The gradient system of ordinary differential equations for perturbation matrix ∆ ∈ B to compute
local extremizer of smallest simple eigenvalue λ = |λ|εiθ is

δ̇i = νi(x∗i zi − Re(x∗i zi δ̄i)δi); i = 1 : s
′
,

δ̇l = sign(Re(z∗l xl)Ψ(−1,1)(δl); l = s
′
+ 1 : s,

∆̇j = νj(zs+jx∗s+j − Re〈∆j; zs+jx∗s+j〉); j = 1 : F,

where δi ∈ C, ∀i = 1 : s
′
, δl ∈ R for l = s

′
+ 1 and Ψ(−1,1)—the indicator function. For complete

details on mathematical formulation and solution of the gradient system of ordinary differential
equations, we refer the reader to [8].

4.2. Outer Algorithm

The main purpose of the construction of the outer algorithm is the computation of an admissible
perturbation level ε [8]. The quantity 1

ε turns over an approximation of lower bound of structured
singular values. The fast Newton’s iteration is used to solve

|λ(ε)| = 1, (3)

In Equation (3), ε > 0. In order to solve Equation (3), we need to calculate

d
dε

(|λ(ε)|)

the derivative.
Next, we make use of Theorem 4 to check how the smallest simple eigenvalue d

dε (|λ(ε)|) behaves
when |λ(ε)| is simple while ∆(0), λ(0) are assumed to remain smooth.

Theorem 4. Consider the perturbation matrix ∆ ∈ B and let x and y are the function of ε > 0 and acts as
right and left eigenvectors respectively of the matrix valued function (εM∆). Assume that these eigenvectors
are a scaled vector according to Theorem 3. Let z = M∗y and assume that the non-degeneracy conditions holds
true, then

d
dε

(|λ(ε)|) = 1
|y(ε∗)x(ε)|

(
s

∑
i=1
|zi(ε)

∗xi(ε)|+
F

∑
j=1
||zs+j(ε)||.||ys+j(ε)||

)
> 0.

Choice of Suitable Initial Value Matrix and Initial Perturbation Level

For the computation of an initial value matrix ∆0 and an initial perturbation level ε0, we refer the
reader to [8].
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5. Linear Feedback Systems in the Form of Toeplitz Matrices

Consider the polynomial p(x) [10] defined in the negative powers of x, corresponding to finite
impulse response.

a(x) = a0 + a1x−1 + a2x−2 + . . . + anx−n. (4)

An adjoint system can be defined as

a(x−1) = a0 + a1x + a2x2 + . . . + anxn. (5)

In Equation (4), the zeroes of x lies within or on the boundary of a unit circle in x-plane, while in
Equation (5), the zeroes of x lies outside the unit circle. The operator x−1 acts as a backward shift
operator and for a sampled signal corresponding to the time sample r we may write

yr−1 = x−1yr. (6)

On the other hand, the operator x shifts in the forward direction in time one step. For an input ωr,
let yr acts as an output corresponding a linear time-invariant system, then

yr = a(x)ωr. (7)

In convolution summation, we have

yr =
r

∑
j=0

ar−jωj. (8)

In matrix form,

y = Aω, (9)

where


y0

y1
...

ym

 =



a0 0 . . . . . . 0
a1 a0 0 . . . 0

a2 a1
. . . . . . 0

...
...

. . . . . . 0
am am−1 . . . a1 a0




ω0

ω1
...

ωm

 . (10)

In Equation (10), the coefficient matrix is a lower triangular square Toeplitz matrix having dimension
m > n.

5.1. Toeplitz Matrix for an Inverse System

It is a well-known fact that the computation of an inverse of a lower triangular square Toeplitz
matrix outputs an another Toeplitz matrix of the same type. We take an example from [10].

The polynomial a(x) = a0 + a1x−1 = 1 + 0.5x−1 and let m = 4

A =


1 0 0 0 0

0.5 1 0 0 0
0 0.5 1 0 0
0 0 0.5 1 0
0 0 0 0.5 1

 , (11)
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and its inverse is

A−1 =


1 0 0 0 0
−0.5 1 0 0 0
0.25 −0.5 1 0 0
−0.125 0.25 −0.5 1 0
0.0625 −0.125 0.25 −0.5 1

 . (12)

5.2. Toeplitz Matrix for White Additive Noise

Consider an optimal Wiener filter corresponding to a physical system with polynomial [10].

a(x) = a0 + a1x−1 + a2x−2 = 1− x−1 + 0.5x−2

The Toeplitz matrix is computed as

B =



1 0 0 0 0 0
−1 1 0 0 0 0
0.5 −1 1 0 0 0
0 0.5 −1 1 0 0
0 0 0.5 −1 1 0
0 0 0 0.5 −1 1


(13)

5.3. Toeplitz Matrix for Additive Colored and White Noise

Consider optimal Wiener filter [10] corresponding to a system having signal-generated
polynomial defined as

a(x) = 1− x−1 + 0.5x−2.

The noise generated polynomial is defined as

ap(x) = 1− x−1 + 0.25x−2.

The spectral factor Toeplitz matrix is computed as follows

C =



1 0 0 0 0 0
−0.6667 1 0 0 0 0

0.25 −0.6136 1 0 0 0
0 0.2045 −0.6115 1 0 0
0 0 0.2003 −0.6096 1 0
0 0 0 −0.1995 −0.6089 1


. (14)

6. Numerical Experimentation

In the section we present numerical computation of the bounds of structured singular values
of Toeplitz matrices [10] with various dimensions. The bounds of structured singular values are
approximated with the low rank ODE’s based technique and MATLAB routine mussv. In each example,
we give the comparison of bounds of structured singular values computed with low-rank ODE’s based
technique and MATLAB function mussv. Furthermore, we present the pseudo-spectrum of Toeplitz
matrices [10]. The software package EigTool [11] is routinely used for plotting the unstructured
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pseudo-spectra. In Figures 1–6, we show the pseudo-spectrum of a variety of matrices as taken in
examples 1–6. The spectrum in 3-dimensional space is also shown by making use of Eigtool.

Example 1. Consider the real valued matrix [10].

M =


1 0 0 0 0
−0.5 1 0 0 0
0.25 −0.5 1 0 0
−0.125 0.25 −0.5 1 0
0.0625 −0.125 0.25 −0.5 1

 .

We choose the perturbation set B = {diag(δi I1) : δi ∈ R, ∀i = 1 : 5}.
Using the MATLAB function mussv, we compute an admissible perturbation VDelta as

VDelta = 1.0e + 050 ∗


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .

The 2-norm of perturbation VDelta is 5e + 050. The approximated lower and upper bounds
appears 0 and 1.0005, respectively.

Algorithm [8] computes the admissible perturbation E as

E =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

The matrix 2-norm of E is computed as 1. The lower bound of structured singular value is 1,
which is much tighter than the one approximated by mussv.

Example 2. Consider the real valued matrix [10].

M =



1 0 0 0 0 0
−1 1 0 0 0 0
0.5 −1 1 0 0 0
0 0.5 −1 1 0 0
0 0 0.5 −1 1 0
0 0 0 0.5 −1 1


.

We choose the perturbation set B = {diag(δi I2) : δi ∈ R, ∀i = 1 : 3}.
Using the MATLAB function mussv, we compute an admissible perturbation VDelta as

VDelta = 1.0e + 050 ∗



4.9921 0 0 0 0 0
0 4.9921 0 0 0 0
0 0 4.9921 0 0 0
0 0 0 4.9921 0 0
0 0 0 0 4.9921 0
0 0 0 0 0 4.9921


.

Furthermore, ‖VDelta‖ = 4.9921e + 050. The approximated lower and upper bounds appears 0 and
1.0012, respectively.
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Using Algorithm [8], we compute the admissible perturbation E as

E =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

‖E‖ = 1. The lower bound of structured singular value is 1, which is much tighter than the one
approximated by mussv.

Example 3. Consider 6× 6 real valued matrix [10].

M =



1 0 0 0 0 0
−0.6667 1 0 0 0 0
0.2500 −0.6136 1 0 0 0

0 0.2045 −0.6115 1 0 0
0 0 0.2003 −0.6096 1 0
0 0 0 0.1995 −0.6089 1


,

and take perturbation set B = {diag(δ1 I3, δ2 I2, δ3 I1) : δ1, δ2, δ3 ∈ R}.
The MATLAB function mussv computes an admissible perturbation VDelta as

VDelta = 1.0e + 050 ∗



4.7266 0 0 0 0 0
0 4.7266 0 0 0 0
0 0 4.7266 0 0 0
0 0 0 4.7266 0 0
0 0 0 0 4.7266 0
0 0 0 0 0 4.7266


,

furthermore, ‖VDelta‖ = 4.7266e + 050. The approximated lower and upper bounds of structured singular
values are 0 and 1.0382, respectively.

Algorithm [8] computes the admissible perturbation E with

E =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


,

having a unit matrix 2-norm. The lower bound of structured singular value is 1, which is much tighter than the
one approximated by mussv.

Example 4. Consider 4× 4 real valued matrix [12].

M =


−0.5500 0 −0.3300 0
0.2200 −0.5500 −0.1100 −0.3300
0.4400 0 −0.3300 0
−0.7700 0.4400 −0.2200 −0.3300

 ,

and we choose B = {diag(∆1, ∆2) : ∆1, ∆2 ∈ C2,2}.
Using the MATLAB function mussv, we compute an admissible perturbation VDelta
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VDelta =


−1.0009 0.1199 0 0
0.2860 −0.0342 0 0

0 0 0.0039 −1.0140
0 0 0.0010 −0.2662

 .

where its matrix 2-norm equals 1.0483. The lower and upper bounds of structured singular values have the same
value which is 0.9539.

Algorithm [8] computes perturbation matrix E with

E =


−0.9628 + 0.0059i 0.0815 + 0.0125i 0 0
0.2560− 0.0094i −0.0218− 0.0027i 0 0

0 0 0.0062 + 0.0056i −0.9558− 0.0088i
0 0 0.0019 + 0.0018i −0.2935− 0.0103i

 ,

where the unit matrix is 2-norm. The lower bound of structured singular value is 0.9537.

Example 5. Consider 6× 6 real valued matrix [12].

M =



−0.5500 0 0 −0.3300 0 0
0.2200 −0.5500 0 −0.1100 −0.3300 0

0 0.2200 −0.5500 0 −0.1100 −0.3300
0.4400 0 0 −0.3300 0 0
−0.7700 0.4400 0 −0.2200 −0.3300 0

0 −0.7700 0.4400 0 −0.2200 −0.3300


,

and we choose the perturbation set B = {diag(∆1, ∆2) : ∆1, ∆2 ∈ C3,3}.
Using the MATLAB function mussv, we compute an admissible perturbation VDelta as

VDelta =



−0.0773 0.4197 −0.0400 0 0 0
0.1599 −0.8679 0.0827 0 0 0
−0.0379 0.2058 −0.0196 0 0 0

0 0 0 −0.0292 0.0364 −0.1338
0 0 0 −0.1996 0.2490 −0.9152
0 0 0 −0.0479 0.0598 −0.2197


.

The largest singular value of perturbation VDelta is 1.0068. The lower and upper bounds of
structured singular values is the same, that is, 0.9933.

Algorithm [8] computes the admissible perturbation E as

E =



0 0 −0.7540 + 0.6569i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −0.9914 + 0.1306i
0 0 0 0 0 0
0 0 0 0 0 0


,

with ‖E‖ = 1 while the lower bound of structured singular values is 0.2858.

Example 6. Consider 3× 3 real valued symmetric Toeplitz matrix.

M =

 1 2 3
2 1 2
3 2 1

 .
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We take the perturbation set B = {diag(δ1 I1, δ2 I1, δ3 I1) : δ1, δ3 ∈ C, δ2 ∈ R}.
Using the MATLAB function mussv, we compute an admissible perturbation VDelta with

VDelta =

 0.1754 0 0
0 0.1754 0
0 0 0.1754

 .

The largest singular value of perturbation matrix VDelta is 0.1754. The lower and upper bounds
of structured singular values are same, that is, 5.7016.

Algorithm [8] computes the admissible perturbation E with

E =

 1 0 0
0 1 0
0 0 1

 ,

and a unit matrix 2-norm while lower bound of structured singular value is same as computed with
MATLAB routine mussv, that is, 0.1754.

dim = 5
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Figure 1. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 5-dimensional real valued matrix (Example 1, Section 6).
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Figure 2. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 6-dimensional real valued matrix (Example 2, Section 6).
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Figure 3. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 6-dimensional real valued matrix (Example 3, Section 6).

dim = 4
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Figure 4. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 4-dimensional real valued matrix (Example 4, Section 6).
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Figure 5. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 6-dimensional real valued matrix (Example 5, Section 6).
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dim = 4
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Figure 6. MATLAB interface for computing pseudo-spectrum. The graphical representation show the
pseudo-spectrum of the 4-dimensional real valued matrix (Example 6, Section 6).

7. Conclusions

The numerical computation of lower bounds of structured singular values for a family of Toeplitz
matrices arising in linear time invariant feedback control systems is presented. Our results provide a
characterization of gradient system of ordinary differential equations. The numerical experimentation
show that in most cases our results for the computation of lower bounds of structured singular values
are much tighter than the one approximated by classical methods presented in the literature and
implemented in MATLAB. Using the MATLAB function mussv, we approximate the lower and upper
bounds of structured singular values.
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