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Abstract: Multimodal representations play an important role in multimodal learning tasks, including
cross-modal retrieval and intra-modal clustering. However, existing multimodal representation
learning approaches focus on building one common space by aligning different modalities and
ignore the complementary information across the modalities, such as the intra-modal local structures.
In other words, they only focus on the object-level alignment and ignore structure-level alignment.
To tackle the problem, we propose a novel symmetric multimodal representation learning framework
by transferring local structures across different modalities, namely MTLS. A customized soft metric
learning strategy and an iterative parameter learning process are designed to symmetrically transfer
local structures and enhance the cluster structures in intra-modal representations. The bidirectional
retrieval loss based on multi-layer neural networks is utilized to align two modalities. MTLS is
instantiated with image and text data and shows its superior performance on image-text retrieval
and image clustering. MTLS outperforms the state-of-the-art multimodal learning methods by up to
32% in terms of R@1 on text-image retrieval and 16.4% in terms of AMI onclustering.

Keywords: multimodal representations; soft metric learning; local structure; neural networks

1. Introduction

Multimodal data, such as image-text and speech-video, commonly exists in the real-world
and is critical for applications, such as image captioning [1,2], visual question answering [3,4],
and audio-visual speech recognition [5]. Multimodal representation learning aims to embed data
with multimodal information into a vector space so that they can be compared directly and learn
complementary information from other modalities. Learning multimodal representations is a
fundamental task in multimodal learning since an informative and complementary representation can
largely facilitate the following learning tasks [6-9].

However, unifying heterogeneous modalities and acquiring complementary knowledge from
multiple modalities in multimodal representations is still a challenging task. Most existing multimodal
representation learning approaches aim to project the multimodal data into a common space by
aligning different modalities with similarity constraints. However, these methods only focus on the
object-level alignment, which means they try to align two corresponding objects in different modalities.
Further, these methods cannot effectively capture the complementary intra-modal local structures
across modalities. Object-level alignment is crucial to the modality, aligning especially for cross-modal
retrieval tasks. Furthermore, the structure-level alignment can enhance the local structure in one
modality through learning from the other modality, which is beneficial for the classification and
clustering. Neural networks, such as autoencoders, are common tools to learn joint multimodal
representations that fuse unimodal representations and are trained to perform a particular task [5,10].
In most multimodal learning tasks, such as cross-modal retrieval and translation, coordinated
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representations which aligning different modalities are more practical than joint representation. Most
coordinated multimodal representation learning methods align two modalities with similarity models.
DeViSE [11] and Visual Semantic Embedding (VSE) [12] are typical multimodal learning models, both
of which use similar inner product and rank loss function to align image and text data. Two-branch
neural networks (TBNN) [13] build an embedding network and similarity network with bidirectional
ranking constraints and neighborhood-preserving constraints within each modality. Although TBNN
tries to preserve the intra-modal structure to facilitate matching within the same modality, it cannot
learn from the other modality.

In this work, we propose to learn multimodal representations by symmetrically transferring
local structures across two modalities (MTLS for short) which not only considers the object-level
alignment but also involves the structure-level alignment by local structure transferring objectives.
The multimodal representation learning in one modality is instructed by the other modality and vice
versa. Specifically, the local structure in one modality is used to enhance that in the other modality
to build complementary multimodal representations. As illustrated in Figure 1, comparing with the
original unimodal representation (i.e., before MTLS), the multimodal representations (i.e., after MTLS)
not only align data instances from two modalities but also transfer local cluster structures from each
other. The learned multimodal representations have clearer cluster structures within each modality;,
which are obviously much more friendly to the following multimodal retrieval and intra-modal
learning tasks, such as clustering or classification. Overall, the contributions of this work include:

e A novel symmetric multimodal representation learning framework MTLS is proposed to learn
complementary information from the other modality and has the potential to be instantiated into
various modalities.

e  MTLS builds a soft metric learning strategy to transfer local structures across modalities and
enhances the intra-modal cluster structure through infinite-margin loss.

e  MTLS is constrained by bidirectional retrieval loss to achieve modality aligning and trained by a
customized iterative parameter updating process.
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Figure 1. The toy example of original unimodal representations (a) and the multimodal representations
learned by MTLS (b). Furthermore, the same colors (circle and triangle pair) indicate the paired data
instance. The proposed MTLS not only aligns data instances from two modalities but also transfers
local cluster structures from each other.
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MTLS is instantiated with image-text data, and the learned multimodal representations are
evaluated by cross-modal retrieval tasks and image clustering. The proposed MTLS shows its
competitive performance compared with the state-of-the-art methods on two standard datasets for both
image-to-text and text-to-image retrieval in terms of recall. Moreover, the superior image clustering
performance and the visualization results also demonstrate that the local structures are successfully
transferred across modalities and complement the original image representations.

2. Related Work

Following the categories in [7], we summarize the multimodal representations in terms of joint
representations and coordinated representations. Since various unimodal data, such as text, image,
and audio, can be represented by neural networks [6], they have become common tools to build a joint
representation space for multimodal data [3,14-16]. To overcome the problem of limited labeled data
in neural network training, autoencoders and stacked denoising autoencoders are usually used to be
trained on unlabeled data [5,10]. The joint representations are usually trained for some specific learning
tasks, such as classification [17], and the unimodal representations cannot absorb the complementary
information from other modalities, which cannot benefit the intra-modal learning tasks.

Alternatively, unimodal representations could be coordinated through some constraints, such as
similarity or ordering. Besides the simple linear map from image and text features in WSABIE [18],
neural networks have become a popular way to coordinate multimodal data [13,19]. The most
straightforward way is to match the data instances from two modalities and transform this
problem into a binary classification problem. For example, the methods [20-23] predict match or
mismatch (i.e., “+1” and “—1") for an image-text pair input by optimizing a logistic regression loss.
Both DeViSE [11] and VSE [12] use pre-trained image and word embeddings to construct similarity
ranking functions for modality coordination. Following this idea, Order-Embeddings (Order) [24]
coordinates two modalities and optimizes a partial order over the embedding spaces. The work in [13]
builds embedding network and similarity network to learn the correspondence between image and text
data for phrase localization and image-sentence search by emphasizing the neighborhood-preserving.
Multimodal Tensor Fusion Network (MTEN) [19] learns an accurate image-text similarity function
with rank-based tensor fusion rather than seeking a common embedding space for each image-text
instance which omits the complementary information from multimodal data. The canonical correlation
analysis (CCA) based models, such as Kernel CCA [25], Deep CCA [26], and Fisher Vectors derived
from Gaussian mixture model [27] are also widely used for cross-modal retrieval [28]. However, these
methods only capture the common information between modalities and cannot acquire complementary
information from other modalities. Instead of learning general multimodal representations of whole
image or text, some multimodal learning methods aim to a latent region-word correspondence through
correlating shared semantics comprised of regions and words. For example, both Stacked Cross
Attention (SCAN) [29] and Bidirectional Focal Attention Network (BFAN) [30] utilize attention
mechanism to align the fragments in image and text to facilitate the across-modal retrieval while
they cannot enhance the knowledge in one modality. GCH [31] and EGDH [32] utilize the high level
semantic to guide the encoding process. DLA-CMR [33] considers complex statistical properties of
multimodal data. It utilizes dictionary learning as a feature re-constructor to reconstruct discriminative
features, while adversarial learning mines the statistical characteristics for each modality. BW [34]
proposes cross-modality bridging dictionary to solve the image understanding, which characterizes
the probability distribution of semantic categories for the visual appearances. UDCH-VLR [35] directly
learns discriminative discrete hash codes under the unsupervised learning paradigm. Furthermore, it
learns unified hash codes via collaborative matrix factorization on the deep multimodal representations
to preserve the multimodal shared semantics. However, these previous works did not consider the
structure-level alignment across modalities, which we think is crucial for understanding data.
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Our work transfers local cluster structure with newly proposed soft metric learning and iterative
learning process, none of which has been explored in any other multimodal learning work to the best
of our knowledge.

3. Multimodal Representations with Local Structure Transferring

The framework of MTLS is demonstrated in Figure 2, which learns multimodal representations
by coordinating two unimodal representations from modality A and modality B through two local
structure transferring losses, i.e., E{;t and £li ;- and modality aligning loss, i.e., L 2. The multimodal
representations are derived from multimodal encoders, i.e., fA and f A and unimodal encoders,
ie, fA. and fB ., which can be pre-trained and fine-tuned with following losses. Both local structure
transferring and modality aligning are based on the triplets consist of one target object and two
comparative objects from each modality, i.e., (hA, hlA, h]A) and (hB , th , h}g ). The distance metric orders,
i.e, 64 and 68, generated by one modality, are transferred to the other modality and are used to instruct
the metric learning in that modality. Then a customized parameter updating process is designed to
train the compound loss in turn, i.e., Ef;t + L, and Eﬁ ¢ + Lma. In the following, we will introduce
the representation encoding, local structure transferring, and modality aligning processes. Then the

detailed learning algorithm will be introduced.
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Figure 2. Multimodal representation learning framework by transferring local structures (MTLS). MTLS
transforms initial data into multimodal representation via the representation encoding process. Then
MTLS optimizes the multimodal representation by local structure transferring and modality aligning
processes. Specifically, the multimodal representation in each modality is alternatively optimized until
the loss value keeps stable.

First, we formalize the multimodal representation learning problem. Let ¥ and X' denote the
datasets in modality A and modality B, respectively. HZ . and HE . are the unimodal representation
spaces. HA and HP are the multimodal representation spaces, where the representations from modality
A and modality B can be compared directly. Let h € H denotes the specific representation of one data
object in the multimodal representation space. The dimension of h is denoted as I. Given a target

object h and two comparative objects h; and h;, we denote them as a triplet (h, h;, h;).

3.1. Representation Encoding

The multimodal representations are based on the unimodal representations, which are derived
from unimodal encoders. Initially, the data objects in modality A are encoded into unimodal
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representations, which aim to capture the intra-modal information as shown in Equation (1).
Similarly, the data objects in modality B are encoded into their unimodal representation space as
shown in Equation (2).

A (x40t x4 HA (1)

uni

foi(XP;08): xP s HE 2

uni

where f2. and fB . denote the unimodal encoders of modality A and modality B. They project the
data from heterogeneous modalities into low dimensional vector spaces ani and HE . independently.
64 and 6% are the parameters in unimodal encoders of modality A and modality B, respectively.
The unimodal encoders can be implemented with pre-trained neural networks, such as VGG [36] or
ResNet [37] for images, and LSTM or GRU [38] for texts, or Fisher Vectors [27].

Although both H - and HE . are continuous vector spaces, the unimodal representations from
different spaces cannot be compared directly. To learn the complementary information in the
other modality and align two modalities, we build multimodal representation spaces, which are

shown as follows:

fA (Hfm" ¢A> : Hﬁni = HA (3)
fB(HSnif ¢B) : ani = HB (4)

where f4 and f? are the multimodal encoders which project the unimodal representation spaces into
comparable multimodal representation spaces H4 and HP, respectively. ¢4 and ¢ are the parameter
sets in f4 and fB, respectively. The multimodal encoders are constructed based on the unimodal
encoders which can be implemented by neural networks or mixture models.

During the learning of multimodal representations, we search a collection of parameters
{04,068, p4, B} to generate multimodal representations for the given data when optimizing the
following objectives, i.e., local structure transferring and modality aligning.

3.2. Local Structure Transferring

To capture complementary information from two modalities, we design two learning objectives,

ie., Ef;t and Eﬁt,
In detail, the order of distance relationships for a triplet in modality A is used to instruct the metric
learning of the corresponding triplet in modality B, and vise versa.

Given a triplet of objects in modality A including a target object and two comparative objects,

ie, (h4, hA, h]‘.“), we define the distance metric D! and D]A as follows:

to symmetrically transfer local structures across modalities based on metric learning.

DA (W, 1f) = (" — b/ WA (h* — /)T ©)

DA (A, ) = (W —hH WA (A — )T (6)

where WA € R™! is a symmetric positive semi-definite matrix which can be decomposed as
w4 =mMI.
Similarly, the distance metric DlB and D]B in term of the triplet (h?, hIB, h]B ) from modality B are
defined as follows:
D(h®,h?) = (h® — hY)WE(h® — hf)T @)

D(h®,hf) = (h® —h?)WP(h® —hP)T ®)

where W8 € R/ is also a symmetric positive semi-definite matrix.

In traditional metric learning methods [39], the order of metric pairs D(h, h;) and D(h, h;) are
needed. However, we do not have class labels to define this order in an unsupervised way. A natural
solution is to use the distance order of a triplet in one modality to instruct the metric learning in
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the other modality. Specifically, we can define a binary function 64 for modality A according to the
representations of modality B [40]:

1,if d(h®, hf) > d(h®, hf)

64 (h;, hy) = { €)

0, otherwise.

where d is a local distance function, e.g., Euclidean distance, cosine dissimilarity.

However, the above design may lead to the oscillations in parameter optimizing process when
the local distance order from modality A is inconsistent with that from modality B. Considering this
problem, we design a soft metric learning strategy which takes both local distance order from modality
B and modality A into account:

1, ifdf >dtnd} > d}
0, ifd} <dfndp <d}
o(ldp — af| - 1aP — a¥),

Ahaby) =1 af > afnab < db (10
o((dB — dB| — |/ — d4)),
ifdft <dfndp > dp
where o(x) = H% is sigmoid function, d#* and d? are the simplified notations of d(h?, h#!) and

d(hB, hP), respectively. Here we choose d(h, h;) = ||h — h;||,. In this way, the metric label follows the
probability of difference between local distance pairs from two modalities when the distance order
from two modalities are inconsistent.

Then the log probability of D/ > D]-A conditional on ¢ is defined as follows:

log P(Df* > D{|6) = 6(hy, hy) logo(D{* — D{')

(11)
+(1 - 6(h;, hy))log(1 — o(Df* — D).
Similarly, the log probability of D > D]B conditional on ¢ is:
log P(Df > D}|8) = 6(h;, hj) logo(Df — Df) )

+(1 = 6(h;,hy)) log(1 — o(Df — D})).

Accordingly, the loss function of transferring local structures of modality B to A could be
written as:
Ly =— Y, logP(D{ > DH). (13)
<hA,th,h;“>

Correspondingly, the loss function of transferring local structures of modality A to B is:

L, =— Y, logP(D} > D}s). (14)
(hB,h?,h]B)

Specially, when 4(h;, h;) = 1, we have the following log loss:

Lfy = —log P(D{* > D) = —logo(D{* — D)

(DIA*D]A)) (15)

=log(l1+e
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This form and the form when 6 (h;, h;) = 0 are the common variation of hinge loss, which could be
seen as a “soft” version of the hinge loss with an infinite margin [41]. With this loss, the local structure
in one modality will be amplified through the other modality, which leads to the circumstance in
Figure 1. Hence, Ef;t in modality A and EZBS ; in modality B complement the learning of local structures

in each other and enhance the intra-modal cluster structure as well.

3.3. Modality Aligning

To align two modalities, we build a similarity ranking model based on the comparative triplet
across modalities, i.e., <hA, hB, hB ). Given the a target object h4 in modality A, the corresponding
object in modality B is h?, and vise versa. Hence, (h“, h) could be treated as the positive pair and
(h,hB) as the negative pair. We define a similarity function s(h?, h®) which should give higher
similarity score to the positive pair than the negative pair. Then the bidirectional triplet ranking loss
for modality aligning is defined as follows:

L (b, h8) =Y max(0, [m —s(h*, h®) +s(h?, h?)])
hB8
+ ) max(0, [m —s(h,hB) 4+ s(h?,hB))), (16)
h4
h? ¢ HEB, ht € 1A

where m is the enforced margin hyper parameter. h? is the negative representation in terms of h4,
and H?B is the negative set. The similarity score is defined as follows:

s = c(W(h?* @hB)), (17)

where © is the element-wise product, and W € R*/. Compared with directly calculating the inner
product, the defined similarity score s captures more comprehensive interactions between h” and
h? since it can be trained through the whole neural networks. This loss function constrains the local
structure transferring process and keeps the matching relationships across modalities.

Intuitively, the negative set consists of all the non-target data in terms of one target object.
However, among all the non-target data, the negative objects closest to the target determine the success
or failure of retrieval. Thus we use the hard negative sampling strategy to construct the negative
set which is also proved to be effective in previous works [42—44]. Specifically, given a target object
h# in modality A, negative set H® consists of the top K (K > 1) similar objects h® from modality B
according to the similarity scores, i.e., s(h, h). Similarly, we build the negative set H4 for the target
object h® in modality B.

3.4. Learning Algorithm

To learn the multimodal representations, we design an iterative training strategy and construct
the training loss as follows:
A(yA yB.9A) — LA
{c (X4, XB,04) = LA, + Lna a8)

L£8(x4,x8;08) = L8 + Ly

where 4 = {W4}U®and ®® = {WB} U© are the parameter sets,and ® = {W, 84,05, 9, pB}. £
is the modality aligning constrained local structure transferring loss function for modality A with the
instruction from modality B. When minimizing £, the parameter W is fixed, and W4 and parameters
in © are updated. Similarly, £? transfers local structure from modality A to modality B. In this iterative
way, the local structure information can be transferred and enhanced during the training process.
The complete learning process of MTLS is briefly demonstrated in Algorithm 1, where T is a function
to assign the adaptive learning rate in the parameter optimizing process, e.g., AdaGrad, Adam [45].
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Triplet Sampling. To compute the local structure transferring loss, i.e., ‘C’lst and L}, we need to
sample intra-modal triplets (h", h{*, h#') and (h", hf, h?). Furthermore, according to Section 3.3, we
need to sample comparative cross-modal triplets (h*, h®, h8) and (h%,h?,hB). To unify these two
triplet samplings, we apply the hard negative sampling strategy to the intra-modal triplet sampling.
In detail, given a positive pair (h*, h®), we set K = 1, which means we choose the most violating
negative match as h? and hA Further, we could easily get the corresponding objects in the other
. <hA,h;L,h]{> and (hB,hff,h]Bf).

modality. As a result, we get the triplet for £} Arand L7, i

Algorithm 1 The learning process of MTLS

1: Let © = {W, 04, 94,08, B}
Input: X A XB, Np: batchSize, MaxIter: maximum iterations, perlter: number of epochs in one

modality.
Output: O, WA W8 — the modal parameters
2: Initialize @, W4, W5
3: for iteration = 1 to MaxIter do

4:  foru =1 to perlter do

5: Freezing the parameter W%
6: for g = 1 to # training batches do
BA BB+ getMinibatch()
unl < f(BA GA) uﬁl — f(BB BB)

: Y f(H7,, 94), HP « f(H7, ¢”)
10: Sampling: {(h/, h{1 hA> (hB,h é hB )} N
11: Calculate § (cf. Equatlon (10))

12: LA LA+ Ly

13: O+ 0-— F(V@D“)

14: WA WA —T(VyaLl?)
15: end for

16:  end for
17:  forov =1 to perlter do

18: Freezing the parameters {64, ¢} in @4
19: for g = 1 to # training batches do

20: BA BB < getMinibatch()

21: %m <—f(BA BA) Hfﬁl <—f(BB BB)
22: H Hf( um’lp ) Ff( un’lp)
23: Sampling: {(h*, h#!, hA ), (hB é hff}}Nb
24: Calculate 9§ (cf. Equatlon (10))

25: L8 LB+ Lo

26: O+ 0- r(v@.cB)

27: W8« WB —T(VysLB)

28: end for

29:  end for

30: end for

31: The gradient-based optimization is based on Adam [45].

4. Experiments

In this section, we apply MTLS to image-text data. Further, we evaluate MTLS with the
cross-modal retrieval (i.e., image-to-text and text-to-image retrieval) and the image clustering.
Moreover, we visualize the image representations generated by different multimodal representation
learning methods and analyze the results.
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4.1. Implementation Details

In the initial step, given an original 256 x 256 image, we use its center crop of size 224 x 224.
We utilize the ResNet152 [37] as ,fn ;» which is pre-trained on ImageNet, and we extract image features
from the penultimate fully connected layer, which is 2048-dimension. For the text unimodal embedding,
we implement GRU as f2 . to encode the text based on the word embedding in [12]. We set the
dimension of unimodal text representations to 1024. In addition, we set the dimension of word
embedding to 300.

The dimension of multimodal representation space is set to 1024. The projection function f4 and
f® are defined as tanh projection functions, which are implemented as a full-connected layer with tanh
activation. Hence, * and ¢ are 2048 x 1024 and 1024 x 1024 matrices, respectively. In the local
structure transferring process, both W4 and W8 are 1024 x 1024 matrices.

In the training phase, we set the max iteration maxIter to 7, and set the number of epochs in one
modality perIter to 10. We use a mini-batch size of 128 in all experiments. For the modality aligning
loss L2, we set the margin m to 0.2 for all experiments. Moreover, we use Adam optimizer [45].
For the comparison methods, the parameter configurations are used as default in original papers.

4.2. Experimental Setup

Dataset. We select two widely used datasets, Flickr30k dataset [46] and Microsoft COCO dataset
(MSCOCO) [47] in our experiments. Flickr30k dataset contains 31,000 images collected from the Flickr
website. Each image comes with five captions. We use the split setting as [29], which contains 28,000
images for training, 1000 images for validation, and 1000 images for the test. Further, we use the splits
of [48] for MSCOCO in the cross-modal retrieval task. This split consists of 113,283 images in the
training set, and 5000 images in both validation and test sets. Similarly, each image is annotated by
5 sentences. Furthermore, each image in MSCOCO is associated with a class label. For the cross-modal
retrieval experiments, we use the two datasets above. As to the image clustering and visualization
tasks, we collect two subsets of images from MSCOCO.

Comparison Methods. For cross-modal retrieval, we compare our method with the baseline
Gaussian-Laplacian mixture models and state-of-the-art neural network models:

e Mean Vector (MV) [27]: it adopts the mean vector of word2vec embeddings as the caption
embeddings.

o CCA (CCA() [27]: it adopts the fisher vectors with the fusion of Gaussian Mixture Model (GMM)
and HGLMM.

e  VSE[12]: it uses inner product and ranking loss to align image and text.

e  VSE++ [44]: it updates VSE with hard negative sampling.

e  Order-embeddings (Order) [24]: it optimizes the partial order of image-text pair.

e Embedding network in two-branch neural networks (TBNN) [13]: it emphasis intra-modal
structure in the aligning process.

e  Stacked cross attention networks (SCAN) [29]: it learns attention weights of image regions or text
words for inferring image-text similarity.

e  Bidirectional Focal Attention Network (BFAN) [30]: it reassigns attention to relevant image regions
instead of all the regions based on inter-modality relation and intra-modality relation.

e  Multimodal Tensor Fusion Network (MTEN) [19]: it explicitly learns the image-text similarity
function with rank-based tensor fusion.

In our proposed MTLS and above comparison methods, we use ResNet152 [37] which are
pre-trained on ImageNet as the original image embeddings and the caption embeddings follows
the settings in original papers.
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4.3. Cross-Modal Retrieval

In the evaluation phase, following the settings in [13], we adopt a test set of 1000 images and
5000 corresponding captions for both the Flickr30k dataset and MSCOCO datasets. We use the images
to retrieve captions (i.e., image-to-text retrieval) and captions to retrieve images (i.e., text-to-image
retrieval). As to the performance measurement, we report Recall@K (K = 1,5,10), which corresponds to
the percentage of test queries for which the correct response is among the top K results [49].

Due to the performance improvement brought by the re-ranking method in [19,50], we conduct
re-ranking to refine the retrieval results. Specifically, we consider the interactions between the
bi-directional retrieval and take the image-to-text retrieval as an example. Given a query image
I, we could get the corresponding text set according to the similarity. The top k texts could be seen
as k-reciprocal candidate texts. Moreover, we use these texts to search corresponding image sets,
respectively. The rank of query image I in these sets could be sorted to replace the rank of these texts
in the corresponding text set for query image I. Furthermore, the same for text-image retrieval.

The cross-modal retrieval results on Flickr30k and MSCOCO datasets, including image-to-text
retrieval and text-to-image retrieval, are demonstrated in Table 1. Some retrieval examples obtained by
our method and the other two typical methods are shown in Figures 3 and 4. According to the results,
we have the following observations:

uery#1 MTLS: uery#2
Query 1A couple of brown and white cows standing on top of a hill. Query MTLS:

2.Two marked cows stand upon mud and grass with tree filled
hills in the background.

3.Two cows are standing in a grassy area.

4.Two cows that are standing in the grass.

5.0ne light brown cow with hay in it's mouth.

1.Long hot dog using two buns on paper plate.
2.A foot long hot dog on top of two buns.

3.A very long hot dog on a plastic plate

4.A long hot dog on a plate on a table.

5.This piece of paper has three hot dogs on it.

MTFN: MTFN:
1.One light brown cow with hay in it's mouth. 1. A picture of three deluxe hotdogs pinned up with a tack.
2.A brown cow standing on top of a grass covered field. 2.Long hot dog using two buns on paper plate.
3. A couple of brown and white cows standing on top of a hill. 3.A bacon wraped hotdog with onion on it.
4.Two marked cows stand upon mud and grass with tree filled 4.Along hot dog on a plate on a table.
hills in the background. 5.A bacon wrapped hot dog on a bun topped with purple onions.
5.Two cows overlooking a mountain range and one is looking N
in the opposite direction of the other one. VSE++:
1. A picture of three deluxe hotdogs pinned up with a tack.
VSE++: . L 2.a very long hot dog on a plastic plate
I.Several cows with tagge.d ears standing in a grassy field. 3.an image of a paper plate stacked with bananas
2.Two cows l!\al are slandmg in the grass. . ) 4.Two long hot dogs sit in to go containers.
3. A couple of brown and white cows standing on top of a hill. 5.Two hot dogs sitting on top of a foam container.

4.Two marked cows stand upon mud and grass with tree filled
hills in the background.
5.Cows standing in grass at a barbed wire fence with ear tags.

Figure 3. Image-to-text retrieval by our approach MTLS, MTEN [19] and VSE++ [44]. For each query
image, we provide the top-5 ranked captions by MTLS, MTFN and VSE++ at the right-hand of the
image, and the ground-truth ones are marked as red.

o  All the similarity-based neural network models, i.e., VSE, VSE++, Order, TBNN, SCAN, MTEN,
BFAN, and our proposed MTLS perform better than the baseline models on both datasets,
ie, MV, CCAp, and CCAg, which indicates the representation ability of neural networks and the
advantages of ranking loss.

e  On Flickr30k dataset, our proposed MTLS achieves competitive results with state-of-the-art BFAN,
which is more complex than our method since it considers the image regions and corresponding
text words. Moreover, the BFAN is specially designed for image-text matching while our MTLS
learns general multimodal representations for several tasks.

e  On MSCOCO dataset, our method MTLS significantly outperforms other state-of-the-art methods.
Especially for text-to-image retrieval task, MTLS achieves 81.7%, 52.7%, 100%, 83.0%, 35%, 32%,
33% improvements over the comparison methods VSE, VSE++, Order, TBNN, SCAN, MTEN and
BFAN respectively in terms of R@1. This is because text-to-image retrieval is more challenging
than image-to-text retrieval since one image is corresponding to five captions and MTLS captures
complementary information in both text and image representations.

e  According to the examples in Figure 3 and 4, among the top five captions retrieved by our method
MTLS four captions are the ground-truth ones and MTLS can find the most matching images from
a bunch of ambiguous images according to the query text. Because in MTLS the local structures
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are not only enhanced within modality but also transferred between modalities, it is easier to
retrieve the most relevant images or captions.

Table 1. The result of cross-modal retrieval on Flickr30k dataset and MSCOCO dataset. The best results
are marked in bold font.

Flickr30k Dataset MSCOCO Dataset
Method Image-To-Text Text-To-Image Image-To-Text Text-To-Image
R@1 R@5 R@10 mR R@1l R@5 R@10 mR R@l R@5 R@10 mR R@l R@5 R@10 mR

MV [27] 248 525 643 472 205 463 593 420 332 618 751 56.7 242 564 724 51.0
CCAy [27] 344 61.0 723 559 244 521 65.6 473 377 666 791 61.1 249 588 765 534
CCAg [27] 35.0 620 733 56.7 250 527 66.0 479 394 679 809 627 251 598 76.6 53.8

VSE [12] 421 732 84.0 664 318 626 741 561 56.0 85.8 935 784 437 794 89.7 709
VSE++ [44] 529 805 872 735 396 701 795 631 646 900 957 834 520 843 920 761
Order [24] 52.0 80.5 895 740 378 67.6 777 61.0 485 809 903 732 396 753 86.7 672
TBNN [13] 432 71.6 798 648 317 613 724 551 549 840 922 770 433 764 875 59.8
SCAN[29] 679 89.0 944 83.7 439 742 828 669 727 948 984 88.6 588 884 948 80.6
BFAN [30] 68.1 914 - 79.7 594 884 - 739 749 9.2 - 8.0 594 884 - 739
MTEN [19] 65.3 883 933 823 520 80.1 86.1 727 743 949 979 89.0 60.1 89.1 950 814

MTLS 675 89.7 94.6 84.0 688 877 89.6 821 764 96.5 985 905 794 97.0 981 915

Query#1: A small plane flying through a cloudy blue sky. Query#2: A woman holding up an umbrella near a stage.

MTLS

MTFN

VSE++

Figure 4. Text-to-image retrieval by our approach MTLS, MTEN [19] and VSE++ [44]. For each query
text, we provide the top-5 ranked images from left to right retrieved by MTLS, MTEN and VSE++, and
the ground-truth ones are outlined by red box.

4.4. Image Clustering

To demonstrate the complementary information acquired by multimodal representation learning,
we use the trained representations to do intra-modal clustering. Since only class labels of images in
MSCOCO dataset are available, we construct two subsets of Vehicle category and Animal category
respectively in MSCOCO dataset.

o  Vehicle Dataset: it contains five subcategories images, i.e., bus, train, truck, bicycle, and
motorcycle, which contains 4983 images in total. The representative image in each category
is shown in Figure 5a.

e Animal Dataset: it contains seven subcategories images, i.e., horse, sheep, cow, elephant, bear,
zebra, and giraffe, which contains 4737 images in total.
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Because there is no intra-modal representation learned in the baseline models, i.e., MV, CCAp, and
CCAp and the attention based models, i.e., SCAN and BFAN, need multiple regions of each image, we
only demonstrate the clustering results of Original image embeddings (i.e., Resnet152) and the image
representations learned by VSE, VSE++, Order, TBNN, MTFN and our MTLS. The images and their
corresponding captions in Vehicle Dataset and Animal Dataset are used to train the models. Moreover,
the learned image representations are fed into k-means clustering and the number of clusters are set to
the number of subcategories in each dataset. Since the initial cluster centers are random among the
data points, we run k-means clustering 10 times to make the result stable. Fowlkes-Mallows scores
(FMS) [51] and Adjusted Mutual Information (AMI) [52] are adopted as the metrics to measure the
clustering performance.

As the Table 2 shows, MTLS achieves 31.3%, 40.1%, 31.5%, 11.6%, 24.7% and 16.4% improvements
(INC) over ResNet152, VSE, VSE++, Order, TBNN and MTEN respectively in terms of AMI. In terms of
FMS, MTLS also outperforms all comparison methods. Among all the comparison methods, Order
embedding achieves better clustering performance than other comparison methods while it do
not perform well in cross-modal retrieval task. Although MTEN achieves good performance
on cross-modal retrieval task, it underperforms the Resnet152 image embeddings according to
the clustering results. This indicates that aligning two modalities and absorbing complementary
information to enhance the information in intra-modal representations at the same time is not a trivial
task. However, our proposed MTLS achieves the state-of-the-art performance on both cross-modal
retrieval and image clustering tasks which shows the effectiveness of the symmetrically local structure
transferring. Due to the soft metric learning across image and text modalities, the complementary local
structure information from the captions is transferred to images which leads to clearer cluster margins
and better clustering results.

Table 2. The k-means clustering result of multimodal image representations generated by different
methods on Vehicle Dataset and Animal Dataset. The best results are marked in bold font.

Vehicle Dataset Animal Dataset
Method FMS AMI INC FMS AMI INC
Resnet152 [37] 525 455 313 634 584 10.7
VSE [12] 503 427 401 60.6 552 164
VSE++ [44] 528 455 315 619 56.1 14.3
Order [24] 587 535 116 593 527 231
TBNN [13] 528 48.0 247 552 51.0 28.0
MTEN [19] 55.1 514 164 633 565 143
MTLS 64.0 59.8 - 68.0 64.6 -

4.5. Visualization

For a better understanding of local structure transferring, we visualize the image representations
in the Vehicle dataset which are generated by ResNet152, VSE, VSE++, Order, TBNN, MTEN, and
MTLS. The t-SNE visualization results are demonstrated in Figure 5, and the legend of visualization is
in Figure 5a.

As shown in Figure 5b, a large portion of images from different subcategories are hard to
distinguish when images are represented by ResNet152 embeddings since the visual features of
different type of vehicles are quite similar. The boundaries between different subcategories represented
by our MTLS in Figure 5h is much clearer than that represented by other multimodal representation
learning methods. These visualization results also demonstrate the reason for the good clustering
performance of MTLS.
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L]
Motorcycle  Truck

Bus Train  Bicycle

(e) Order (f) TBNN (g) MTFN (h) The proposed MTLS

Figure 5. The t-SNE visualization of multimodal image representations from ResNet152, VSE, VSE++,
Order, TBNN, MTFN, and the proposed MTLS.

5. Conclusions and Future Work

In this paper, we propose a novel multimodal representation learning framework, MTLS,
which symmetrically transfers local structure across modalities by a customized soft metric learning
strategy and an iterative parameter learning process. We apply the MTLS in image-text data and
evaluate it on two benchmark datasets, on which MTLS achieves state-of-the-art performance on both
the cross-modal retrieval and image clustering tasks. MTLS outperforms state-of-the-art multimodal
learning methods by up to 32% in terms of R@1 on text-image retrieval and 16.4% in terms of
AMI on clustering. And the real case demonstration and visualization results also demonstrate
the representation learning ability of MTLS.

There are several extensions of MTLS. First, MTLS can be instantiated with more complex
representation encoding modules to handle other modalities besides image and text data. Second,
MTLS can be extended for some specific multimodal learning tasks, such as zero-shot learning,
cross-modal translation and generation. Third, MTLS has the potential to address multiple modality
(more than two modalities) representation learning problems.
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