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Abstract: In this article, we design a novel method for finding the exact solution of the geodesic
equation in Schwarzschild spacetime, which represents the trajectories of the particles. This is a
fundamental problem in astrophysics and astrodynamics if we want to incorporate relativistic effects
in high precision calculations. Here, we show that exact analytical expressions can be given, in terms
of modal transseries for the spiral orbits as they approach the limit cycles given by the two circular
orbits that appear for each angular momentum value. The solution is expressed in terms of transseries
generated by transmonomials of the form e−nθ , n = 1, 2, . . ., where θ is the angle measured in the
orbital plane. Examples are presented that verify the effect of the solutions.

Keywords: Schwarzschild’s spacetime; modal transseries; analytical solution; circular and elliptical orbits
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1. Introduction

General Relativity is one of the most fundamental and successful theories of physics [1]. It predicts
both the large-scale expansion of the Universe [2], the behavior of small gyroscopes in orbit around the
Earth [3], the so-called de Sitter and Lense–Thirring precessions, and the propagation of gravitational
waves from distant black hole sources, among many other phenomena [4]. However, the field and
motion equations of the theory are nonlinear, and many of these areas require the implementation of
numerical methods to yield results capable of being tested by experiments and observations [5].

This is a handicap not only of General Relativity, but also of many physical theories whose
equations are also nonlinear: Navier–Stokes equations in hydrodynamics [6], Yang–Mills equations
in quantum field theory [7], or the Korteweg–de Vries equation for shallow waves [8], only to
name a few. In mathematical finance, we have, for example, the Black–Scholes equation [9], or the
Fitzhugh–Nagumo model for neurons in biology [10,11]. Therefore, it needs no further discussion
to realize that nonlinear differential equations are an indispensable tool in our knowledge of the
world. Numerical methods are not always reliable, especially when we are interested in the asymptotic
behavior of the solutions, we are looking for very accurate predictions, or we are simply interested in
the classification of the different behavior predicted by the equations or the existence and uniqueness
of solutions under certain conditions. These are situations in which an analytical solution certainly has
an advantage.

The interest in analytical and semi-analytical methods has increased in the last few decades
with the development of the δ-expansion and Adomian’s decomposition methods, as well as the
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homotopy method, which includes the other as particular cases [12]. The homotopy method is
based on a continuous mapping of the solution to a function Φ(t; q) depending on an embedding
parameter, q, ranging from zero to one in such a way that for q = 1, we get the solution of the
nonlinear problem. The nonlinear equation is then mapped into a family of equations involving
a linear operator, i.e., a set of deformation equations that correspond to the original equation for
q = 1. However, the solution series involve derivatives of the auxiliary function Φ(t; q) that may
become very complicated, and resorting to Padé’s approximants is usual for many problems to
accelerate convergence.

In the domain of linear differential equations, a special role is played by Fourier series and Laurent
series for which a general theory slowly emerged in the works of Taylor, Fourier, Cauchy, and Laurent
in the XVIIIth and XIXth Centuries, and it allowed the development of an analytical approach for
many equations appearing in the sciences, which now carry the name of the mathematicians that
investigated them: the Bessel, Legendre, Laguerre, Hermite, or Mathieu equations [13,14].

In recent times, a generalization of the theory of Laurent series has been formalized by several
authors following a work that dates back to Levi–Civita and Hahn more than a century ago and
that was extended later by the model theorists Dahn and Göring [15] in connection with Tarski’s
exponential function problem and by Écalle in his proof of the Dulac conjecture on plane analytic
vector fields [16]. More recent reviews were given by Edgar [17] and in books by van der Hoeven [18]
and Aschenbrenner et al. [19]. These authors approached the topic from the point of view of model
theory, and they proved model completeness among many other results.

In this paper, we will not need all this machinery, but only a subfield of the field of transseries
known as modal transseries. This can be defined as a trascendental extension of the field of reals,
R[ f (x)], where f (x) is a continuous and differentiable function [20]. This structure has proven very
useful in the solution of nonlinear differential equations with polynomial nonlinearities (appearing
as powers of the function and/or its derivatives). These techniques are in the spirit of traditional
analysis of linear differential equations, and they provide solutions in closed analytical form with a
series of coefficients that can be obtained by recurrence. For example, by using the modal transseries
method, we solved the SIRmodel of epidemiology [21,22], the Michaelis–Menten equation for enzyme
kinetics [23], the Lorenz system in the laminar regime [24], and Einstein’s field equations for planar
gravitational waves [4].

These efforts, unsystematic to the present day, show a path towards a general technique for finding
analytical solutions of nonlinear differential and integral equations with polynomial nonlinearities.
The adequate context for them is the real analysis of transseries, and in Appendix A, we give some
formal definitions that could help in the formalization of the modal series method.

In particular, in this paper, we will discuss the orbital equation for a particle in Schwarzschild
spacetime, and it will be shown that e−θ is a resolvent generator (see Appendix A) for it, providing
a method for an analytical discussion of spiral orbits that, up to now, have only been studied
numerically [25,26].

There are techniques to tackle this classic problem. For example, Friedman and Steiner [27] used
perturbation methods to analyze the precession of Mercury’s perihelion at a high order of correction.
Exact solutions are also available using Jacobi’s elliptical functions [28]. However, we consider that
this problem is ideal for testing the modal series method, which has also been fruitful in other areas of
research since it is computationally very simple to program.

Spiral orbits are a special solution of the orbital equation in general relativity not found in
Newtonian mechanics. A curious anecdote is the letter written by Isaac Newton and addressed to
Robert Hooke in which a drawing of a spiral orbit followed by a projectile towards the center of the
Earth appears. Later on, Hooke bitterly critiqued Newton on this subject spurred by his unbounded
claiming of his priority in the discovery of Universal Gravitation.
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Newton replied that the spiral has only been a “negligent stroke whit his pen”. Surprisingly,
spiral orbits recuperated in the General Theory of Gravitation, which superseded Newton’s Theory of
Gravity as action at a distance.

In contrast with the amplitudes of Newtonian orbits in the two-body problem, solutions for the
orbits in General Relativity are often treated numerically or implicitly.

Einstein’s equations can also be solved on a computer using sophisticated numerical methods.
Given sufficient computer power, such solutions can be more accurate than post-Newtonian solutions.
However, such calculations are demanding because the equations must generally be solved in a
four-dimensional space. Nevertheless, beginning in the late 1990s, it became possible to solve difficult
problems such as the merger of two black holes, which is a very difficult version of the Kepler problem
in general relativity.

This paper is organized as follows. In Section 2, we present the equation of study. Section 3 is
devoted to the proposed methodology and its numerical analysis. In Section 4, scattering and bound
precessing orbits are presented. In Section 5, the simulation results and applications are shown, and the
last section is devoted to the discussions. Finally, some formal definitions are given in Appendix A.

2. Equation of the Orbit

In this paper, we are interested in studying the exact solutions of the nonlinear differential
equation for the orbit of a test particle in Schwarzschild spacetime. For the sake of clarity, the ordinary
differential equation is presented in the following form,

ü(θ) + u(θ) = β + αu2(θ), (1)

where u =
1
r

and r is the inverse of the radial coordinate towards the center of the large body.

The derivative is with respect to the angle θ, β = M
h2 (h being the angular momentum, M the black hole

mass in terms of distance), and α = 3M. Both M and h are normalized to have units of length; see [29].
Multiplying both sides of the equation by Schwarzschild’s radius rS = 2 G M/c2 and redefining
u = rS/r, we obtain an equation for an adimensional variable with adimensional parameters.

3. Proposed Methodology

Following a technique proposed in [21,22], we consider a series solution of the form:

u(θ) =
∞

∑
n=0

une−nwθ , (2)

where w and the coefficients un will be determined after.
Therefore, the second order derivative in (2) is then given by:

ü(θ) =
∞

∑
n=0

un(nw)2e−nwθ . (3)

Now, on the other hand, the expression u2(θ) can be rearranged as a Cauchy product,
i.e., the discrete convolution of the two is:

u2(θ) =
∞

∑
k=0

uke−kwθ
∞

∑
j=0

uje−jwθ =
∞

∑
n=0

( n

∑
k=0

ukun−k

)
e−nwθ . (4)

By direct substitution of (2), (3), and (4) into Equation (1), we obtain the following expression:

∞

∑
n=0

(
un(nw)2 + un −

n

∑
k=0

ukun−k

)
e−nwθ = β. (5)
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In the expression (5), we impose the condition that:

u0 − αu2
0 = β, (6)

and that
∞

∑
n=1

(
un(nw)2 + un −

n

∑
k=0

ukun−k

)
e−nwθ = 0. (7)

Therefore, from (6), u0 is given by:

u0 =
1±

√
1− 4αβ

2α
. (8)

We know that u0 is real if 4αβ > 1. Then, 12M2 > h2. Thus, there are two possible circular orbits,
for each angular momentum h > 2

√
3 m. Now, for h = 2

√
3 m, i.e., 4αβ = 1, we find the smallest

possible circular orbit; that is,

u0 =
1

2α
, so r = 6M.

On the other hand, from (7) and using the technique proposed in [23], we have that:

un(nw)2 + un −
n

∑
k=0

ukun−k = 0. (9)

Thus, for n = 1:
u1w2 + u1 = 2αu1u0. (10)

If we choose u1 6= 0, then it follows that w =
√

2αu0 − 1. For the minus sign in Equation (2),
we have that:

w = (1− 4αβ)
1
4 . (11)

Thus, for n = 2, 3, 4, ..., from (9), it follows that:

un =
α

w2

n−1

∑
k=1

ukun−k

n2 − 1
. (12)

3.1. Analysis of Convergence

In this subsection, we analyze the convergence of series given by (2), where the coefficients un are
calculated by (12).

We put U1 = |u1| and Uk = |uk| for k ≥ 2. Therefore, we obtain the following expression to (12):

Uk =
α

w2(k2 − 1)

k−1

∑
j=1
UjUk−j k ≥ 2. (13)

Thus, one gets the recurrence relation:
For k = 2 in (13),

U2 =
α

w2(22 − 1)

1

∑
j=1
UjU2−j =

α U1U1

3w2 .

Therefore,
U2

U1
=

1
3

α U1

w2 =
(1 + 1)

6
α U1

w2 . (14)
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Now, for k = 3 in (13),

U3 =
α

w2(32 − 1)

2

∑
j=1
UjU3−j =

2α U1U2

8w2 .

Thus,

U3

U2
=

2α U1U2
8w2

α U1U1
3w2

=
6U2

8U1
=

6α U1U1
3w2

8U1
=

1
4

α U1

w2 =
(1 + 2)

6 ∗ 2
α U1

w2 . (15)

We can continue, and finally, it follows that:

Uk+1
Uk

=
1
6

(
1 +

1
k

)
α U1

w2 . (16)

Let C =
α U1

w2 , and we put Equation (16) as:

Uk+1 = Uk

(
1 +

1
k

)
C
6

, (17)

the iterating (17), we have that:

Uk+1 = U2

k−1

∏
j=0

(
1 +

1
k− j

)(
C
6

)k

. (18)

Thus, using the method of mathematical induction, one gets that:

Uk+2 = U2

k

∏
j=0

(
1 +

1
k + 1− j

)(
C
6

)k+1

= Uk+1

(
1 +

1
k + 1

)
C
6

,

i.e.,

Uk+2
Uk+1

=

(
1 +

1
k + 1

)
α U1

w2
1
6

. (19)

If we choose U1 = |u1| ≤ 3w2

α , then Uk is a monotone decreasing sequence, and the series
∞
∑

k=1
(−1)kUk converges absolutely. The above analysis allows us to state the following theorem:

Theorem 1. If U1 = |u1| ≤ 3w2

α , and Uk = |uk| for k ≥ 2, then the series
∞
∑

k=1
(−1)kUk

converges absolutely.

4. Scattering and Bound Precessing Orbits

It is clear that the series in Equation (2) corresponds to a spiral orbit. Obviously, a series of
exponentials cannot describe other kinds of orbits to be found around a star or black hole [26].
However, we can look for another resolvent generator in consonance with Definition A3. Sine powers
can also play this role, and consequently, we propose another family of solutions in the form:

u(θ) =
∞

∑
n=0

un sinn(wθ). (20)
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We will show that this series encompasses two different families of orbits: (i) the unbounded
scattering orbits and (ii) the bounded precessing orbits.

4.1. Scattering Orbits

In this kind of orbit, the particle comes from infinity and goes to infinity. As u is the reciprocal of
the distance to the mass center, we should choose u0 = 0. For θ = 0 and θ = π/w, we have then that
u(0) = u(π/w) = 0, and the orbit is unbounded. Another physical condition comes from the fact that
the incoming and outgoing radial velocities must be finite (indeed, they should be strictly smaller than
the speed of light), and so:

lim
θ→0

u̇(θ) = lim
θ→0

ṙ(θ)
r2(θ)

= 0 , (21)

because lim
θ→0

r(θ) = ∞. This implies that u1 = 0. By substitution of Equation (21) into the equation of

the orbit in (1), we also find that:

u2 =
β

w2 , u3 = 0 , (22)

and the recurrence relation:

un+2 =

un
(
n2w2 − 1

)
+ α

n

∑
k=0

ukun−k

(n + 2)(n + 1)w2 , (23)

for n ≥ 2. In this case, the parameter w can be chosen freely, and it determines the number of loops the
particle performs around the black hole before escaping again to infinity. An example of an orbit of
this kind will be given in Section 5.

4.2. Bounded Precessing Orbits

By using the same series as given in Equation (21), but taking the following conditions on the
coefficients: u2 = u3 = 0, u1 6= 0, we obtain a bounded orbit. This is the consequence of a nonzero u0

value obtained as the solution of:

2u2w2 = β + αu2
0 − u0 = 0. (24)

The physical solution corresponding to a precessing orbit at a large distance from the black hole
will be obtained by taking the minus sign in Equation (8):

u0 =
1−

√
1− 4αβ

2α
, (25)

The first recurrence for the coefficients with an odd index is:

6w2u3 = u1

(
w2 − 1 + 2αu0

)
= 0, (26)

and this gives us the value of the frequency w:

w =
√

1− 2αu0 = (1− 4αβ)1/4. (27)

The coefficients un, n = 4, 5, . . . are then found by using the general recurrence relation
in Equation (23).

A special case corresponds to α = 0, i.e., to Newtonian mechanics. In this particular case,
we obtain u0 = β, ω = 1, un = 0 for n ≥ 2, and u1 is a free parameter. In celestial mechanics, we
usually define u1 = εβ, yielding:

u(θ) = β (1 + ε sin θ) . (28)
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This is the equation for a Keplerian elliptic orbit, ε being the orbital eccentricity.

4.3. Raabe–Duhamel’s Convergence Test

In this case, the study of convergence is more complicated than for the exponential series as
discussed in Section 3.1. A general expression for the series coefficients cannot be obtained, but we
can check numerically that limn→∞ un+2/un = 1; consequently, we cannot prove convergence by
Cauchy’s test.

Some insight is provided by the particular series given by Equation (23) with α = 0:

un+2 = un
n2ω2 − 1

(n + 2)(n + 1)ω2 . (29)

Therefore, we have two independent series for the odd and even subscripts, and each of them
can be proven to be convergent for any real value of ω. Firstly, if

√
1/ω is an integer, the number of

nonzero terms defined by Equation (29) is finite. For other values of ω, we can write:

lim
n→∞

n
2

(∣∣∣∣ un

un+2

∣∣∣∣− 1
)
=

3
2
> 1 , (30)

and we conclude that the series is convergent by Raabe–Duhamel’s test [27]. From Equation (30),
we also have: un/un+2 = 1 + 3/n +O(n−2). By assuming that this expression can be generalized for
the general case with α 6= 0, we can prove convergence for small values of α.

Theorem 2. The series defined by the recurrence relation in Equation (23) for u1 = 0, u0 6= 0 converges
absolutely if un/un+2 = 1+ f (α)/n +O(n−2) for n� 1, f (α) being a positive real value that depends
on α and α |u0u2| e f (α)/2 < 4 ω.

Proof. The idea is to find a bound for the Cauchy product:

Cn =
n

∑
k=0

ukun−k , (31)

which for n even can be written as:

Cn = 2u0un + 2u2un−2 + . . . + un/2un/2 , (32)

and a similar expression for n odd with u(n−1)/2 6= 0, u(n+1)/2 for the last term. We will assume n to
be even (the proof runs in parallel for n odd). We propose the hypothesis that un is a decreasing series,
and consequently:

Cn = u0un

(
1 + u2

(
1 +

f (α)
n

)
+ u4

(
1 +

f (α)
n

)(
1 +

f (α)
n− 2

)
+ · · ·

)
. (33)

By the triangular inequality, we constrain the absolute value of Cn as follows:

|Cn| ≤ |u0un|
(

1 +
[n/4]

∑
k=1
|u2k|

(
1 +

2 f (α)
n

)k
)

≤ |u0un|
[n

4

]
|u2|

(
1 +

2 f (α)
n

)[n/4]

+ K ,
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where K is a constant and [ ] denotes the integer part. Now, from Equation (23), we have:

un

un+2
− 1 =

3
n
− α

n2ω2 − 1
Cn

un+2
+O(n−2)

≥ 3
n
− αω|u0u2|e f (α)/2

4n
+O(n−2) ,

where we used the bound in Equation (34) and the assumption that all un, n = 0, 1, . . . have the same
sign. Consequently, Raabe–Duhamel’s test implies convergence for any value of α sufficiently small
to verify:

α e f (α)/2 |u0u2| < 4 ω . (34)

This gives us a very stringent condition for convergence, and in practice, it is found numerically
that values of α larger than those provided by Equation (34) also provide convergent solutions.

5. Simulation Results and Applications

In this section, we will discuss some examples for orbits calculated with the modal series obtained
in this paper. We will show that modal series have an advantage over other numerical methods for
calculating high precision trajectories in the two-body problem for General Relativity. In Figure 1,
we show two examples of spiral orbits calculated by summing 1000 terms in Equation (2). Both cases
correspond to α = 1/5 and β = 1, so the radius for the inner unstable circular orbit is given by:

rin =
2α

1−
√

1− 4αβ
=

2
5 +
√

5
' 0.276393 . (35)

We studied two spiral orbits by choosing different values of u1 and taking u0 = 1/rin. For u1 = −5,
the inner orbit in Figure 1 is found. This orbit starts for θ = 0 at a distance r ' 1.03686 from the center
of the massive body. Similarly, for u1 = −10, the outer trajectory plotted in the polar graph starts
at r ' 2.98215 for θ = 0 (this point is outside the plot of Figure 1). The convergence of the series in
Equation (2) is very fast for both cases, and the coefficient u1000 is of order 10−124 for the second case
and even smaller for the first case.

0 . 0

0 . 5

1 . 0

1 . 5

0

3 0

6 0
9 0

1 2 0

1 5 0

1 8 0

2 1 0

2 4 0
2 7 0

3 0 0

3 3 0

0 . 0

0 . 5

1 . 0

1 . 5

 r

Figure 1. Two examples of spiral orbits in the Schwarzschild spacetime for α = 1/5, β = 1. The inner
orbit corresponds to u1 = −5 and the outer one to u1 = −10.

This means that a very accurate calculation of the spiral orbit is possible with a relatively small
number of coefficients and that precision will be limited by the accuracy of the physical parameters of
the system of interest and finite arithmetic instead of the truncation of the series.
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Scattering orbits were studied in Section 4.1. They correspond to a particle with sufficient energy
to be unbound from the central body, so it may come from a large distance, perform a flyby with one
or several loops around the main body, and escape again to infinity. In classical Newtonian physics,
only hyperbolic and parabolic orbits are found, but General Relativity shows a richer casuistry.

As an example, we chose the parameters β = 1/100, α = 1/5, w = 2/5, u0 = u1 = 0,
and u2 = β/(2w2) = 1/32 as fixed by Equation (22). The resulting one-loop orbit is shown in Figure 2.
The reason that the orbit exhibits a single loop is a consequence of the chosen value of w: Notice that
for θ = 0, we have u = 0 (see Equation (20)), and this means that the particle comes from infinity.
The same value is found again for θ = π/w = 5π/2 = 2π + π/2. Therefore, the particle escapes at a
right angle from the initial direction after performing a loop around the black hole.

0

5 0 0

1 0 0 0

1 5 0 0

0

3 0

6 0
9 0

1 2 0

1 5 0

1 8 0

2 1 0

2 4 0
2 7 0

3 0 0

3 3 0

0

5 0 0

1 0 0 0

1 5 0 0

 r

Figure 2. A scattering orbit obtained for α = 1/5 and β = 1/100 by summing 1000 terms in the series
of Equation (20).

Convergence is not so fast for scattering orbits as in the case of spiral ones because the coefficients’
ratio tends to unity for large n. We have that u1000 ' −4.4386× 10−7, and double precision is not
achieved with this number of terms. Anyway, uncertainty in the masses of the bodies or their distances
is indeed a most important limiting factor for increasing the accuracy of astronomical observations.

Finally, we considered a bounded precessing orbit for α = 0.05, β = 0.1, u1 = 0.1, u0 '= 0.100505,
and w ' 0.994962. The values of w and u0 are fixed by Equations (11) and (25), respectively. Remember
that u2 = u3 = 0 in this case, and the rest of the coefficients are obtained by the recurrence relation in
Equation (23). The result is a precessing elliptic orbit with an advance of the perihelion per revolution
given by:

δθ = 2π

(
1
w
− 1
)

, (36)

corresponding to 1.82284 degrees in the case of Figure 3.

0

300
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900

1200

1500

0

30

60
90
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180

210

240
270

300

330

0

300

600

900

1200

1500

 r

Figure 3. A bounded precessing orbit for α = 0.05 and β = 0.1. Perihelion advance is ' 1.82284
sexagesimal degrees per revolution.
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The anomalous advance of the perihelion of Mercury was already known by astronomers since
the XIXth Century [28], and this was the first prediction of General Relativity that convinced Einstein
himself of its validity.

The result obtained from approximate perturbation methods gives the well-known formula:

δθ =
6πGM

c2a(1− e2)
, (37)

where the gravitational constant, G, and the speed of light, c, have been explicitly restored and
we have taken into account that β = M/h2 = 1/(a(1 − e2)) is the reciprocal of the semi-latus
rectum [29]. The accepted values for the parameters in Equation (37) for Mercury’s orbit [30] are
G = 6.67408(31)× 10−11m3 kg−1 s−2, c = 299792458 m s−1, a = 0.38709893 AU (astronomical unit),
e = 0.20563069, and M = 1.98850(25)× 1030 kg for the mass of the Sun and T = 0.240846 for the
period of revolution of Mercury around the Sun. The astronomical unit is a scale of distance used in the
Solar system given by AU = 149,597,870,700 m. By using these values, we find δθ = 42.98117474 arcsec
per century. However, according to Equation (37), the exact expression for the perihelion advance is:

δθ = 2π

[(
1− 12GM

c2a(1− e2)

)−1/4
− 1

]
, (38)

yielding the value of 42.98118333 arcsec per century. This corresponds to 0.00858 milliarcseconds per
century more than the prediction of the approximate formula usually given in textbooks [28].

We should notice that, by using elliptic functions, Saca obtained an improved formula for the
perihelion advance, which leads to similar results to ours [31], but his approach is more cumbersome.

6. Conclusions

Nonlinear differential equations have been known and used for a long time. Perhaps the canonical
example is that of the three-body problem in celestial mechanics necessary to explain the motion of the
Moon under the mutual influence of the Earth and the Sun. With this idea in mind, Euler developed
his famous numerical method widely used since [32]. The difficulties in solving these equations have
promoted the preponderance of numerical methods throughout the history of the subject. Particular
analytical solutions have been found for some problems, but they are restricted to special cases or
convergence is very slow. In the case of the three-body and N-body problems, the series solutions
by Sundman [33] and Wang [34] provide almost a complete analytical treatment of these problems,
but their practical application is very limited because we will need to add millions of terms to obtain
predictions even for short periods of time. These series are given in powers of t2/3, and they are an
example of transseries.

However, solutions in terms of transseries can be useful in many problems of interest for physics
or engineering, and moreover, they can be studied systematically. In this paper, we provided such
solutions for the orbits in a Schwarzschild spacetime. These solutions are found in terms of powers of
exponential or sine functions showing that different functions can be used as a basis to solve the same
problem depending on the initial conditions. The existence of a resolvent generator as defined in (A2)
gives the chance to find a modal transseries solution, but we have shown that several series can be
found for the same equation and can describe different classes of trajectories. Another advantage of
transseries over traditional numerical or approximate methods is the calculation of an exact expression
for the advance of the perihelion in bounded trajectories as given in Equation (38). This expression is
usually approximated by Equation (37), but this yields the wrong predictions for very massive objects
such as neutron star binaries or black holes.

Apart from the problems discussed at the Introduction, we also successfully applied the modal
transseries method to another problem in General Relativity: gravitational waves [4], for which
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explicit solutions corresponding to plane waves are given. This proves the fecundity of the transseries
approach to nonlinear differential equations.

We hope that these works stimulate the research in modal transseries solutions for nonlinear
differential equations of interest in physics, chemistry, or engineering by providing an alternative
to traditional numerical methods in finite differences, which can be used to back the numerical
computations or to provide accurate results and a deeper analytical understanding of the solutions
and behavior of these systems.
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Appendix A. The Fields of Transseries and Modal Transseries

In this Appendix, we provide a brief overview of transseries and some formal definitions that
will help us in formalizing the techniques developed for the solution of the orbital equation in
Schwarzschild’s spacetime.

Actually, the differential field of transseries originated from various areas of mathematics, such as
asymptotic analysis, model theory, computer algebra, and surreal numbers. A source of information
regarding work on the application of transseries to asymptotic analysis can be found in [16], while for
model theory in [35]. In [36], work on computational algebra was observed using transseries. A review
of the transseries with their references was given in [17].

Transseries are recurrently defined in terms of transmonomials, which, in turn, depends on
transseries for their definition [17]. A log-free transmonomial is an expression of the form xbeL,
where b is a real number and L is a transseries defined as the formal sum L = ∑j cjgj (usually infinite),
where cj are real coefficients and gj are log-free transmonomials. Under multiplication, the set of
transmonomials, G, forms an ordered group with the ordering defined as follows:

xb1 eL1 ≺ xb2 eL2 , (A1)

if and only if L1 > L2 as x → ∞ or L1 = L2 and b1 > b2. As an example, we have [17].

e∑∞
j=0 x−jex

� ex � x−3ex � xπ � x−1 � x−5,

The transseries T[G] forms a differential field under the usual operations of summation and
derivation term by term and multiplication. For example:

−5e∑∞
j=0 x−jex

+
∞

∑
j=0

x−jex + πx−1.

In this paper, we consider a particular subfield of this rich structure that we call the modal
transseries subfield:
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Definition A1 (Modal transseries:). Given a transmonomial f[x], we define a modal transseries as the sum:

n

∑
j=0

cjf[x]j, cj ∈ R. (A2)

The set of all modal transseries of the form in Equation (A2) is denoted by T f , and we say that it is generated
by f[x] or that f[x] is the generator of the modal transseries. Notice that for f[x] → 0 as x → ∞, the terms in
Equation (A2) are in descending order.

As stated above, we have also that:

Lemma A1. The set of modal transseries generated by f[x], Tf, is a differential subfield of T.

Proof. Tf is isomorphic to a trascendental extension of R, and its elements can be differentiated term
by term.

Modal transseries have proven useful in the solution of many nonlinear differential equations.
In the particular case studied in this paper, the recurrence relations found for the exponential set of
modal functions are given in Equations (5) and (23). We will also discuss the results for other problems
in order to clarify the way in which the method is applied in a general case. In [4], for the case of
plane gravitational waves, the analytical solution of the differential equation corresponding to a type
of Sturm–Liouville problem:

p̈(u) + V(u)p(u) = 0,

is given by

p(u) = 1 + εh(u), q(u) =
∞

∑
n=0

anhn(u)

where ε is a constant, p(u) is a metric function, and V(u) is the fourth Weyl scalar Ψ4; an holds the
following recurrence relation:

an+1 =
2ε(n2 − n + 2)
(n + 1)(2n + 1)

an−1 −
3ε + (ε− 2)n + 2(ε− 1)n2

(n + 1)(2n + 3)an
,

with

a1 = εa0, a2 =
3
5

ε2a0, a3 = − ε2

105
(4 + 39ε)a0, and

p̈(u)
p(u)

+
q̈(u)
q(u)

= 0.

Now, in [21], an epidemiological model of the SIRStype, which is a system of three first-order
differential equations, is transformed into a first-order integral differential equation as a function of
the variable I(t) that represents infectious individuals:

İ(t) = αI(t) + β(1− I(t))I(t)− βI(t)
[

R0e−δt + e−δtν
∫ t

0
eδu I(u) du

]
,

where α, β, ν, R0 are constants given and a type of solution is proposed in the form of transseries

I(t) =
∞

∑
k=0
Ake−kωt, ω > 0
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and with the following recurrence formula:

Ak =

−c ∑k−1
j=1 AkAk−j + d ∑k−1

j=1

AkAk−j

j−ωδ
d

ω−δ −
dA0

kω−δ − (k− 1)ω
,

with a = α− β = ν + µ− β, b = βR0, c = β, d = βν, ς = a + (2c + d
δ )A0 and ω satisfies ω2 − (δ +

ς)ω + δς +A0.
The set of modal functions necessary in a particular problem has been found by trial

and error. There is no method, for the moment, to choose the adequate set for a general nonlinear
differential equation.

Now, on the other hand, there are several ways to combine both real and complex exponentials;
for example in [24], the Lorenz system was solved by transforming it into a single integro-differential
equation for x(t) given by:

ẍ(t) + αẋ(t)− βx(t) +
x3(t)

2
+ γx(t)ebt

∫ t

0
e−bsx2(s) ds + σx(t)ebt

(
z(0)− x2(0)

2σ

)
= 0,

where α = σ+ 1, β = (R− 1)σ, γ = σ+
b
2

. Thus, for the point relaxation towards the origin, it proposes

a modal expansion series for x(t) in:

x(t) =
∞

∑
k=0
Ake−kωt,

whereas that for relaxation towards a non-trivial equilibrium point and the case when ω is a
complex number, the solution for x(t) is given by:

x(t) =
∞

∑
j,k=0
Aj,ke−jωt−kω∗t,

with Aj,k = A∗k,j, (ω + ω∗) ∈ R.
In [23,24], in those cases, the generator and any combination of its powers satisfy that under

the application of the nonlinear operator, it transforms into modal transseries of the same kind.
Therefore, to generalize these concepts, we define:

Definition A2 (Nonlinear polynomial differential operator:). A nonlinear polynomial differential operator
O[y[x]] acting on single one-variable functions y[x] is any finite multivariate polynomial in y[x] and its
derivatives. Nonlinear polynomial differential equations in one variable are given by:

O[y[x]] = 0. (A3)

An example is the trajectory equation for a particle in the spacetime around a Schwarzschild black
hole we solve in this paper. A minimum condition for a modal transseries to be useful in the solution
of nonlinear differential equations is the existence of a resolvent generator for the corresponding
nonlinear operator defined as follows:

Definition A3 (Resolvent generator). A transmonomial f[x] is called a resolvent generator for the nonlinear
polynomial differential operator O if for any modal transseries, t ∈ Tf, we have that O[t] ∈ Tf, i.e., if O is an
invariant differential operator for the elements of Tf.
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In the main text, we showed that the exponential exp(−θ) and the harmonics sin(ωθ), cos(ωθ) are
resolvent generators for the differential operator corresponding to the orbital equation in Equation (1).
We exploited this fact for solving the orbital equation in General Relativity in terms of modal transseries.
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