
symmetryS S

Article

Very Long Baseline Interferometry Observations of
the Proposed Radio Counterpart of an EGRET Source

Patrik Milán Veres 1,* , Krisztina Éva Gabányi 1,2,3,* and Sándor Frey 2,4

1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A,
H-1117 Budapest, Hungary

2 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17,
H-1121 Budapest, Hungary; frey.sandor@csfk.mta.hu

3 Extragalactic Astrophysics Research Group, Eötvös Loránd University, Pázmány Péter Sétány 1/A,
H-1117 Budapest, Hungary

4 Institute of Physics, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
* Correspondence: patrik1885@student.elte.hu (P.M.V.); gabanyi@konkoly.hu (K.É.G.)

Received: 21 August 2020; Accepted: 10 September 2020; Published: 15 September 2020
����������
�������

Abstract: We present high-resolution radio interferometric imaging observations of the radio source
NVSS J182659+343113 (hereafter J1826+3431), the proposed radio counterpart of the γ-ray source,
3EG J1824+3441 detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on board
the Compton Gamma Ray Observatory satellite. We analyzed eight epochs of archival multi-frequency
very long baseline interferometry data. We imaged the asymmetric core–jet structure of the source,
and detected apparent superluminal motion in the jet. At the highest observing frequency, 15.3 GHz,
the core shows high brightness temperature indicating Doppler boosting. Additionally, the radio
features undergo substantial flux density variability. These findings strengthen the previous claim of
the association of the blazar J1826+3431 with the possible γ-ray source, 3EG J1824+3441.
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1. Introduction

Blazars are radio-loud active galactic nuclei (AGN) seen at a very small angle to the jet direction.
The relativistic speed of the emitting plasma in the jet and the small angle to the line of sight give rise
to various relativistic effects such as apparent superluminal motion and relativistic Doppler boosting
of the radiation. Due to the latter, the emission of the approaching jet is enhanced while that of the
receding jet (also called counterjet) is diminished significantly. The jet-to-counterjet flux density ratio
can be as high as 1000 [1]. As a consequence, only the approaching one of the originally symmetrically
launched jets can be observed, thus blazars appear asymmetric in that regard. The jet emission is
explained as synchrotron radiation from electrons and/or positrons moving with relativistic speeds in
magnetic fields. The jet synchrotron radiation is responsible for the lower-energy bump seen in the
broad-band spectral energy distribution (SED) of blazars, peaking between millimetre-wavelength
and X-ray regimes [2].

Blazars constitute the most populous group of extragalactic γ-ray emitter sources according to the
observations of the Fermi Large Area Telescope (LAT; e.g., [3]). The γ-ray emission, responsible for the
higher-energy bump in the blazar SEDs, is usually attributed to inverse-Compton process in leptonic
models (e.g., [2] and references therein) or to synchrotron radiation from heavy charged particles,
e.g., protons ([4] and references therein) in hadronic models. The seed photons of the inverse-Compton
radiation can originate from within or external to the jet. In the former case, they are the low-energy
synchrotron photons in the jet (i.e., synchrotron self-Compton process [5]), or in the latter case, the seed
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photons can come from the accretion disk, the broad line region, from the dusty torus or from the
cosmic microwave background radiation.

Prior to Fermi, the EGRET instrument on board the Compton Gamma Ray Observatory (CGRO)
satellite created the first all-sky γ-ray map above 100 MeV. The third EGRET catalogue (3EG, [6])
contains 271 sources, 94 of them showed possible or probable associations with blazars [7]. Follow-up
studies (e.g., [8] and references therein) significantly increased the number of identified northern
hemisphere EGRET sources at high Galactic latitudes (|b| > 10◦). More than half of the 116 northern
EGRET sources, 66, are found to have plausible blazar-like counterparts [8].

One of them, 3EG J1824+3441, is associated with a flat-spectrum radio quasar at a redshift
z = 1.81. This radio source was detected in the NRAO VLA Sky Survey (NVSS, [9]). J1826+3431 has a
1.4-GHz flux density of (470± 14)mJy which is the highest value in the EGRET positional error box
(∼1◦) [10]. Since the source belongs to the Very Long Baseline Array (VLBA) Calibrator Survey [11]
sample, high-resolution radio interferometric observations of the source exist, which can be used to
strengthen or falsify its inferred blazar nature and in turn its association with the EGRET γ-ray source.
The accurate radio position (http://hpiers.obspm.fr/icrs-pc/newwww/icrf/icrf3sx.txt) of J1826+3431
in the current 3rd realization of the International Celestial Reference Frame [12] is right ascension
18h26min59.9828210± 0.0000091s and declination 34◦31′ 14.119974 ± 0.0019′′.

Throughout this paper, we assume a flat ΛCDM cosmological model with H0 = 70 km s−1 Mpc−1,
ΩΛ = 0.73, and Ωm = 0.27. In this model, the luminosity distance of the source at z = 1.81 is
14 103.7 Mpc, and 1 milli-arcsecond (mas) angular size corresponds to 8.66 pc projected linear size [13].

2. Archival Radio Data

2.1. VLBI Data

In the very long baseline interferometry (VLBI) image database of the astrogeo.org
website (http://astrogeo.org/ maintained by L. Petrov), there are four epochs of dual-band
2.3- and 8.3/8.7-GHz observations and three epochs of 15.3 GHz measurements available of
J1826+3431 between 1996 and 2018. In each of these observations, all ten antennas of the VLBA
participated. Further details of the observations are given in Table 1.

Table 1. Summary of archival VLBI observations of J1826+3431. Asterisk (*) denotes the observation
conducted by the EVN. All other observations were done by the VLBA.

Epoch Project ID Frequency Bandwidth On-Source Integration Time
(GHz) (MHz) (min)

1996.370 BB023 2.3 32 50.3
1996.370 BB023 8.3 32 50.3
2003.655 BU026 15.3 16 325.3
2004.616 BU026 15.3 16 325.3
2005.427 BU026 15.3 16 328.1
2014.145 EF025 * 1.7 128 15.0
2015.064 BG219 2.3 128 1.8
2015.064 BG219 8.7 320 1.8
2017.227 UF001 2.3 96 2.2
2017.227 UF001 8.7 384 2.2
2018.437 UG002 2.3 96 2.6
2018.437 UG002 8.7 384 2.6

http://hpiers.obspm.fr/icrs-pc/newwww/icrf/icrf3sx.txt
http://astrogeo.org/
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Additionally, the source was observed with the European VLBI Network (EVN) at 1.7 GHz
on 21 February 2014 (project code: EF025, PI: S. Frey). This observation was conducted in
phase-referencing mode [14], and J1826+3431 was used as the phase-reference calibrator source for one
of the faint targets in that project [15]. Eight antennas of the EVN participated in the measurements:
Effelsberg in Germany, the Jodrell Bank Lovell Telescope in the United Kingdom, Medicina and Noto in
Italy, Onsala in Sweden, Toruń in Poland, the Westerbork Synthesis Radio Telescope in the Netherlands,
and Sheshan in China. Further details of the observation are given in Table 1 and in [15].

2.2. VLA Data

The public data archive (https://archive.nrao.edu/) of the U.S. National Radio Astronomy
Observatory (NRAO) lists various data sets which contain VLA observations of J1826+3431. To obtain
supplementary information on the arcsec-scale extended radio structure, as well as the possible
variability of the source, we selected two data sets obtained at 4.86 GHz for analysis. The experiment
AS291 (PI: W.C. Saslaw) was observed at the epoch 1987.493 in the most extended A configuration of the
array that provides the highest angular resolution, in our case,∼0.5 arcsec. The second experiment from
2009.388 (project code: CALSUR) used the less extended VLA B configuration, providing resolution
of a few arcsecs. The integration times spent on J1826+3431 were 219 s and 43 s in 1987 and 2009,
respectively. Both experiments used 100 MHz bandwidth.

3. Data Analysis

3.1. VLBA Data

Calibrated visibility files were downloaded from the astrogeo.org website, and their hybrid
mapping procedure was performed using the Caltech DIFMAP [16] software package. Asterisks (*)
denote those epochs in Tables A1–A4 where we time-averaged the calibrated data into 10-s blocks.
In a process of hybrid mapping, the CLEAN algorithm [17] was used and phase-only self-calibration
was done. At the end of the procedure, steps of amplitude and phase self-calibration were performed,
gradually for shorter and shorter solution time intervals down to a few minutes. Images (Figure 1)
were created using natural weighting, with the visibility errors raised to the power −1.

3.2. EVN Data

The EVN data calibration was done in the usual manner (e.g., [18]) using the NRAO Astronomical
Image Processing System (AIPS, [19]). The detailed description is given in [15]. The calibrated data
set was imaged in DIFMAP [16] using the hybrid mapping technique, which involved several steps
of CLEAN iterations interleaved by phase-only self-calibrations. When the signal-to-noise ratio in
the residual image could not be improved any further, amplitude and phase self-calibration were
performed. First, it was done for the whole observation; afterwards, the corrections were computed for
a subset of antennas and with gradually decreasing solution time intervals down to 10 min. The image
obtained is displayed in Figure 1a.

3.3. VLA Data

We performed standard amplitude and phase calibration in AIPS. The VLA flux density calibrator
to set the amplitude scale was 3C 48 in both experiments. The calibrated visibility data were exported
from AIPS to DIFMAP for hybrid mapping. The resulting CLEAN images are shown in Figure 2.

https://archive.nrao.edu/
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3.4. Model Fitting

To describe the brightness distribution for a quantitative analysis of the source structure,
we applied the technique of model fitting directly to the calibrated interferometric visibility data [20],
for both the VLBI and VLA measurements. We used DIFMAP to represent the source brightness
distribution with a set of circular Gaussian model components.
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Figure 1. Naturally-weighted VLBI images of J1826+3431 taken at (a) 1.7 GHz; (b) 2.3 GHz; (c) 8.7 GHz;
and (d) 15.3 GHz. In each image, the elliptical Gaussian restoring beam (FWHM) is shown in the
lower left corner. The positions of the circular Gaussian model components describing the brightness
distributions, observational epochs, and frequencies are indicated in each image. Further details of the
images are given in Table 2.
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(a)

1987.493

(b)

2009.388

Figure 2. Naturally-weighted 4.86-GHz VLA images of J1826+3431 taken with (a) the A configuration
and (b) the B configuration of the array at the epochs 1987.493 and 2009.388, respectively.
The lowest contours are (a) ±0.6 mJy beam−1 and (b) ±1 mJy beam−1. The peak brightnesses are
(a) 408 mJy beam−1 and (b) 325 mJy beam−1. The restoring beams are (a) 0.51′′ × 0.4′′ at PA=−46◦

and (b) 6′′ × 2′′ at PA=59◦. In both images, the elliptical Gaussian restoring beam (FWHM) is shown at
the lower left corner and the positive contours increase by a factor of 2.

Table 2. Details of the contour maps shown in Figure 1. The restoring beam major axis position angle
(PA) is measured from north through east. Further positive contour levels in Figure 1 increase by a
factor of 2.

Peak Image Lowest Restoring Beam
Epoch Frequency Brightness Noise Level Contour Major Axis Minor Axis PA

(GHz) (mJy beam−1) (mJy beam−1) (mJy b eam−1) (mas) (mas) (◦)

2014.145 1.7 218 0.4 ±2.0 16.10 6.75 8.1
2018.437 2.3 167 0.4 ±1.7 6.23 3.54 −18.3
2018.437 8.7 113 0.2 ±1.0 1.66 0.99 −15.1
2005.427 15.3 141 0.4 ±1.1 0.93 0.55 −9.6

4. Results

Based on VLBI data, the inner structure of J1826+3431 shows a southeast oriented core–jet
morphology consistently at all frequencies and epochs (see Figure 1 for selected example maps).
The core and typically 4–5 jet features were needed to adequately model the source with circular
Gaussian components at 2.3, 8.3/8.7, and 15.3 GHz. At the lowest frequency, 1.7 GHz, only two model
components were necessary to describe the jet brightness distribution. During the fitting procedure,
all of the parameters, i.e., positions, flux densities, and full width at half-maximum (FWHM) sizes of
the components were allowed to vary, except for one epoch. At 2005.427, the fitting procedure was
not able to constrain the FWHM size of the core component; therefore it was fixed at the smallest
angular size resolvable with the interferometer, 0.04 mas. To calculate this value, we used the formula
given by [21]. Thus, we can only give an upper limit of the size of the core component at that epoch.
The parameters of the best-fit models are summarized in Tables A1–A4; the model component positions
are also denoted in the images in Figure 1.

When deriving the uncertainties of the fitted parameters of the VLBI observations, we assumed
10% flux density calibration uncertainties following [22]. The positional uncertainties were calculated
conservatively following [23]. We quadratically added the uncertainties determined using the relations
given by [24] to the 10% of the restoring beam size in the cases of the core components, and to the
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20% of the restoring beam size when deriving the positional uncertainty of less bright jet components.
To calculate the uncertainties of the FWHM sizes, we used the formula of [24].

The arcsec-scale radio structure of J1826+3431 revealed by our 4.86-GHz VLA images (Figure 2)
indicates a continuing jet towards the southeast, in approximately the same position angle as the
mas-scale VLBI jet (Figure 1). The jet can be traced out to ∼2.5′′ (corresponding to ∼20, kpc projected
distance from the core) in the higher-resolution A-configuration image. There is an indication of a
sharp right-angle bend towards south, as supported by the lower-resolution B-configuration VLA
image where the radio emission seems extended in that direction (Figure 2). The sum of the flux
densities in the fitted Gaussian model components (428± 21 mJy at 1987.493 and 333± 17 mJy at
2009.388) provide evidence for significant variability.

5. Discussion

5.1. Component Proper Motions in the Mas-Scale Jet of J1826+3431

To identify the jet components throughout the full time span of the VLBI observations,
we considered their positions, FWHM sizes, and flux densities. The components that are identified
across the different epochs are denoted by the same identifiers in Tables A2–A4. The core component
is numbered with 0 at each epoch and frequency; thus, it is denoted as L0, C0, D0, and J0 at 1.7, 2.3,
8.3/8.7, and 15.3 GHz, respectively.

For further analysis, we assumed the core to be stationary and we derived the positions of the
fitted jet components relative to it (Tables A1–A4). The jet components are assumed to move away
from the core at constant speeds along a straight trajectory. Thus, we fitted their core separations with
linear functions. The derived angular proper motions were converted to apparent speeds in units of
the speed of light, c, using the relation [1]

βapp =
µ dL

c(1 + z)
(1)

where µ is the angular proper motion of the component in rad s−1, dL is the luminosity distance in m,
c is the speed of light in m s−1, and z is the redshift of the source.

At 2.3 GHz, at most five components were needed to describe the jet structure. The inner ≤10 mas
region of the jet could not be resolved into two distinct components in 1996.370, unlike at later
epochs (components C1 and C2). Therefore, the single fitted inner jet component, Ca, cannot be
unambiguously identified with either of the components detected later. Thus, the motion of C1 and C2
can only be tracked at the relatively closely-spaced observing epochs of the 2010s. Because of the short
time baseline, these two components show no significant change in their core separation during the
available observing epochs. On the other hand, component C3 could be unambiguously identified
through all epochs. It shows an angular proper motion of µ = 0.12± 0.07 mas yr−1, which corresponds
to an apparent speed of βapp = 9.4± 5.5. At large core separations, component C4 could only be
detected at two epochs. Therefore, it is unsuitable for further proper motion calculations. The core
separations for each component and the fitted linear proper motion curve for C3 are shown in Figure 3.

At 8.3/8.7 GHz, three jet components, D2, D3, and D4, can be detected at all four epochs,
while D1 can only be detected at the last three epochs. This may indicate that it was ejected some
time between the epochs 1996.370 and 2015.064. No discernible proper motions could be detected for
components D1 and D2, while D3 and D4 show apparent superluminal motions (Table 3). The core
separations and the fitted linear curves for D3 and D4 are shown in Figure 3. As we performed proper
motion and jet parameter calculations using D3 and D4, we present contour maps of J1826+3431 made
at this frequency at all four epochs in Figure 4, indicating the fitted model components.
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Figure 3. Radial separations of the components from the core as a function of time; solid lines denote the
linear fit to the data. Left panel: For the observations conducted at 2.3 GHz Right: For the observations
conducted at 8.3/8.7 GHz. The size of the error bars is roughly the same as the size of the symbols.
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Figure 4. Naturally-weighted VLBI images of J1826+3431 at epochs (a) 1996.370; (b) 2015.064;
(c) 2017.227; and (d) 2018.437 taken at 8.3/8.7 GHz restored with the Gaussian model components
fitted to the visibility data. The location and size (FWHM) of the model components are indicated with
circles. In each image, the elliptical Gaussian restoring beam (FWHM) is shown at the lower left corner.
Further details of the images are given in Table 4.
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Table 3. Parameters describing the movements of the components identified at 8.3/8.7 GHz.
The component identification, the angular proper motion, and the apparent jet speed in units of
c are given in columns 1, 2, and 3, respectively.

ID µ (mas year−1) βapp

D3 0.06± 0.02 4.8± 1.6
D4 0.28± 0.02 22.2± 1.6

Table 4. Details of the contour maps shown in Figure 4. The restoring beam major axis position angle
(PA) is measured from north through east. Further positive contour levels in Figure 4 increase by a
factor of 2.

Peak Image Lowest Restoring Beam
Epoch Brightness Noise Level Contour Major Axis Minor Axis PA

(mJy beam−1) (mJy beam−1) (mJy beam−1) (mas) (mas) (◦)

1996.370 0.157 0.5 ±2.8 2.08 0.86 −6.1
2015.064 0.175 0.3 ±1.8 1.62 1.04 4.5
2017.227 0.121 0.3 ±1.7 1.75 0.99 −1.3
2018.437 0.113 0.2 ±1.3 1.66 0.99 −15.1

At 15.3 GHz, only three years elapsed between the first and last observations. This time span
is too short for detecting proper motions in any of the fitted components. Component J1 could be
first detected at epoch 2004.616. This may indicate that J1 was ejected some time between the first
and second epochs. Later, as it moved farther away from the core, this component became detectable
even at a lower frequency, 8.7 GHz, at the epoch 2015.064 as D1.

To summarize, apparent superluminal motions could be detected in three components at relatively
larger core separations (C3, D3 and D4) in the jet of J1826+3431. Interestingly, the highest apparent
speed is shown by a component (D4) located at the largest core separation (∼10 mas) implying
acceleration in the jet. Acceleration is often detected in the jets of blazars (e.g., [25]), and although it
usually takes place at smaller core separations, there are examples for faster components further down
the jets (e.g., PMN J0405−1308 [25,26], PKS 2201+171 [27]).

5.2. Relativistic Beaming in J1826+3431

At the highest observing frequency, 15.3 GHz, which provides the best angular resolution,
we derived the brightness temperature of the core component using the following equation [28]:

Tb = 1.22 · 1012(1 + z)
S

θ2ν2 K, (2)

where S is the flux density of the fitted component in Jy, θ is the FWHM diameter of the circular
Gaussian in mas, and ν is the observing frequency in GHz.

In 2003.655, we were unable to resolve the core region into two components as at the later
epochs. As a test, we tried to fit the innermost region with an elliptical Gaussian component and the
resulting fit confirmed that the core was elongated in the direction of component J1 detected at the
later epochs. Therefore, J0 and J1 were blended in 2003.655, thus the FWHM size and the flux density
are overestimates of the core parameters at this epoch. Since the brightness temperature is inversely
proportional to the square of the FWHM size, its derived value can be regarded as a lower limit,
≥2.8× 1011 K. In 2004.616, the obtained brightness temperature is Tb = (12.3± 1.4)× 1011 K. At epoch
2005.427, we could only derive an upper limit for the size of the core component, thus only a lower
limit for the brightness temperature can be given, ≥12 × 1011 K. The lower limits agree with the Tb
estimate made at the middle epoch within its errors.
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All brightness temperature values exceed the equipartition limit, Tint ≈ 5 × 1010 K [29],
indicating relativistic beaming in the source. The relativistic beaming can be quantified by the Doppler
boosting factor, δvlbi, which can be estimated from the measured Tb value and the equipartition
brightness temperature limit using the following relation [1]:

δvlbi =
Tb
Tint

. (3)

The obtained brightness temperature value corresponds to a Doppler factor of δvlbi = 24.6± 2.9.

5.3. Jet Parameters

The jet parameters, the bulk Lorentz factor (γ), and the inclination angle with respect to the line
of sight (φ) can be calculated from the Doppler factor and the apparent jet speed as [1]

γ =
β2

app + δ2 + 1

2δ
(4)

and

tan φ =
2βapp

β2
app + δ2 − 1

. (5)

The component close to the innermost core region with the best-defined positions and thus
proper motion is D3; therefore, we used the apparent superluminal speed obtained for this jet feature,
βD3

app = 4.8± 1.6, to derive the jet parameters. Using the Doppler factor obtained from the 15.3-GHz
measurement at epoch 2004.616, we get a Lorentz factor of γ = 12.8± 1.4, implying relativistic bulk
jet velocity in units of the speed of light, β = 0.997± 0.002. The corresponding jet inclination angle is
φ = 0.9◦ ± 0.3◦.

5.4. Radio Spectrum of J1826+3431

We collected the radio flux density measurements of J1826+3431 from the literature (Table 5).
We fitted a power–law curve to these data points to obtain the spectral index (α; defined as S ∝ να,
where S is the flux density and ν is the observing frequency). Since the flux density measurements
are not simultaneous, source variability may affect the spectral index calculation, so the value can be
considered as tentative. The resulting fit is shown with a black line in Figure 5, the obtained spectral
index is α = −0.19± 0.05, indicating a flat spectrum.

For comparison, we also show the sum of the VLBI Gaussian model component flux densities
with blue squares and upward arrows in Figure 5. For each observing frequency, we have chosen the
observation that is the closest to the 1.7-GHz EVN measurement. VLBI observations are insensitive to
the large (arcsec) scale radio structure; therefore, in the presence of such emission, they underestimate
the total flux density of a source. This can be seen in Figure 5 where all VLBI points are indeed below
the fitted spectrum.

Table 5. Archival radio flux density measurements of J1826+3431.

Observer Instrument Frequency Flux Density Flux Density Error Reference(GHz) (Jy) (Jy)

VLA-B, VLA-BnA 0.074 0.700 0.140 VLSS [30]
Westerbork Synthesis Radio Telescope 0.325 0.775 0.160 WN [31]

Texas Interferometer 0.365 0.714 0.140 TXS [32]
Bologna Northern Cross Telescope 0.408 0.595 0.120 B2.3 [33]

VLA-D, VLA-DnC 1.4 0.470 0.094 NVSS [9]
Green Bank 91-m telescope 4.85 0.376 0.075 87GB [34]

VLA-A 8.4 0.289 0.058 CLASS [35]
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Figure 5. Radio spectrum of J1826+3431. Black circles are from archival measurements, their details are
given in Table 5. Green triangles indicate the sum of modelfit components of the VLA measurements
presented in this paper. Black line represents the power-law fit to the above total flux density points.
Blue squares with arrows show the sum of modelfit components of high-resolution VLBI measurements
from this paper, as lower limits to the total flux density. The selected VLBA epochs (2015.064 for 2.3
and 8.7 GHz, and 2005.427 for 15.3 GHz) are the closest in time to the 1.7-GHz EVN measurement.

The simultaneous 2.3- and 8.3/8.7-GHz observations allow us to map the spectral index
distribution of the mas-scale radio emission in J1826+3431 using VIMAP [36]. We present a spectral
index image in Figure 6. We used our data from the epoch 2015.064. After using elliptical masks to
exclude the cores from the images, we matched the 2.3- and 8.7-GHz maps of J1826+3431 by using
two-dimensional correlation. Considering that the frequencies are relatively close to each other and that
the measurements were performed at the same time, it was not necessary to shift the brightness peak.
The spectral index image (Figure 6) suggests a flat-spectrum radio emission (α ≈ −0.1± 0.1) in the core
region and along the jet closer to the core. It is in good agreement with the spectral index calculated
using the archival total flux density data (Figure 5) since the dominant emission feature of the source is
the core. The spectrum gradually steepens further away from the core along the jet, as expected from
optically thin synchrotron radio emission.

Figure 6. Spectral index map of J1826+3431 using 2.3- and 8.7-GHz data taken at 2015.064. The colour
bar shows the spectral index values. The contours represent the 2.3-GHz image, the lowest contour
level is drawn at 3σ image noise level corresponding to 2.4 mJy beam−1. Further contours increase by a
factor of 2. The peak intensity is 162 mJy beam−1. The restoring beam size is 3.69 mas× 5.72 mas at
PA = −3.7◦.
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5.5. Flux Density Variability

To characterize variability in the VLBI-detected features, we plot the sum of flux densities in
the fitted Gaussian model components at different observing frequencies as a function of time in
Figure 7. As can be clearly seen, especially for the 2.3- and 8.3/8.7-GHz data where the observations
span more than two decades, the flux density of the source is strongly variable over time. Moreover,
the variations in the difference of the 2.3- and 8.3/8.7-GHz flux density values suggest variability
of the spectral index.
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Figure 7. Flux density of J1826+3431 versus time at 2.3, 8.3/8.7, and 15.3 GHz, based on the sum of
fitted VLBI model component flux densities.

5.6. γ-Ray Properties of 3EG J1824+3441

3EG J1824+3441 was detected with a weak γ-ray flux of (28.7± 9.3)× 10−8 photon s−2 cm−1 by
EGRET [6]. However, an alternate version of the EGRET catalogue [37] (see also [7]) which used
reprocessed data assuming a different model for the Galactic interstellar emission does not contain
as many as 107 sources previously detected in [6], including also 3EG J1824+3441. In that sense,
it is not surprising that no γ-ray source is listed in the most recent fourth Fermi/LAT catalogue [3]
within a 1◦ radius of the position of the putative EGRET γ-ray source.

Alternatively, even if the source exists, long-term variability of its γ-ray flux can also explain
the Fermi non-detection. Indeed, a comparison of high-confidence (>4σ) EGRET detections with
the third Fermi/LAT catalogue revealed 10 extragalactic γ-ray sources missing from the latter [38].
Subsequent analysis of seven years of Fermi data showed that five sources were in a low-luminosity
state during the Fermi observations compared to their luminosity during the EGRET observations [38].
The generally decreasing long-term trend we see in the radio flux density of the possible counterpart,
the blazar J1826+3431, with respect to the 1990s when CGRO was operational (see e.g., our VLA results
and Figure 7) is also consistent with a γ-ray flux decrease.
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6. Conclusions

We analyzed eight epochs of high-resolution multi-frequency VLBI data of the radio source
J1826+3431, which is the proposed radio counterpart of the EGRET γ-ray source, 3EG J1824+3441.
The archival observations span a period of more than 22 years. Each data set was imaged, and the
brightness distribution of the source was modeled using circular Gaussian components, in order
to characterize the physical and geometric properties of the jet and to analyze the kinematics of
J1826+3431. One and two moving jet components could be securely identified at multiple epochs
in the 2.3- and 8.3/8.7-GHz data, respectively. All of them showed outward motion with apparent
superluminal speed. The estimated brightness temperature of the most compact component, the core at
15.3 GHz suggests that the radio emission is relativistically beamed in the source. From the relativistic
effects seen in the radio jet and the strong variability of the core component at the measured frequencies,
the radio source J1826+3431 can be identified as a blazar. Since the vast majority of extragalactic
γ-ray sources are associated with blazars, we can conclude that J1826+3431 is very likely the radio
counterpart of the unidentified EGRET source 3EG J1824+3441. However, no γ-ray source is found at
this position in the latest Fermi/LAT catalogue [3], and its detection can be regarded uncertain based
on an alternative version of the EGRET catalogue [37].
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Appendix A

Here, we provide the results of the model fitting to the VLBI visibility data. In Tables A1–A4,
we list the best-fit parameters of the circular Gaussian components used to describe the brightness
distribution of the 1.7-, 2.3-, 8.3/8.7-, and 15.3-GHz calibrated data of J1826+3431, respectively.

Table A1. Parameters of the fitted Gaussian model components at 1.7 GHz. The observational epoch is
given in column 1. The flux densities, relative positions in right ascension and declination directions
with respect to the core component, and the FWHM sizes are listed in columns 2, 3, 4, and 5, respectively.
In the final column we give the component identifiers.

Epoch Flux Density ∆α ∆δ FWHM ID(Year) (Jy) (mas) (mas) (mas)

2014.145
0.236 ± 0.024 0 0 3.83± 0.01 L0
0.081 ± 0.008 9.78 ± 1.91 −7.13± 1.91 4.07 ± 0.04 L1
0.018 ± 0.002 22.82 ± 1.92 −22.90± 1.92 7.66 ± 0.32 L2

Table A2. Parameters of the fitted Gaussian model components at 2.3 GHz. The observational epochs
are given in column 1. The flux densities, relative positions in right ascension and declination directions
with respect to the core component, and the FWHM sizes are listed in columns 2, 3, 4, and 5, respectively.
In the final column, we give the component identifiers. Asterisks (*) denote those epochs where we
time-averaged the calibrated data into 10-s blocks.

Epoch Flux Density ∆α ∆δ FWHM ID(Year) (Jy) (mas) (mas) (mas)

1996.370 *

0.228 ± 0.023 0 0 0.96± 0.01 C0
0.155 ± 0.016 2.87 ± 1.11 −2.60± 1.11 2.07 ± 0.02 Ca
0.103 ± 0.010 10.62 ± 1.12 −7.67± 1.12 5.34 ± 0.33 C3
0.016 ± 0.002 23.95 ± 1.21 −24.36± 1.21 5.98 ± 0.79 C4

2015.064 *

0.120 ± 0.012 0 0 0.93± 0.01 C0
0.110 ± 0.011 2.26 ± 1.03 −1.98± 1.03 2.36 ± 0.01 C1
0.059 ± 0.006 4.90 ± 1.03 −4.23± 1.03 2.00 ± 0.02 C2
0.065 ± 0.007 12.31 ± 1.03 −9.08± 1.03 3.92 ± 0.08 C3

2017.227

0.146 ± 0.015 0 0 0.69± 0.01 C0
0.099 ± 0.010 2.65 ± 1.09 −2.06± 1.09 2.06 ± 0.01 C1
0.070 ± 0.007 5.15 ± 1.09 −4.29± 1.09 2.29 ± 0.02 C2
0.080 ± 0.008 12.59 ± 1.09 −9.16± 1.09 4.21 ± 0.12 C3

2018.437

0.138 ± 0.014 0 0 0.22± 0.01 C0
0.073 ± 0.007 2.65 ± 1.05 −1.93± 1.05 1.19 ± 0.03 C1
0.071 ± 0.007 5.05 ± 1.05 −4.15± 1.05 2.34 ± 0.08 C2
0.072 ± 0.007 12.67 ± 1.06 −9.29± 1.06 3.89 ± 0.22 C3
0.012 ± 0.001 26.50 ± 1.13 −25.56± 1.13 4.81 ± 1.06 C4
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Table A3. Parameters of the fitted Gaussian model components at 8.3/8.7 GHz. The observational
epochs are given in column 1. The flux densities, relative positions in right ascension and declination
directions with respect to the core component, and the FWHM sizes are listed in columns 2, 3, 4, and 5,
respectively. In the final column, we give the component identifiers. Asterisks (*) denote those epochs
where we time-averaged the calibrated data into 10-s blocks.

Epoch Flux Density ∆α ∆δ FWHM ID(Year) (Jy) (mas) (mas) (mas)

1996.370 *

0.175 ± 0.018 0 0 0.38± 0.01 D0
0.031 ± 0.003 1.90 ± 0.30 −1.66± 0.30 0.95 ± 0.07 D2
0.036 ± 0.004 3.68 ± 0.30 −3.21± 0.30 1.88 ± 0.03 D3
0.008 ± 0.001 8.44 ± 0.30 −7.70± 0.30 0.58 ± 0.08 D4

2015.064 *

0.142 ± 0.014 0 0 0.17± 0.01 D0
0.067 ± 0.007 0.36 ± 0.29 −0.59± 0.29 0.32 ± 0.01 D1
0.035 ± 0.004 1.84 ± 0.29 −1.77± 0.29 0.92 ± 0.02 D2
0.036 ± 0.004 4.04 ± 0.42 −3.57± 0.42 2.26 ± 0.22 D3
0.005 ± 0.001 12.85 ± 0.29 −8.77± 0.29 0.47 ± 0.03 D4

2017.227

0.111 ± 0.011 0 0 0.22± 0.01 D0
0.032 ± 0.003 0.46 ± 0.30 −0.64± 0.30 0.26 ± 0.01 D1
0.032 ± 0.003 2.32 ± 0.31 −1.80± 0.31 2.02 ± 0.09 D2
0.037 ± 0.004 4.66 ± 0.33 −3.86± 0.33 2.56 ± 0.31 D3
0.010 ± 0.001 13.56 ± 0.34 −9.88± 0.34 2.40 ± 0.33 D4

2018.437

0.099 ± 0.010 0 0 0.13± 0.01 D0
0.021 ± 0.002 0.38 ± 0.29 −0.48± 0.29 0.18 ± 0.01 D1
0.028 ± 0.003 2.05 ± 0.29 −1.84± 0.29 1.62 ± 0.02 D2
0.031 ± 0.003 4.75 ± 0.32 −3.87± 0.32 2.48 ± 0.07 D3
0.008 ± 0.001 14.63 ± 0.33 −9.83± 0.33 2.01 ± 0.10 D4

Table A4. Parameters of the fitted Gaussian model components at 15.3 GHz. The observational epochs
are given in column 1. The flux densities, relative positions in right ascension and declination directions
with respect to the core component, and the FWHM sizes are listed in columns 2, 3, 4, and 5, respectively.
In the final column, we give the component identifiers.

Epoch Flux Density ∆α ∆δ FWHM ID(year) (Jy) (mas) (mas) (mas)

2003.655

0.154 ± 0.015 0 0 0.085± 0.001 J0
0.021 ± 0.002 0.58 ± 0.16 −0.75± 0.16 0.331 ± 0.007 J2
0.031 ± 0.003 1.93 ± 0.16 −1.62± 0.16 0.358 ± 0.003 J3
0.020 ± 0.002 3.23 ± 0.17 −2.43± 0.17 1.270 ± 0.148 J4
0.012 ± 0.001 4.54 ± 0.19 −4.13± 0.19 1.939 ± 0.252 J5

2004.616

0.116 ± 0.012 0 0 0.037± 0.001 J0
0.036 ± 0.004 0.08 ± 0.16 −0.10± 0.16 0.057 ± 0.001 J1
0.019 ± 0.002 0.56 ± 0.16 −0.69± 0.16 0.268 ± 0.004 J2
0.031 ± 0.003 1.93 ± 0.17 −1.59± 0.17 0.439 ± 0.010 J3
0.025 ± 0.003 3.54 ± 0.18 −2.78± 0.18 1.489 ± 0.133 J4
0.006 ± 0.001 5.63 ± 0.28 −4.69± 0.28 1.871 ± 0.441 J5

2005.427

0.133 ± 0.013 0 0 <0.04 J0
0.017 ± 0.002 0.27 ± 0.16 −0.29± 0.16 0.199 ±0.001 J1
0.010 ± 0.001 0.78 ± 0.16 −1.04± 0.16 0.320 ± 0.002 J2
0.033 ± 0.003 1.99 ± 0.16 −1.65± 0.16 0.475 ± 0.002 J3
0.023 ± 0.002 3.45 ± 0.18 −2.71± 0.18 1.704 ± 0.028 J4
0.004 ± 0.001 5.29 ± 0.17 −4.83± 0.17 0.685 ± 0.020 J5
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