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Abstract: The present study deals with the modification of Wilson’s formulation by taking into
account changes in the supply chain represented by the parameters of the model, namely varying
delivery costs and price of goods stored. The four different models are presented. The proposed
models avoid the main drawbacks of Wilson’s formulation—the constant price and reordering
time—and discuss the case where varying parameters are used alongside discounting. The proposed
models render lower costs under particular settings.

Keywords: EOQ; Wilson’s formulation; lot size; reordering time

1. Introduction

Sustainable business decisions require taking into account a wide range of factors and
methodologies [1–4]. Therefore, a number of models have been proposed for efficient inventory
management. In 1913, Harris introduced an economic order quantity concept to solve this problem in
the form of a static formula (and started static inventory management models vein).

However, typical static economic order quantity (EOQ) models [5,6] do not satisfy practitioners
because of their incapacity to consider changing consumer demand, requiring constant orders in equal
periods of time [7]. Unpredictable and constantly changing demands, affecting the size and frequency
of orders, lead to situations in which classical inventory management models become unfit for solving
practical inventory management problems and motivate a search for new or modified alternatives.
In the last decade, we observed increased scientific interest in solving this problem. Firstly, Sana [8]
proposed an EOQ model for perishable goods reacting to retail price changes, although practical
implementation is restricted by neglecting the minimizing effect of a negative power function of
price, which generates high sensibility in consumer’s demand. Later, Dobson et al. [9] proposed that
perishable goods, with the demand rate as a linearly decreasing function of the age of the products, act
similarly to nonperishable goods with the unit holding cost equal to the ratio of contribution margin to
lifetime. In their model, they obtain traditional nonperishable Economic Order Quantity (EOQ)-like
lower and upper bounds on the cycle length and the profit and show that they lead to near-optimal
results for typical examples, like grocery items. Zeng et al. [10] formulate an extension to Wilson’s
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model varying quantity of order and different ordering periods. Their model generates a substantial
economic effect when a significant change in consumer demand is noticed and (or) a long period of
planning the logistics process must be ensured.

Conventional models for inventory management with uncertain demand, such as variations of
Harris formulation [11–13], Markov equation-based ones [14,15], and Wilson’s formulation [16–19]
are designed to minimize the expected costs of replenishment and stock-outs. They assume that
complete satisfaction of uncertain and hardly predictable demand is too expensive or even deemed
impossible. All these models are designed under the constant order quantity principle, where the
size of the following order is based on the objective to minimize the whole cost of a company’s
inventory management.

The problem of economic order quantity (EOQ) is quite well-known and has been widely discussed
in the scientific literature [20–24]. Determination of the EOQ has a particular importance in trade and
retail activities. The optimal ordering plan allows for the companies to achieve smooth operation and
competitive advantage [25–27].

In the context of steady economic growth, the EOQ models assuming steady demand for perishable
consumer goods are suitable for determining the lot size [28–30]. There has been research on the EOQ
with respect to the credit market [31] and stock dynamic sizing optimization under the Logistic 4.0
environment for material management of a very high-speed train [32].

However, the fluctuations in the demand and lead time have not been taken into account. Indeed,
such fluctuations become more important during disruptions of the supply chains (e.g., due to
pandemic events). The emergence of trade barriers requires retailers to reconsider the optimal lot size.
This issue is further aggravated by fluctuations in the market prices of particular products. Indeed, the
crisis affects the consumer behavior and demand for particular goods [33–35]. The changes in demand
are reflected by the prices of the products retailed [36,37]. Therefore, one needs to adjust decisions
to order and store goods. Even without facing serious crisis, changes in pricing occur over time in
terms of both retail market and storage costs. Thus, a mathematical model capable of determining
the optimal economic order quantity under varying reordering time and price parameters is obvious.
Although there has been a wide range of models proposed for determining the lot sizes (Table 1), none
of them are able to handle the varying stock quantity based on varying price and reordering time.

Table 1. Overview of the existing economic order quantity (EOQ) models.

No. Reference Model

1. Sebatjane & Adetunji [38]. Costs per cycle are multiplied by the number of
cycles. Discounting is not applied.

2. Khan, Jaber & Bonney, M. [39]

Optimal order quantity in the presence of defective
items in the order and with various options for
defect detection: no implications to changing price
parameters of an order are provided.

3. Birbil, Ş. İ., Bülbül, K., Frenk, H., & Mulder, H. M.
[40]

The demand and unit price are assumed to be
constant.

4. Taleizadeh, A. A. [41] Divided payments are considered assuming
constant parameters of the model.

5. Molamohamadi, Z., Arshizadeh, R., Ismail, N., &
Azizi, A. [42]

The delay of payment is allowed (it may be
considered as a proxy for changing price
parameters of the order). The objective is
optimizing trade credit terms rather than the lot
size.



Symmetry 2020, 12, 1512 3 of 21

Table 1. Cont.

No. Reference Model

6. El-Kassar, A. N., Salameh, M., & Bitar, M. [43]
The model allows for identifying faulty
intermediate consumption items rather than
determining the optimal lot size.

7. Tungalag, N., Erdenebat, M., & Enkhbat, R. [44] EOQ extended with the Euler–Lagrange equation
without varying price parameters.

8. Jaggi, C. K., & Mittal, M. [45] EOQ model with a focus on the lot size with
regards to defected items and deterioration time.

9. Elyasi, M., Khoshalhan, F., & Khanmirzaee, M.
[46] The EOQ model with constant price and lead time.

10. Widyadana, G. A., Cárdenas-Barrón, L. E., & Wee,
H. M. [47] The model for deteriorating items.

11. Shanshan, L. & Yong, H. [1] Focus on mitigating effects of an already occurred
stock out.

12. Inprasit, T. & Tanachutiwat, S. [48]
A combination of machine learning and neural
networks for determining a reordering point but
not an EOQ.

This paper presents a model for determining the optimal lot size with fluctuating price building
on the classical Wilson’s formulation following extensions by Slesarenko and Nestorenko [49] and
by Zeng et al. [10]. The proposed model optimizes the discounted costs of all orders rather than the
costs per order. Due to this fundamental difference, our model is more relevant to economic decision
making and ensures symmetry in the decision process. Presenting practical application of models with
different parameters, we also show how this model performs in real-life situations.

2. The Proposed Model of Lot Management with Time-Variant Cost Parameters

Inventory management is understood as the definition of optimal controllable parameters (time
between deliveries ts (time set up) and q (quantity, or optimal order size)) of logistics processes, at
which the minimum total costs (TC) for the purchase, delivery, and storage of goods is achieved for a
certain planned time interval [0, T]. If the uncontrollable parameters of the logistics process (purchase
price p, delivery cost cs, (cost set up) daily demand µ, and daily interest rate i (r = i/100%) are known
and constant throughout the entire planning interval, this problem can be solved by using Wilson
economic-mathematical model EOQ (Economic Order Quantity):

TC(ts) = pD +
csT
ts

+
1
2

chDts (1)

where D is the demand for the period (time interval) [0, T] (D = µT) and ch is the cost of storing a unit
of goods per day (holding cost).

The optimal time between deliveries (tso) and optimal order quantity (qo) are found according to
the Wilson formula:

tso = tw =

√
2csT
chD

(2)

qo = µtso (3)

Slesarenko and Nestorenko [49], and Nestorenko et al. [50] proposed the modified EOQ model:

TC(ts) = (cs + pµts)
(1 + r)ts

(
(1 + r)T

− 1
)

(1 + r)ts
− 1

(4)
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The optimal time between deliveries is found by the following formula:

tso =

√
2cs

rpµ
(5)

The formula coincides with Wilson’s Formula (2) if the storage cost is expressed as a percentage of
the unit price (ch = pµ).

If the parameters of the logistic process change, the optimal solution is recalculated using Wilson’s
Formula (5), taking into account the changes. Based on the available information, it is possible to build
forecasts for further economic processes of behavior. The use of this information in economic and
mathematical models leads to an increase in their adequacy and accuracy.

Zeng et al. [10] proposed models of inventory management that allow for determining the
optimal values of parameters in the case when it is known that daily demand has a linear trend
(µ(t) = µ+ ωt, t ∈ [0, T]). To find those parameters, it is necessary to use Wilson’s Formula (5),
replacing the constant value of daily demand µ with the arithmetic mean of daily demand µ for the
planning period [0, T] (µ = µ+ 0.5ωT).

We further construct economic and mathematical models of inventory management that allow for
determining the values of optimal controlled parameters in the case when it is known that uncontrolled
cost parameters (delivery cost and/or price) have uniform relative trends (cs(t) = cs(1 + ρc)

t, p(t) =

p
(
1 + ρp

)t
, t ∈ [0, T]).

Model 1. The inventory management model with a simultaneous equal percentage change in the costs of delivery
and prices (inflationary model).

In the EOQ model, the uncontrollable cost parameters as the cost of delivery (cs = const) and
price (p = const) for the period [0, T] will be replaced by the assumption that the cost of delivery and
the price simultaneously change uniformly with equal percentage change (cs(t) = cs(1 + ρ)t, p(t) =
p(1 + ρ)t, t ∈ [0, T]). It is an inflationary process when ρ > 0 and a deflationary one when ρ < 0.

The logistics process of purchasing, delivering, and storing goods with constant time between
deliveries can be described by the following formula:

TC(ts) = (cs + pµts)(1 + r)nts +
(
cs(1 + ρ)ts + p(1 + ρ)tsµts

)
(1 + r)(n−1)ts + · · ·

+
(
cs(1 + ρ)(n−1)ts + p(1 + ρ)(n−1)tsµts

)
(1 + r)ts

(6)

where n is the number of deliveries of consignments of goods for the period [0, T] (n = T/ts). Replacing
it, we get the following:

(1 + r) jts = eln (1+r) jts , (1 + ρ) jts = eln (1+ρ) jts , j = 1, n

After performing arithmetic transformations, we get the following:

TC(ts) = (cs + pµts)eln (1+r)T
(
1 + e(ln (1+ρ)−ln (1+r))ts + · · ·+ e(n−1)(ln (1+ρ)−ln (1+r))ts

)
(7)

Using the formula for the sum of the first members of a geometric progression, we get the formula
for total costs:

TC(ts) = (cs + pµts)
(eln (1+r)−ln (1+ρ))T

− 1)eln (1+ρ)T

e(ln (1+r)−ln (1+ρ))ts − 1
(8)
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The minimum total cost is obtained as follows:

dTC(ts)
dts

= pµ (e(ln (1+r)−ln (1+ρ))T
−1)eln (1+ρ)T

e(ln (1+r)−ln (1+ρ))ts−1
− (ln(1 + r)

− ln(1 + ρ))(cs + pµts)
e(ln (1+r)−ln (1+ρ))ts (e(ln (1+r)−ln (1+ρ))T

−1)eln (1+ρ)T

(e(ln (1+r)−ln (1+ρ))ts−1)
2

= 0

(9)

After transformations, the equation is as follows:

e(ln (1+r)−ln (1+ρ))ts − 1 = (ln(1 + r) − ln(1 + ρ))

(
cs

pµ
+ ts

)
(10)

The optimal time between deliveries of consignments of goods tso is found from solving the
nonlinear Equation (10). In order to find an approximate solution to Equation (10), we use the first
three terms of the Maclaurin series [51] of the expansion of the function y = ex

≈ 1 + x + 0.5x2 and the
first term of the Maclaurin series of the expansion of the function y = ln(1 + r) ≈ r.

tso = ts =

√
2cs

(r− ρ)pµ
(11)

Therefore, to determine the optimal time between deliveries of consignments of goods tso, one can
use Wilson’s Formula (5), replacing r with the difference r − ρ.

Let α = ln(1 + ρ)/ ln(1 + r) ≈ ρ/r. Then, Equation (11) can be written as follows:

tso =
tw
√

1− α
(12)

The dependence of the optimal time between deliveries of consignments of goods tso on α is

shown in Figure 1. When α ≥ αmax = 1− t2
w

T2 , it is necessary to purchase in the volume qo = µT and to
deliver the goods once for the entire planning period of the logistic process. When α ≤ αmin = 1− t2

w, it
is necessary to purchase and deliver goods every day in the amount of qo = µ. When αmin < α < αmax,
it is necessary to purchase and deliver goods in tso =

tw√
1−α

days and in volume qo =
µtw
√

1−α
=

qw
√

1−α
.
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Figure 1. Dependence of the optimal time between deliveries of consignments of goods tso on α.

Change in the dependence of total costs TC(ts, α) on the time between deliveries of consignments
of goods ts for different values of α as well as the dependence of the minimum total costs TC(tso, α) on
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the optimal time between deliveries of consignments of goods tso for different values of α (black line
and black squares) are shown in Figure 2.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 19 
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√√
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Model 2. The inventory management model with the percentage change in the cost of delivery.

In the EOQ model, the assumption about constancy of the uncontrolled parameter delivery cost
(cs = const) for the period [0, T] is replaced by the assumption in which the delivery cost changes
uniformly according to the regularity cs(t) = cs(1 + ρc)

t, t ∈ [0, T]. If ρc > 0, there is an increase in the
cost of delivery; if ρc < 0, there is a decrease.

Then, the logistics process of purchasing, delivering, and storing goods with constant time
between deliveries can be described by the following formula:

TC(ts) = (cs + pµts)(1 + r)nts +
(
cs(1 + ρc)

ts + pµts
)
(1 + r)(n−1)ts + · · ·

+
(
cs(1 + ρc)

(n−1)ts + pµts
)
(1 + r)ts

(14)

where n is the number of deliveries of consignments of goods for the period [0, T] (n = T/ts).
Replacing it, we get the following:

(1 + r) jts = eln (1+r) jts , (1 + ρc)
jts = eln (1+ρc) jts , j = 1, n



Symmetry 2020, 12, 1512 7 of 21

After performing arithmetic transformations, we get the following:

TC(ts) = eln (1+r)T(cs(1 + e(ln (1+ρc)−ln (1+r))ts + · · ·+ e(n−1)(ln (1+ρc)−ln (1+r))ts)

+pµts(1 + e− ln (1+r)ts + · · ·+ e− ln (1+r)(n−1)ts))
(15)

Using the formula for the sum of the first members of a geometric progression, we get the formula
for total costs:

TC(ts) = cs
e(ln (1+r)−ln (1+ρc))ts

(
eln (1+r)T

− eln (1+ρc)T
)

e(ln (1+r)−ln (1+ρc))ts − 1
+ pµts

eln (1+r)ts
(
eln (1+r)T

− 1
)

eln (1+r)ts − 1
(16)

The minimum total costs is as follows:

dTC(ts)
dts

= pµ
eln (1+r)ts(eln (1+r)T

−1)
eln (1+r)ts−1

− ln(1 + r)pµts
eln (1+r))ts(eln (1+r)T

−1)

(eln (1+r)ts−1)
2

−cs
(ln(1+r)−ln(1+ρc))e(ln (1+r)−ln (1+ρc))ts(eln (1+r)T

−eln (1+ρc)T)

(e(ln (1+r)−ln (1+ρc))ts−1)
2 = 0

(17)

After transformations, the equation is as follows:

eln (1+r)ts − 1− ln(1 + r)ts

= cs
pµ

(ln(1+r)−ln(1+ρc))(eln (1+r)ts−1)
2

eln (1+ρc)(e(ln (1+r)−ln (1+ρc))ts−1)
2
(eln (1+r)T

−eln (1+ρc)T)
(eln (1+r)T−1)

(18)

In model 2, the optimal time between deliveries of consignments of goods tso is also found from the
solution of the nonlinear Equation (18). In order to find an approximate solution of Equation (18), we
use the first three terms of the Maclaurin series of the expansion of the function y = ex

≈ 1 + x + 0.5x2

and the first term of the Maclaurin series of the expansion of the function y = ln(1 + r) ≈ r.

tso = ts =

√√
2cs(1 + ρc)

1
2 T

rpµ
(19)

Consequently, to determine the optimal time between deliveries of consignments of goods tso, one
can use Wilson’s Formula (5), replacing the constant value of the delivery cost cs with the geometric

mean of the delivery cost cs for the planning period [0, T] (cs =

√
cscs(1 + ρc)

T = cs(1 + ρc)
1
2 T).

tso = (1 + ρc)
1
4 Ttw (20)

Let αc = ln(1 + ρc)/ ln(1 + r); then Equation (20) can be represented in this form:

tso = (1 + r)
1
4αcTtw (21)

The dependence of the optimal time between deliveries of consignments of goods tso on αc is
shown in Figure 3.
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Figure 3. The dependence of optimal time between deliveries of consignments of goods tso on αc.

The change in the dependence of total costs TC(ts, αc) on the time between deliveries of
consignments of goods ts for different αc values as well as the dependence of the minimum total costs
TC(tso, αc) on the optimal time between deliveries of consignments of goods tso for different αc values
(black line and black squares) are shown in Figure 4.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 19 
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After transformations, the equation is as follows: 

Figure 4. The dependence of total costs TC(ts, αc) on the time between deliveries of consignments
of goods ts for different αc values and the dependence of the minimum total costs TC(tso, αc) on the
optimal time between deliveries of consignments of goods tso for different αc values (black line and
black squares).

Model 3. Inventory management model with a percentage change in the price of goods.

In the EOQ model, the assumption of the constancy of the uncontrollable parameter of the product
price (p = const) for the period [0, T] is replaced by the assumption that the price of the product changes

uniformly according to the order that p(t) = cp
(
1 + ρp

)t
, t ∈ [0, T]). If ρp > 0, there is an increase in the

price of goods, and if ρp < 0, there is a decrease.
To construct model 3, we will use the results from constructing model 1 (8) and model 2 (16).

We represent the change (increase/decrease) in the price as a combination of two processes—the
change (increase/decrease) in the price and delivery cost (model 1) and the simultaneous change
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(decrease/increase) in the delivery cost (model 2) by the same number of times. A change in the price
and delivery cost, according to model 1, will lead to the replacement of ln(1 + r) to ln(1 + r)− ln

(
1 + ρp

)
in Formula (16) and will be multiplied by eln (1+ρp)T. To compensate for the change in the cost of
delivery, according to model 2, we make a replacement 1 + ρc = 1/(1 + ρp):

TC(ts) =cs
eln (1+r)ts

(
eln (1+r)T

− 1
)

eln (1+r)ts − 1

+pµts
e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T − 1

)
eln (1+ρp)T

e(ln (1+r)−ln (1+ρp))ts − 1

(22)

The minimum total cost is found as follows:

dTC(ts)
dts

= −cs
ln(1+r)eln (1+r)ts(eln (1+r)T

−1)

(eln (1+r)ts−1)
2

+pµ
e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T−1

)
eln (1+ρp)T

e(ln (1+r)−ln (1+ρp))ts−1

−pµts
(ln(1+r)−ln(1+ρp))e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T−1

)
eln (1+ρp)T(

e(ln (1+r)−ln (1+ρp))ts−1
)2

= 0

(23)

After transformations, the equation is as follows:

e(ln (1+r)−ln (1+ρp))ts−1− (ln(1 + r) − ln
(
1 + ρp

)
)ts

=
cs

pµ

ln(1 + r)eln (1+ρp)ts
(
e(ln (1+r)−ln (1+ρp))ts − 1

)2(
eln (1+r)T

− 1
)

(
eln (1+r)ts − 1

)2(
e(ln (1+r)−ln (1+ρp))T − 1

)
eln (1+ρp)T

(24)

We repeat the previously mentioned procedure: the optimal time between deliveries of
consignments of goods tso is found from the solution of the nonlinear Equation (24). In order
to find an approximate solution of Equation (24), we use the first three terms of the Maclaurin series of
the expansion of the function y = ex

≈ 1 + x + 0.5x2 and the first term of the Maclaurin series of the
expansion of the function y = ln(1 + r) ≈ r.

ts =

√
2cs(

r− ρp
)
pe

1
2 ln (1+ρp)Tµ

(25)

Consequently, to determine the optimal time between deliveries of consignments of goods tso,
one can use Wilson’s Formula (5), replacing r by the difference r − ρ and the constant value of the
price of goods p with the geometric mean of the price of goods p for the planning period [0, T]

(p =

√
pp

(
1 + ρp

)T
= p

(
1 + ρp

) 1
2 T

).

Let αp = ln
(
1 + ρp

)
/ ln(1 + r); then Equation (25) can be represented as follows:

tso =
tw(

1 + ρp
) 1

4 T √
1− αp

(26)

or
tso =

tw

(1 + r)
1
4αpT √

1− αp

(27)
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The dependence of the optimal time between deliveries of consignments of goods tso on αc is
shown in Figure 5.
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Figure 6. The dependence of total costs TC
(
ts, αp

)
on the time between deliveries of consignments

of goods ts for different αp values and the dependence of the minimum total costs TC
(
tso, αp

)
on the

optimal time between deliveries of consignments of goods tso for different αp values (black line and
black squares).

Model 4. Inventory management model with a different percentage change in the price of goods.

In the EOQ model, the assumption of the constancy of the uncontrollable parameter of the product
price (p = const) for the period [0, T] is replaced by the assumption that the price of the product changes
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uniformly according to the order that p(t) = cp
(
1 + ρp

)t
, t ∈ [0, T]). If ρp > 0, there is an increase in the

price of goods, and if ρp < 0, there is a decrease.
To construct model 4, we will use the results from constructing model 1 (8) and model 2 (16).

We represent the change (increase/decrease) in the price as a combination of two processes—the
change (increase/decrease) in the price and delivery cost (model 1) and the simultaneous change
(decrease/increase) in the delivery cost by a certain number of times. A change in the price and delivery
cost, according to model 1, will lead to the replacement of ln(1 + r) to ln(1 + r)− ln

(
1 + ρp

)
in Formula

(16) and will be multiplied by eln (1+ρp)T. The change in the cost of delivery, according to model 2, we
will receive by replacement of 1 + ρc = (1 + ρc)/(1 + ρp):

TC(ts) =cs
e(ln (1+r)−ln (1+ρc))ts

(
e(ln (1+r)−ln (1+ρc))T − 1

)
eln (1+ρc)T

e(ln (1+r)−ln (1+ρc))ts − 1

+pµts
e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T − 1

)
eln (1+ρp)T

e(ln (1+r)−ln (1+ρp))ts − 1

(28)

The minimum total costs are found as follows:

dTC(ts)
dts

= pµ
e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T−1

)
eln (1+ρp)T

e(ln (1+r)−ln (1+ρp))ts−1

−cs
(ln(1+r)−ln(1+ρc))e(ln (1+r)−ln (1+ρc))ts(e(ln (1+r)−ln (1+ρc))T−1)eln (1+ρc)T

(e(ln (1+r)−ln (1+ρc))ts−1)
2

pµts
(ln(1+r)−ln(1+ρp))e(ln (1+r)−ln (1+ρp))ts

(
e(ln (1+r)−ln (1+ρp))T−1

)
eln (1+ρp)T(

e(ln (1+r)−ln (1+ρp))ts−1
)2 = 0

(29)

After transformations, the equation appears as follows:

e(ln (1+r)−ln (1+ρp))ts − 1−
(
ln(1 + r) − ln

(
1 + ρp

))
ts

= Cs
pµ

(ln(1+r)−ln(1+ρc))e(ln (1+ρp)−ln (1+ρc))ts
(
e(ln (1+r)−ln (1+ρp))ts−1

)2
(eln (1+r)T

−eln (1+ρc)T)

(e(ln (1+r)−ln (1+ρc))ts−1)
2(

eln (1+r)T−eln (ρp)T
) (30)

The optimal time between deliveries of consignments of goods tso is found from the solution of
the nonlinear Equation (30). In order to find an approximate solution of Equation (30), we use the first
three terms of the Maclaurin series of the expansion of the function y = ex

≈ 1 + x + 0.5x2 and the first
term of the Maclaurin series of the expansion of the function y = ln(1 + r) ≈ r.

tso = ts =

√√√√√√ 2cs(1 + ρc)
1
2 T(

r− ρp
)
p
(
1 + ρp

) 1
2 T
µ

(31)

Consequently, to determine the optimal time between deliveries of consignments of goods tso,
one can use Wilson’s Formula (5), replacing r by the difference r − ρ and the constant value of the
price of goods p with the geometric mean of the price of goods p for the planning period [0, T]

(p =

√
pp

(
1 + ρp

)T
= p

(
1 + ρp

) 1
2 T

) and the constant value of the product price cs by geometric mean

value of the product price cs for the planning period [0, T] (cs =

√
cscs(1 + ρc)

T = cs(1 + ρc)
1
2 T).

Let αp = ln
(
1 + ρp

)
/ ln(1 + r) and αc = ln(1 + ρc)/ ln(1 + r); then Equation (31) can be

represented as follows:

tso =
(1 + ρc)

1
4 T(

1 + ρp
) 1

4 T

tw√
1− αp

(32)
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or
tso = (1 + r)

1
4 (αc−αp)T tw√

1− αp
(33)

The dependence of the optimal time between deliveries of consignments of goods tso on αc and αp

is shown in Figure 7.
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The change in the dependence of the total costs TC
(
ts, αc = −3, αp

)
with a decrease in the cost of

delivery (αc = −3) on the time between deliveries of consignments of goods ts at different αp values as
well as the dependence of the minimum total costs TC

(
tso, αc = −3,αp

)
on the optimal time between

deliveries of consignments of goods tso for different αp values (black line and black squares) are shown
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Figure 8. The dependence of the total costs TC
(
ts, αc = −3, αp

)
with a decrease in the cost of delivery

(αc = −3) on the time between deliveries of consignments of goods ts at different αp values and the
dependence of the minimum total costs TC

(
tso, αc = −3,αp

)
on the optimal time between deliveries of

consignments of goods tso for different αp values (black line and black squares).
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The change in the dependence of total costs TC
(
ts, αc = 0, αp

)
at constant delivery cost (αc = 0)

on the time between deliveries of consignments of goods ts for different αp values as well as the
dependence of the minimum total costs TC

(
tso, αc = 0,αp

)
on the optimal time between deliveries of

consignments of goods tso for different αp values (black line and black squares) are shown in Figure 6.
The change in the dependence of total costs TC

(
ts, αc = 3, αp

)
with an increase in the cost of

delivery (αc = 3) on the time between deliveries of consignments of goods ts for different αp values as
well as the dependence of the minimum total costs TC

(
tso, αc = 3,αp

)
on the optimal time between

deliveries of consignments of goods tso for different αp values (black line and black squares) are shown
in Figure 9.
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Model 4 is a generalization of models 1–3:

for αc = αp we obtain model 1;
for αp = 0 we obtain model 2; and
for αc = 0 we obtain model 3.

Further, we provide some examples of the differences that arise when using models 1–4 and the
modified EOQ model.

3. Empirical illustration

Model 1

If at the beginning of the period [0, T], uncontrollable parameters of the logistic process such
as T = 400 days, r = 0.001, and µ = 25 units/day are known and the cost of delivery and the
price increases equally during the period [0, T] with ρ = 0.00075, then the growth pattern will be
cs(t) = 400 ∗ 1.00075t, p(t) = 20 ∗ 1.00075t, t ∈ [0, T](α = 0.75).

When using the EOQ model, excluding the increase in delivery costs and prices, the time between
deliveries will be the following:

tw =

√
2 ∗ 400

0.001 ∗ 20 ∗ 25
= 40 days
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The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 1.0007540 + 20 ∗ 1.0007540
∗ 25∗

40) ∗ 1.001360 + · · ·+
(
400 ∗ 1.00075360 + 20 ∗ 1.00075360

∗ 25 ∗ 40
)
∗ 1.00140 =

290911 EUR

When applying model 1, the time between deliveries is found by Formula (12):

tso =
40

√
1− 0.75

= 80 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 80) ∗ 1.001400 + (400 ∗ 1.0007580 + 20 ∗ 1.0007580
∗ 25∗

80) ∗ 1.001320 + · · ·+ (400 ∗ 1.00075320 + 20 ∗ 1.00075320
∗ 25 ∗ 80) ∗ 1.00180 =

289600 EUR

The savings will be as follows:

∆TC = 290911− 289600 = 1311 EUR

If the cost of delivery and the price decrease equally during the period [0, T] with ρ = −0.003, the
growth pattern has the following form: cs(t) = 400 ∗ 0.997t, p(t) = 20 ∗ 0.997t, t ∈ [0, T] (α = −3).

When using the EOQ model, excluding the reduction in delivery costs and prices, the time
between deliveries will be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 0.99740 + 20 ∗ 0.99740
∗ 25 ∗ 40)∗

1.001360 + · · ·+ (400 ∗ 0.997360 + 20 ∗ 0.997360
∗ 25 ∗ 40) ∗ 1.00140 = 164156 EUR

When applying model 1, the time between deliveries is found by Formula (12):

tso =
40
√

1 + 3
= 20 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 20) ∗ 1.001400 + (400 ∗ 0.99720 + 20 ∗ 0.99720
∗ 25 ∗ 20)∗

1.001380 + · · ·+ (400 ∗ 0.997380 + 20 ∗ 0.997380
∗ 25 ∗ 20) ∗ 1.00120 = 160934 EUR

The savings will be as follows:

∆TC = 164156− 160934 = 3222 EUR

Model 2

If at the beginning of the period [0, T] uncontrollable parameters of the logistic process such as T =

400 days, r = 0.001, µ = 25 units/day, and p = 20 EUR/unit are known and the cost of delivery increases
during the period [0, T] with ρ = 0.00075, then the growth pattern will be cs(t) = 400 ∗ 1.0023t, t ∈ [0, T]
(αc = 2.3).

When using the EOQ model, excluding the increase in delivery costs, the time between deliveries
will be tw = 40 days.
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The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 1.002240 + 20 ∗ 25 ∗ 40∗

1.001360 + · · ·+ (400 ∗ 1.0022360 + 20 ∗ 25 ∗ 40) ∗ 1.00140 = 258365 EUR

When applying model 2, the time between deliveries is found by Formula (20):

tso = 1.0023100
∗ 40 = 50 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 50) ∗ 1.001400 + (400 ∗ 1.002250 + 20 ∗ 25 ∗ 50)∗

1.001350 + · · ·+ (400 ∗ 1.0022320 + 20 ∗ 25 ∗ 50) ∗ 1.00150 = 258068 EUR

The savings will be as follows:

∆TC = 258365− 258068 = 297EUR

If the cost of delivery decreases during the period [0, T] with ρc = −0.0018, the growth pattern
has the form cs(t) = 400 ∗ 0.9982t, t ∈ [0, T] (αc = −1.8).

When using the EOQ model, excluding delivery cost reduction, the time between deliveries will
be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 0.998240 + 20 ∗ 25 ∗ 40)∗

1.001360 + · · ·+ (400 ∗ 0.9982360 + 20 ∗ 25 ∗ 40) ∗ 1.00140 = 254627 EUR

When applying model 2, the time between deliveries is found by Formula (20):

tso = 0.9982100
∗ 40 = 33 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 33) ∗ 1.001400 + (400 ∗ 0.998233 + 20 ∗ 25 ∗ 33)

∗1.001367 + · · ·+ (400 ∗ 0.9982367 + 20 ∗ 25 ∗ 33) ∗ 1.00133 = 254513 EUR

The savings will be as follows:

∆TC = 254627− 254513 = 114 EUR.

Model 3

If at the beginning of the period [0, T] uncontrollable parameters of the logistic process such as
T = 400 days, r = 0.001, µ = 25 units/day, and cs = 25EUR are known and the price increases during
the period [0, T] with ρp = 0.000786, then the growth pattern will be p(t) = 20 ∗ 1.000786t, t ∈ [0, T]
(αp = 0.786).

When using the EOQ model without considering the price increase, the time between deliveries
will be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 + 20 ∗ 1.00078640
∗ 25 ∗ 40)∗

1.001360 + · · ·+ (400 + 20 ∗ 1.000786360
∗ 25 ∗ 40) ∗ 1.00140 = 292146 EUR
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When applying model 3, the time between deliveries is found by Formula (26):

tso =
40

1.000786100
√

1− 0.786
= 80 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 80) ∗ 1.001400 + (400 + 20 ∗ 1.00078680
∗ 25 ∗ 80)∗

1.001320 + · · ·+ (400 + 20 ∗ 1.000786320
∗ 25 ∗ 80) ∗ 1.00180 = 290915 EUR

The savings will be as follows:

∆TC = 292146− 290915 = 1331 EUR

If the price decreases during the period [0, T] with ρp = −0.003, the growth pattern has the form
p(t) = 20 ∗ 0.997t, t ∈ [0, T] (αp = −3).

With the EOQ model, excluding price reductions, the time between deliveries will be tw = 40 days.
The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 + 20 ∗ 0.99740
∗ 25 ∗ 40) ∗ 1.001360+

· · ·+ (400 + 20 ∗ 0.997360
∗ 25 ∗ 40) ∗ 1.00140 = 165954 EUR

When applying model 3, the time between deliveries is found by Formula (26):

tso =
40

0.997100
√

1 + 3
= 25 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 25) ∗ 1.001400 + (400 + 20 ∗ 0.99725
∗ 25 ∗ 25) ∗ 1.001375+

· · ·+ (400 + 20 ∗ 0.997375
∗ 25 ∗ 25) ∗ 1.00125 = 164244 EUR

The savings will be as follows:

∆TC = 165954− 164244 = 1730 EUR

Model 4

If at the beginning of the period [0, T] uncontrollable parameters of the logistic process such
as T = 400 days, r = 0.001, and µ = 25 units/day are known and the cost of delivery and the price
increase during the period [0, T] with ρc = 0.003, ρp = 0.00075, then the growth pattern will be
cs(t) = 400 ∗ 1.003t, p(t) = 20 ∗ 1.00075t, t ∈ [0, T] (αc = 3, αp = 0.75).

When using the EOQ model, excluding the increase in delivery costs and prices, the time between
deliveries will be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 1.00340 + 20 ∗ 1.0007540
∗ 25∗

40) ∗ 1.001360 + · · ·+ (400 ∗ 1.003360 + 20 ∗ 1.00075360
∗ 25 ∗ 40) ∗ 1.00140

= 294083 EUR

When applying model 4, the time between deliveries is found by Formula (32):

tso =
1.003100

1.00075100
40

√
1− 0.75

= 100 days
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The total purchase, delivery, and storage costs for 400 days are as follows:

TC0 = (400 + 20 ∗ 25 ∗ 100) ∗ 1.001400 + (400 ∗ 1.003100 + 20 ∗ 1.00075100
∗ 25∗

80) ∗ 1.001300 + · · ·+ (400 ∗ 1.003300 + 20 ∗ 1.00075300
∗ 25 ∗ 80) ∗ 1.001100 =

290748 EUR

The savings will be as follows:

∆TC = 294083− 290748 = 3335 EUR

If the cost of delivery decreases and the price increases during the period [0, T] with ρc =

−0.0039, ρp = 0.00075, the growth pattern has the form cs(t) = 400 ∗ 0.9961t, p(t) = 20 ∗ 1.00075t, t ∈
[0, T] (αc = −3.9, αp = 0.75).

When using the EOQ model, excluding the reduction in delivery costs and the increase in prices,
the time between deliveries will be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 0.996140 + 20 ∗ 1.0007540
∗ 25∗

40) ∗ 1.001360 + · · ·+ (400 ∗ 0.9961360 + 20 ∗ 1.00075360
∗ 25 ∗ 40) ∗ 1.00140 =

288180 EUR

When applying model 4, the time between deliveries is found by Formula (32):

tso =
0.9961100

1.00075100
40

√
1− 0.75

= 50 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 50) ∗ 1.001400 + (400 ∗ 0.996150 + 20 ∗ 1.0007550
∗ 25∗

50) ∗ 1.001350 + · · ·+ (400 ∗ 0.9961350 + 20 ∗ 1.00075350
∗ 25 ∗ 50) ∗ 1.00150 =

288015 EUR

The savings will be as follows:

∆TC = 288180− 288015 = 165 EUR

If the cost of delivery increases and the price decreases during the period [0, T] with ρc =

0.002, ρp = −0.003, the growth pattern has the form cs(t) = 400 ∗ 1.002t, p(t) = 20 ∗ 0.997t, t ∈ [0, T]
(αc = 2, αp = −3).

When using the EOQ model, excluding the increase in the cost of delivery and the decrease in the
price, the time between deliveries will be tw = 40 days.

The total purchase, delivery, and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 1.00240 + 20 ∗ 0.99740
∗ 25 ∗ 40)∗

1.001360 + · · ·+ (400 ∗ 1.002360 + 20 ∗ 0.997360
∗ 25 ∗ 40) ∗ 1.00140 =

168249 EUR

When applying model 4, the time between deliveries is found by Formula (32):

tso =
1.002100

0.997100
40
√

1 + 3
= 33 days
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The total purchase, delivery, and storage costs for 400 days are as follows:

TC0 = (400 + 20 ∗ 25 ∗ 33) ∗ 1.001400 + (400 ∗ 1.00233 + 20 ∗ 0.99733
∗ 25 ∗ 33)∗

1.001367 + · · ·+ (400 ∗ 1.002367 + 20 ∗ 0.997367
∗ 25 ∗ 33) ∗ 1.00133 =

167620 EUR

The savings will be as follows:

∆TC = 168249− 167620 = 629 EUR

If uncontrollable parameters of the logistic process such as T = 400 days, r = 0.001, and µ = 25
units/day are known at the beginning of the period [0, T] and the cost of delivery and the price are
reduced during the period [0, T] with ρc = −0.001, ρp = −0.003, then the growth pattern will be:
cs(t) = 400 ∗ 0.999t, p(t) = 20 ∗ 0.997t, t ∈ [0, T] (αc = −1, αp = −3).

When using the EOQ model, excluding the reduction in delivery costs and prices, the time
between deliveries will be tw = 40 days.

The total purchase, delivery and storage costs for 400 days are as follows:

TCw = (400 + 20 ∗ 25 ∗ 40) ∗ 1.001400 + (400 ∗ 0.99940 + 20 ∗ 0.99740
∗ 25 ∗ 40)∗

1.001360 + · · ·+ (400 ∗ 0.999360 + 20 ∗ 0.997360
∗ 25 ∗ 40) ∗ 1.00140 =

165335 EUR

When applying model 4, the time between deliveries is found by Formula (32):

tso =
0.999100

0.997100
40
√

1 + 3
= 25 days

The total purchase, delivery, and storage costs for 400 days are as follows:

TCo = (400 + 20 ∗ 25 ∗ 25) ∗ 1.001400 + (400 ∗ 0.99925 + 20 ∗ 0.99725
∗ 25 ∗ 25)∗

1.001375 + · · ·+ (400 ∗ 0.999375 + 20 ∗ 0.997375
∗ 25 ∗ 25) ∗ 1.00125 =

163141 EUR

The savings will be as follows:

∆TC = 165335− 163141 = 2194 EUR

4. Conclusions

There is an abundance of EOQ models based on Wilson’s formulation. Although differing in
purpose, application type, or calculation principles and providing quite precise predictions for a
demand per selected time interval, all these models contain the same drawback. Being based on a
logic of calculating costs per one order and multiplying it by number of orders, they all fail to meet the
current needs of business environments in order to be applied in practice.

We propose the modification of EOQ based on a different calculation technique which shows
significant savings in warehouses costs under particular conditions.

From the proposed models, the most significant savings were observed using the 2nd variation
of the first proposed model and accounted for approximately 2% of all inventory costs. The highest
potential for application in practice shows the first and second variations of a fourth model due to the
ability to cope with the most uncontrolled variables as the retail sector is characterized by constant
shifts in demand and supply which are reflected in prices in a nonlinear manner [52]. The savings in
this case would amount to 0.4% when the price of stored goods increases under particular conditions
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(first variation of a fourth model) and to 1.3% when price decreases (second variation of a fourth model)
under researched conditions.

The limitations of our proposed models are comprised of delivery costs and price for goods to
be described by uniform trend. Thus, in the future, the model could be extended to investigate the
inventory management where exogenous parameters do not follow any uniform trend.
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40. Birbil, Ş.İ.; Bülbül, K.; Frenk, H.; Mulder, H.M. On EOQ cost models with arbitrary purchase and transportation
costs. J. Ind. Manag. Optim. 2014, 11, 1211–1245.

41. Taleizadeh, A.A. An economic order quantity model for deteriorating item in a purchasing system with
multiple prepayments. Appl. Math. Model. 2014, 38, 5357–5366. [CrossRef]

42. Molamohamadi, Z.; Arshizadeh, R.; Ismail, N.; Azizi, A. An Economic Order Quantity Model with Completely
Backordering and Nondecreasing Demand under Two-Level Trade Credit. Adv. Decis. Sci. 2014, 2014, 1–11.
[CrossRef]

43. El-Kassar, A.N.; Salameh, M.; Bitar, M. EPQ model with imperfect quality raw material. Math. Balk. 2012, 26,
123–132.

http://dx.doi.org/10.1016/j.mcm.2010.11.056
http://dx.doi.org/10.1007/s40092-019-0311-0
http://dx.doi.org/10.1016/j.amc.2013.08.062
http://dx.doi.org/10.1016/j.ijpe.2013.05.032
http://dx.doi.org/10.1016/j.jretconser.2016.06.011
http://dx.doi.org/10.1016/S0307-904X(98)10089-6
http://dx.doi.org/10.1016/j.proeng.2017.01.180
http://dx.doi.org/10.1007/s12597-016-0252-y
http://dx.doi.org/10.3390/su12104075
http://dx.doi.org/10.1086/346244
http://www.skced.hneu.edu.ua/files/tez_konferencii_simon_kuznets_14_05_18.pdf
http://www.skced.hneu.edu.ua/files/tez_konferencii_simon_kuznets_14_05_18.pdf
https://www.nielsjohannesen.net/wp-content/uploads/AHJS2020-Corona.pdf
https://www.nielsjohannesen.net/wp-content/uploads/AHJS2020-Corona.pdf
http://dx.doi.org/10.3934/jimo.2020057
http://dx.doi.org/10.4102/jtscm.v11i0.303
http://dx.doi.org/10.1016/j.orp.2018.11.004
http://dx.doi.org/10.1016/j.ijpe.2010.01.023
http://dx.doi.org/10.1016/j.apm.2014.02.014
http://dx.doi.org/10.1155/2014/340135


Symmetry 2020, 12, 1512 21 of 21

44. Tungalag, N.; Erdenebat, M.; Enkhbat, R. A Note on Economic Order Quantity Model. iBusiness 2017, 9, 74.
[CrossRef]

45. Jaggi, C.K.; Mittal, M. Economic order quantity model for deteriorating items with imperfect quality. Investig.
Oper. 2011, 32, 107–113.

46. Elyasi, M.; Khoshalhan, F.; Khanmirzaee, M. Modified economic order quantity (EOQ) model for items with
imperfect quality: Game-theoretical approaches. Int. J. Ind. Eng. Comput. 2014, 5, 211–222. [CrossRef]

47. Widyadana, G.A.; Cárdenas-Barrón, L.E.; Wee, H.M. Economic order quantity model for deteriorating items
with planned backorder level. Math. Comput. Model. 2011, 54, 1569–1575. [CrossRef]

48. Inprasit, T.; Tanachutiwat, S. Reordering Point Determination Using Machine Learning Technique for
Inventory Management. In Proceedings of the 2018 International Conference on Engineering, Applied
Sciences, and Technology (ICEAST), Phuket, Thailand, 4–7 July 2018; IEEE: Piscataway, NJ, USA; pp. 1–4.

49. Slesarenko, A.; Nestorenko, A. Development of analytical models of optimizing an enterprise’s logistics
information system supplies. East. Eur. J. Enterp. Technol. 2014, 5, 61–66.

50. Nestorenko, O.; Péliová, J.; Nestorenko, T. Economic and mathematical models of inventory management
with deficit and with proportional to waiting time the penal sanctions. Knowledge and skills for sustainable
development: The role of Economics, Business, Management and Related Disciplines. EDAMBA-2017. In
Proceedings of the International Scientific Conference for Doctoral Students and Post-Doctoral Scholars,
University of Economics in Bratislava, Bratislava, Slovakia, 4–6 April 2017; pp. 351–359. Available online:
https://edamba.euba.sk/www_write/files/archive/edamba2017proceedings.pdf (accessed on 13 April 2020).

51. Weisstein, E.W. CRC Concise Encyclopedia of Mathematics, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL,
USA, 2003.

52. Chang, H.J.; Yan, R.N.; Eckman, M. Moderating effects of situational characteristics on impulse buying. Int.
J. Retail Distrib. Manag. 2014, 55, 481–492. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4236/ib.2017.94006
http://dx.doi.org/10.5267/j.ijiec.2014.1.003
http://dx.doi.org/10.1016/j.mcm.2011.04.028
https://edamba.euba.sk/www_write/files/archive/edamba2017proceedings.pdf
http://dx.doi.org/10.1108/IJRDM-04-2013-0074
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Proposed Model of Lot Management with Time-Variant Cost Parameters 
	Empirical illustration 
	Conclusions 
	References

