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Abstract: Either stereo reactants or stereo catalysis from achiral or chiral molecules are a prerequisite
to obtain pure enantiomeric lipid derivatives. We reviewed a few plausibly organic syntheses
of phospholipids under prebiotic conditions with special attention paid to the starting materials
as pro-chiral dihydroxyacetone and dihydroxyacetone phosphate (DHAP), which are the key
molecules to break symmetry in phospholipids. The advantages of homochiral membranes
compared to those of heterochiral membranes were analysed in terms of specific recognition,
optimal functions of enzymes, membrane fluidity and topological packing. All biological membranes
contain enantiomerically pure lipids in modern bacteria, eukarya and archaea. The contemporary
archaea, comprising of methanogens, halobacteria and thermoacidophiles, are living under extreme
conditions reminiscent of primitive environment and may indicate the origin of one ancient evolution
path of lipid biosynthesis. The analysis of the known lipid metabolism reveals that all modern
cells including archaea synthetize enantiomerically pure lipid precursors from prochiral DHAP.
Sn-glycerol-1-phosphate dehydrogenase (G1PDH), usually found in archaea, catalyses the formation
of sn-glycerol-1-phosphate (G1P), while sn-glycerol-3-phosphate dehydrogenase (G3PDH) catalyses
the formation of sn-glycerol-3-phosphate (G3P) in bacteria and eukarya. The selective enzymatic
activity seems to be the main strategy that evolution retained to obtain enantiomerically pure lipids.
The occurrence of two genes encoding for G1PDH and G3PDH served to build up an evolutionary tree
being the basis of our hypothesis article focusing on the evolution of these two genes. Gene encoding
for G3PDH in eukarya may originate from G3PDH gene found in rare archaea indicating that archaea
appeared earlier in the evolutionary tree than eukarya. Archaea and bacteria evolved probably separately,
due to their distinct respective genes coding for G1PDH and G3PDH. We propose that prochiral DHAP
is an essential molecule since it provides a convergent link between G1DPH and G3PDH. The synthesis
of enantiopure phospholipids from DHAP appeared probably firstly in the presence of chemical
catalysts, before being catalysed by enzymes which were the products of later Darwinian selection.
The enzymes were probably selected for their efficient catalytic activities during evolution from
large libraries of vesicles containing amino acids, carbohydrates, nucleic acids, lipids, and meteorite
components that induced symmetry imbalance.

Keywords: symmetry breaking; dihydroxyacetone phosphate; sn-glycerol-1-phosphate dehydrogenase;
sn-glycerol-3-phosphate dehydrogenase; membrane evolution

1. Introduction

This hypothesis, focusing on how phospholipid symmetry breaking occurs, was intended to
complement our experimental paper on racemic phospholipids for the origin of life published in the
Special Issue entitled “Chirality and the Origin of Life” [1]. Our hypothesis is based on the evolution
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of lipid synthesis from raw materials leading to racemic lipids toward the actual occurrence of chiral
lipids in all living species. The background of our hypothesis is divided in four parts: (1) the advantage
to be homochiral; (2) prebiotic scenarios for the symmetry imbalance of phospholipid precursors;
(3) achiral and racemic amphiphiles; and (4) biological synthesis in archaea, bacteria and eukarya.
We speculated that the biosynthesis of racemic lipids is less efficient than that of enantiomeric lipids.
We will discuss critically the hypothesis by providing scientific evidence to support it.

Studies on the origin of life have been carried out in several directions including dynamic
combinatorial chemistry [2], self-assembly and self-organization [3,4], prebiotic chemistry [5–8],
minimal self-replicating molecules [9], autocatalytic systems [10], and the assembly of metabolic
and non-metabolic networks [11,12]. The origin of chirality was considered only on a theoretical
level with a few exceptions for the abiotic formation of nucleotides [13,14]. A few examples were
reported for phospholipids and model membranes [15,16]. In evolved cells, enantiopure membranes
are produced in living organisms, which are supramolecular chemical systems that maintain persistent
structures and reaction networks through reproduction rather than thermodynamic stability [17].
Although enantiomorphism in crystals is one of the most supposed sources of homochirality of organic
compounds on Earth [18], alternate theories have been proposed, such as the enantiomeric cross
inhibition [19], for example.

2. The “Advantage” of Being Homochiral

Homochirality has an effect with respect to heterochirality, most strongly at the aggregate
or polymer level [20]. Chemical and physical properties of homo- or heterochiral monomers are
not sufficiently distinct from each other unless they form aggregates or polymers. The strongest
effect is expected to be exerted by dense packing. Crystals can be enantiomorphic in 100% [18],
exacerbating more distinct properties than in case of racemic crystals. Heterochiral and homochiral
membranes have significant distinct properties in packaging organizations as in lipid rafts and in
membrane permeability [1,21]. Phospholipids are aggregates organized as bilayer membranes [22].
Recent investigations showed that the homochirality packaging of phospholipids in prebiotic
protocells [20] was not a necessary prerequisite to build up the first protocells. It was sufficient
to have compartment property of the heterochiral membranes [1]. For example, bilayers and vesicles
composed of heterochiral lipids have a useful permeability, since these bilayers are looser than
the more compact homochiral bilayers [1,21]. Such a permeability property could serve to filter
and select possible materials to build up primitive organic components, including carbohydrates,
lipids, nucleic bases, amino acids and their derivatives. So why are biological membranes made of
homochiral phospholipids? The “advantage” of membranes being homochiral rather than heterochiral
is that it probably leads to optimal functions of lipophilic peptides and transmembrane proteins.
Indeed, the fluidity of the membrane, the specific recognition of lipids with various ligands and lipid
raft organization finely tune up enzymatic activities that are significantly different in homo and in
heterochiral membranes [21,23]. Lipid composition can modulate and affect enzyme activity, even
within homochiral membranes [24].

Several theories concerning membrane compositions in the primitive last common ancestor (LCA)
were reviewed [25,26]. Among them, it was proposed that earlier life forms were dependent on
the presence of membrane lipids with an isoprenoid hydrocarbon core, especially since fatty acid
metabolism is underdeveloped in archaea. Other theories advocated that the most divergent feature is
the glycerophosphate backbone [26,27]. Indeed, there is one chiral centre in the glycerol moiety leading
to either G1P or G3P phospholipid derivatives, forming the basis of the “lipid divide” theory [26,27].
The key precursors for the biosynthesis of phospholipids in living species is the prochiral dihydroxy
acetone phosphate (DHAP) [26–28]. Any type of oxidation from DHAP would lead to racemic species
as well as to pure enantiomeric species.

Molecules react according to materials and conditions in their proximity. Modern cells are well
evolved biochemical machines and the chemical processes are carried out by enzymes, which determine
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the path of the reactions. However, prebiotic mechanisms in LCA protocells [29–32], were probably not
necessarily similar to the actual ones. System protobiology suggests that lipids played a fundamental
role in the emergence of life. Thus, in a hypothetical racemic lipid word, life emerged thanks to the
compartmentalization of simple lipophilic or poorly hydrophilic small proteins that showed a catalytic
role together with auto-replicative functional nucleic acids [33,34].

3. Prebiotic Scenarios for the Symmetry Imbalance of Phospholipids Precursors

Speculations about where and how life emerged from a primordial soup of abiotic mixtures of
molecules are extremely well reviewed and summarized including some aspects on the biological
origin of chirality [5,35]. One main conclusion was that all chiral molecules can be formed in both
enantiomeric types suggesting that a symmetry imbalance between the two possible stereoisomers
occurred. Prebiotic symmetry breaking scenarios were depicted using mathematical models only [20].

Concerning the synthesis of life’s building blocks, Meierhenrich and co-workers showed that
the exposure of circularly polarized light (CPL) in simulated interstellar media can induce a mirror
symmetry breaking between the formation of l- or d-alanine where the imbalance depends from
the wavelength of the incident CPL and sense of rotation [36,37]. Further investigations showed
that glyceraldehyde (1, Scheme 1), the first chiral product of the “formose” reaction [38]—one of the
chemical pathways for the synthesis of carbohydrates—is present in comets and other space bodies [37].
It is probable that the symmetry imbalance between the two possible stereoisomers of 1 occurred
before seeding the Earth by asteroids’ or comets’ impact [39] creating the conditions for deracemization
before the prebiotic polymerization of peptides and the formation of nucleic acids. Glyceraldehyde (1),
dihydroxyacetone (2) and glycerol (3) together with their phosphate derivatives (4 and 5a–c) are the
most plausibly chemical precursors of glycero phospholipids such as phospholipid esters and ethers
(Scheme 1).
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Scheme 1. Plausibly prebiotic pathways for glycerophosphates (5a–5c), precursor of phospholipids,
from glyceraldehyde, dihydroxyacetone or glycerol (1–3). Plausibly prebiotic pathway allowing DHAP
(4) from glyceraldehyde (1) remains unexplored.

In a well studied prebiotic scenario, Sutherland and co-workers, among others, showed that 1 can
be one of the plausible precursors of 5a together with ribonucleosides and a few amino acids such as
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valine and leucine [40]. DHAP (4), instead, was hypothesized to be a key intermediate in the prebiotic
synthesis 3-pentulose and racemic mixtures of erythrulose [41].

Glyceraldehyde (1) and its tautomer (2) (double arrow in Scheme 1) are precursors of glycerol
(3) which is the reduced form of 2. The redox reactions (Equations (1)–(6)) that occur should be a key
step for stereochemistry imbalance during the phosphorylation or oxidation of glycerol [42] (3→5a
and 5c, Scheme 1). The synthesis of DHAP (4) under plausibly prebiotic reaction conditions is not
reported, while the synthesis of glycerol (3) in interstellar ices was simulated instead [43], suggesting
that glycerol is plausibly present in space bodies.

The oxidation reaction can be summarized as a loss of electrons in either chemistry or biochemistry.
In several biological reactions, as in lipid beta oxidation, glycolysis and the Krebs cycle, the electrons
are transferred via cofactor FAD or NAD(P)+. The reduction process is conducted via FADH2 or
NAD(P)H which can recycle the cofactors for a next round of oxidation. These reactions can be found
everywhere in archaea, bacteria and eukarya, suggesting that it was one of the most efficient oxidation
or reduction mechanisms that evolution maintained. The oxidation and the reduction of 2 and 3 can be
written in analogy with respect to NAD+/NADH processes.

Concerning the reduction of 2, where R1 and R2 are CH2OH, respectively:

R1-C=(O)-R2 + 2H+ + 2e− = R1-CH(OH)-R2 (1)

NAD(P)H + H+ = NAD(P)+ + 2e− +2H+ (2)

R1-C=(O)-R2 + NAD(P)H + H+ = R1-CH(OH)-R2 + NAD(P)+ (3)

Concerning the oxidation of 3, where R1 and R2 are CH2OH, respectively:

R1-CH(OH)-R2 = R1-C = (O)-R2 + 2H+ + 2e− (4)

NAD(P)+ + 2e- +2H+ = NAD(P)H + H+ (5)

R1-CH(OH)-R2 + NAD(P)+ = R1-C=(O)-R2 + NAD(P)H + H+ (6)

Tricyanocuprate [Cu(CN)3]2 and tetracyanocuprate [Cu(CN)4]2 are supposed to be a source of
electrons for the oxidoreduction of glyceraldehyde (1, Scheme 1) in enzyme-free conditions [44–46].
The hydrogen cyanide–cyanocuprate photochemistry has been proven to be effective for synthesis
in abiotic conditions of glyceraldehyde precursors starting the oxido-reduction of 1 into 2 then 3,
respectively (Scheme 1). However, this system cannot lead to any symmetry imbalance of 1 in the
absence of any chiral inductor even if deracemization or interconversion can occur using photocatalysis
reaction conditions [47]. Iron (III)-sulfur-l-glutathione complexes are able to oxidize NADPH in
catalytic networks across the membrane of model protocells made of (R)-POPC and oleic acid [48].
This suggests that simple but effective catalytic networks probably existed in protocells, before the
advent of the LCA. Ferredoxins are one of the most known metallo-proteins and their sequences
are well known as three of them were isolated from fermentative bacteria [49]. The presence of a
high percentage (>64%) of plausibly prebiotic amino acids in their sequence [50] such as glycine,
alanine, valine, proline, glutamic and aspartic acids together with cysteine [51], indicates that short
hydrophobic peptides, able to complex iron (III) could have been precursors of ferredoxins in LCA.
These peptides in the presence of iron (III) formed aggregates [52] that could perform redox reactions
as those with NAD+/NADH in evolved cells. Such peptides may have been formed from the scalemic
mixtures of amino acids due to the symmetry imbalance possibly induced by meteorite and comet
seedings. The scalemic ratio between each d- and l-amino acid was plausibly improved by CPL [39]
or from the presence of enantiomorphic crystals. Thus, amino acid sequences within peptides were
selected on the basis of their emerging functions or properties. Their selections should have occurred
in large libraries of vesicles containing various biopolymers during evolution (cf. Section 4). In our
hypothesis, non-functional sequences were discarded in favour of enantiopure sequences probably
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due to their distinct structural properties. For example, homo peptides with either pure d- or l amino
acid sequences more favourably induce alpha-helix structures than hetero peptides with alternate or
stochastic d- and l-amino acids (ldld . . . or . . . ldll . . . or . . . ddld . . . etc.). The emblematic case is
Gramicidin A, containing alternating l and d residues, which does not form alpha-helix structures
but beta-helix structures with C–O moieties of the L residues parallel to helix axis, whereas for the d
residues, they are antiparallel to it [53]. This is due to the fact that bulky side chains shall be positioned
to the outside helix axis, otherwise bulky side-chain residues positioned inside the helix destabilize
the helical structure. Not only is the structural topology of homo peptides different from that of
hetero peptides, but their possibilities to interact with charged groups or to form hydrogen bonds are
distinct due to the positions of polar groups. The enantiomeric excess in the peptide might have been
amplified by autocatalytic pathways, gradually favouring the formation of a peptide containing the
first dominating enantiomer [11,30,50–52] yielding chemical environments in which the predominance
of one enantiopure sequence of peptides was preferred.

4. Achiral and Racemic Amphiphiles

4.1. Non-Chiral Amphiphiles

Obviously, the formation of large vesicles, precursors of protocells [29], occurred before the
rise of full-fledged cells, since vesicles form spontaneously in aqueous solution from a variety of
surfactants [54]. Closed membranes exert the confinement and protection of an internalised chemical
network including reactions on their hydrophobic region [25,28,55]. According to the current view,
early membranes were more likely formed from derivatives of alkanols, Ref. [56] fatty acids, Ref. [57]
mono-alkyl phosphates, Ref. [58] and isoprenoids [59]. Most probably, they were composed of a
mixture of components [60] (Figure 1).
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Figure 1. Plausibly prebiotic lipid derivatives. Red colour is used to indicate the polar head group.

4.2. Racemic Amphiphiles and Their Precursors

Several plausibly prebiotic syntheses were explored, however all the proposed pathways,
carried out in enzyme free conditions from glycerol (3), yielded racemic phospholipids
(6–8, Scheme 2A) [56,58,61–65] or racemic mixtures of glycerol phosphates (5a–c and 9–10,
Scheme 2B [40,66–70]. In addition, the symmetry imbalance between the R:S ratio of mono- and dialky
phosphates (6 and 12, Scheme 2C) and cyclic glycerophosphates (cGP, 13, Scheme 2D) [71,72] from
di-acyl glycerols 12 or glycerol 3, respectively, were not reported or investigated either. Remarkably,
all the crude mixtures containing 6–8, 12 and 13 were able, using appropriate buffers, to form giant
vesicles that per sizes and membrane properties are similar to those of the bilayer of modern cells.
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Scheme 2. A few relevant prebiotic pathways that allow the formation of phospholipid esters
and glycerol phosphates. (A) Summary of the prebiotic pathways explored during pioneering
research (1977–1982); (B) phosphorylation of glycerol; (C) recent results obtained in phosphorylation
of diacylglycerols and (D) concomitant acylation of glycerol in the presence of fatty acids and
diamidophospahte. The asterisk (*) indicates the stereogenic carbon C2 of any phospholipid and
phospholipid precursors; Pi stands for any phosphorous salt or plausibly phosphate-containing mineral
able to promote the phosphorylation of primary or secondary alcohols [42]; ca, stands for any condensing
agents [56]; ∆, stands for temperatures between 65 and 130 ◦C; DAP stands for diamidophosphate [72];
for eutectic conditions see the recent works of Menor–Salvan and Pasek [73,74].

5. Biological Synthesis in Archaea, Bacteria and Eukarya

5.1. Lipid Characteristics in Archaea, Bacteria and Eukarya

One essential characteristic of living species is their ability to create a compartmentalization of
bioactive molecules [75–77]. The natural enantiomer of all phosphatidate derivatives, in eukarya and in
most of bacteria, is d-diacylglycerol phosphate (Fischer convention), 1,2-diacyl-sn-glycerol-3-phosphate
(sn-glycerol nomenclature) [78] or 2R—in the Cahn–Ingold–Prelog formalism (Figure 2) [79,80].
The opposite configuration is l-diacylglycerol phosphate, 2,3-diacyl-sn-glycerol-1-phosphate or (2S),
which occurs mostly in archaea membranes. The archaea phospholipids usually contain isoprenoid
glycerol ethers instead of hydrocarbon glycerol esters [81].
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Figure 2. Phosphaditate enantiomers and their sn-glycerol and Cahn–Ingold–Prelog nomenclatures.
1,2-diacyl-sn-glycero-3-phosphate is the enantiomer of 2,3-diacyl-sn-1-glycerophosphate: the stereo
numbering (sn-glycerol) is based on the position of the second oxygen of the glycerol moiety to the left
side in the Fisher representation, with the top carbon numbered as one, second as two and the bottom
carbon numbered as three, the enantiomer changes the order of numbers of glycerol moiety due to the
opposite position of the second oxygen.

Last common ancestor (LCA) or Commonote Commonote (C. Commonote) [82], lived at around
3.5–3.8 Ga. There are still controversies about the environment where the LCA lived [83].
A sulphur-containing atmosphere [84–86] together with CO2, H2, N2 and CH4 [87] is the most
probable. Contemporary archaea, comprising of methanogens (which generate actually around
85% of the methane in Earth’s atmosphere), halobacteria and thermoacidophiles are living under
extreme conditions reminiscent of this primitive environment. These descendants are phylogenetically
related to each other, while they share very little phylogenetic characteristics with bacteria and
eukarya [25,26]. C. Commonote had archaeal and bacterial characteristics [88–91], while eukarya evolved
from archaea [88,90,91]. There is an open debate between three domains of life, archaea, bacteria and
eukarya which evolved separately from LCA versus Eocyte hypothesis where eukarya are descendent of
prokaryotic Crenarchaeota [92] or other evolution models [26,91]. The origin of the controversy lies in
the inconsistencies of the phylogenetic distributions and in the selection of appropriate genes to build
up the phylogenetic tree [26,91,93]. Here, we focus on the phylogenetic tree based from the genes that
encode sn-glycerol-1-phosphate dehydrogenase (G1DPH) or sn-glycerol-3-phosphate dehydrogenase
(G3DPH), enzymes catalysing, respectively, sn-glycerol-1-phosphate (G1P) and sn-glycerol-3-phosphate
(G3P) from pro-chiral DHAP. The reason to focus on the two genes for encoding G1DPH and G3DPH
in this review is that G1P and G3P are key precursors of phospholipids and are essential to determine
the mechanisms of symmetry breaking. The lipid composition in archaea is distinct from those in
bacteria and eukarya [26,91]. Archaea membranes contain usually phospholipids having G1P moiety and
isoprenoid hydrocarbon chains ether-linked to the G1P moiety [26], whereas membranes in bacteria
and eukarya are usually composed of phospholipids derived from G3P and alkanoyl chains ester-linked
to the G3P moiety (Figure 3) [25,26].
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5.2. Appearance of Homochiral Membranes Based on Phylogenetic Analysis on Enzymes Forming
sn-Glycerol-1-phosphate or sn-Glycerol-3-phosphate

One likely path of lipid synthesis at the appearance of the extremophile LCA is the geochemical
production of racemic lipids via non-catalytic or catalytic, but enzyme-free pathways, giving rise
to racemic membranes (Figure 3). Then, the appearance of homochiral membranes from, probably
later in the evolution, in archaea, signals a selective catalytic activity that could have been initiated by
non-enzymatic or enzymatic ways [77].

Pro-chiral DHAP, (4), is a starting material for the synthesis of lipids in all the three domains
of life: archaea, bacteria and eukarya. The first step to obtain phospholipid precursors in archaea is the
hydrogenation catalysed by G1PDH which gives G1P with NADH + H+ as proton donors (Scheme 3B).
In bacteria and eukarya, the first step to obtain the phospholipid precursors is catalysed by a G3PDH
giving rise to G3P (Scheme 3A) [25,26].
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Generally, there are two biosynthetic pathways to obtain G3P in bacteria and in eukarya, (Scheme 3A)
while there is only one to obtain G1P in archaea (Scheme 3B) [25,26]. G3P can be produced from glycerol
and is catalysed by a glycerol kinase (GK) in bacteria and eukarya, while archaea lacks GK [26]. To
the best of our knowledge, there is no GK producing G1P. To date, the catalytic activity of the one
and the same enzyme producing both G1P and G3P from glycerol, if it existed, was not retained
during evolution. The genes coding for G1PDH, G3PDH and GK in archaea and bacteria are used to
construct phylogenetic trees [26,28,94,95]. This reveals possible evolutions of synthetic phospholipid
pathways from a common ancestor [92]. Several models, based on the occurrence of G1P-lipids or
G3P-lipids, were inferred from the presence of either G1PDH or G3PDH [25,26,96,97]. The separate
evolution of G1PDH or G3PDH is supported from several phylogenetic analyses [26,28,94,95]. We
summarize a few facts from these reports in this Section. According to the phylogenetic analyses, it
seems that there is no any direct evidence that C. commonote could form G1P lipids via enzymatic
reactions [26]. Among the Commonote ancestors having chiral membranes, Commonote archaea (C.
archaea) were probably the first biological entities to be formed, since they could live with little
concentration of O2. The early stage of the archaeal lineage, had G3DPH (GLpA/GlpD) leading to G3P
lipid membranes instead of G1P lipid membranes (Figure 3) [26]. In the next stage of the evolution
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path, the archaeal lineage acquired G1PDH (Egs A) probably leading to a population of archaeal
lineage mixed with GIPDH and G3PDH [26]. The archaeal descendants are phylogenetically related to
each other, while they share very little phylogenetic characteristics with bacteria, Refs. [89,90,98,99]
suggesting that both living organisms C. archaea and Commonote bacteria (C. bacteria) evolved separately
(Figure 3). Commonote eukarya (C. eukarya) could have appeared much later than C. archaea since it was
suggested that eukarya originated from archaea [88,90,100], consistent with the eocyte hypothesis [92].
Lokiarchaeta is closely related to eukarya because of the absence of gene for coding G1PDH, and the
presence of a gene coding for G3PDH [100,101], which is rarely observed in archaea (Figure 3). This
supports the evidence that eukarya originated from archaea.Symmetry 2020, 12, x FOR PEER REVIEW 10 of 17 
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Figure 3. Hypothetic phylogeny of the last common ancestor (LCA) and Commonnote Commonote and
their evolution into Archaea, Bacteria and Eukarya or Euryarchaeotae from prebiotic pathways, adapted
from [26]. The early stage of the archaeal lineage had G3PDH so that the ancestor C. commonote had a
G3P polar lipid membrane rather than G1P lipid membranes, giving rise to C. archaea. Then, C archaea,
had G1P lipids, probably mixed with G3P lipids [26]. C. bacteria appeared later than C archaea [26].
Hypothetical horizontal gene transfer (indicated by dashed grey arrows) may have occurred [102].
Eukarya was significantly distinct from bacteria and may have originated from Archaea [88,90,100].
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During, the evolutionary path, there is the possibility that genes could have been horizontally
exchanged (grey dashed lines between two arms of the evolution tree in Figure 3) [102]. This is
supported by the fact that in certain bacterial lineages GIPDH (Egs A) having stereospecific synthesis
of G1P from DHAP, was acquired as another lineage GIPDH (AraM) [26]. On the other hand, in certain
archeal lineages G3PDH (GpsA), which is the major G3PDH of modern bacterial species, was acquired
via horizontal transfer [26]. G3PDH homologs such as GlpA and GlpD, found in various eukaryotic
cells, are involved in glycerol shuttle and not in the formation of G3P in cellular membrane [26].
Therefore, the horizontal transfer of genes coding for the enzymes could have resulted in a shift of
enzymatic activity. G1PDH and G3PDH may coexist in C. bacteria or in C. archaea (Figure 3) [26].
Although it is rarely observed. These observations suggest that the choice of which kind of chirality,
that of G1P or that of G3P, was not accidental but resulted from an efficient catalytic activity that
was retained during the evolutionary process from LCA and C. commonote. Of interest, the evolution
retained both catalytic activities. However, G1PDH and G3PDH genes are different, suggesting that
archaea and bacteria evolved apart from one another (Figure 3). This is supported by the fact that
G1PDH and G3PDH are not “mirror-image” enzymes since both had L amino acids. Indeed, G1PDH
belongs to a larger structurally related superfamily comprising of NAD(P)H-dependent hydrogenases,
including alcohol dehydrogenase, UDP-glucose 6-dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase
and dehydroquinate synthase, which are all unrelated to G3PDH [25,26]. Since G1PDH and G3PDH
are not homologs, then one shall ask what is the evidence of convergent evolution? The convergence
lies in the fact that both enzymes use the same substrate that is DHAP to yield either G1P or G3P
phospholipid derivatives [26]. Furthermore, both enzymes have L amino acids indicating a common
origin. Taken together, these facts indicate that G1PDH and G3PDH occurred much later in the
evolution path than LCA and were retained during Darwinian evolution (Figure 3).

6. Conclusions

The question of why living species did not retain racemic lipids to form their membranes during
the evolution path remains unanswered, as thus far only mathematical models have been used.
We speculate that the biosynthesis of racemic lipids is less efficient than that of enantiomeric lipids.
Indeed, only G1DPH and G3DPH enzymes leading to their respective enantiomeric G1P and G3P
are actually observed in all living systems, while there are no enzymes producing a racemic mixture
of G1P and G3P from DHAP. G1DPH and G3DPH evolved apart from one another since they are
structurally different and are not “mirror image” enzymes. These enzymes, which appeared much later
in the evolution path than the LCA, are essential, since they catalyse the formation of phospholipid
precursors G1P and G3P from the pro-chiral DHAP. Indeed, DHAP is a key molecule for phospholipid
metabolism. What is missing is why the Darwinian selection retained only these enzymes, G1DPH and
G3PDH? To fill the gap between LCA, that probably possessed racemic membranes, and protocells with
homochiral membranes, several hypothesises could be formulated. Apparently racemic membranes
do not have the same properties as those in enantiomeric membranes due to their distinct ability to
form lipid rafts, recognition process and packing organizations [21,23]. From a chemistry perspective,
several aspects of this problem could be tackled. Firstly, organic synthesis from DHAP yielding racemic
and enantiomeric lipid precursors under prebiotic conditions shall provide more insight into their
mechanisms and efficiencies. Secondly, further analysis on the physico-chemical properties of vesicles
made either from racemic or enantiomerically pure lipids may support the notion that the overall
property of membranes made either by racemic and or enantiomeric lipids are distinct.

To conclude, our hypothesis speculates that the chemical evolution of proteins [103–105] allowed
the biosynthesis of enantiomeric lipids [33]. Large libraries of vesicles containing biopolymers including
amino acids, carbohydrates, nucleotides or other meteorite materials may have served as possible
sources of symmetry imbalance (Figure 4).
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Figure 4. A hypothetical pathway allowing the selection trough the formation of enantiopure
phospholipids and deracemization of mixed protocell membranes upon the encapsulation of enantiopure
biopolymers (geometrical forms) followed by the growth and division of membrane bilayers. Colour
code is used to better highlight the symmetry imbalance from racemic (green) to enantiopure (violet).

Not only homochiral vesicles, but also vesicles made of racemic phospholipids or mixed achiral
amphiphiles may contribute to the selection process of retaining the best enzymes able to catalyse
a reaction from achiral DHAP to form enantiopure lipid precursors (Figure 4). The synthesis
of enantiopure phospholipids occurred firstly in the presence of chemical catalysts, before being
catalysed by enzymes which are the products of a later evolution stage. Symmetry imbalance in
the deracemization of racemic mono- or di-alkyl glycerol could appear at different stages of the
evolution process, driven by interaction on mineral surfaces [106] such as graphene. The growth
and division of lipid boundaries [107] and the formation of enantiomerically pure vesicles drastically
contributed to this selection process. Further studies on the symmetry breaking of phospholipids in
protocell membranes can be carried out using synthetic protocells where the transmission of catalytic
protein can be controlled under selection processes upon growth and division experiments [107–111].
The compartmentalization of primitive enzyme-free or enzymic molecular replicators, inside the
organelles and/or protocells, was probably one of several strategies that evolution retained for the
Darwinian selection processes.
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