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Abstract: This paper addresses the problem of the existence of conformal invariance in a class of
hydrodynamic models. For this we analyse an underlying transport equation for the one-point
probability density function, subject to zero-scalar constraint. We account for the presence of non-zero
viscosity and large-scale friction. It is shown analytically, that zero-scalar characteristics of this
equation are invariant under conformal transformations in the presence of large-scale friction.
However, the non-zero molecular diffusivity breaks the conformal group (CG). This connects
our study with previous observations where CG invariance of zero-vorticity isolines of the 2D
Navier–Stokes equation was analysed numerically and confirmed only for large scales in the inverse
energy cascade. In this paper, an example of CG is analysed and possible interpretations of the
analytical results are discussed.

Keywords: conformal symmetry; Lundgren–Monin–Novikov equations; method of characteristics

1. Introduction

More than two decades ago A. M. Polyakov (see Ref. [1]) suggested a programme to expand the
symmetries admitted by hydrodynamic models to the conformal invariance of equations describing
two-dimensional hydrodynamic turbulence. In this case, the conformal group is infinite-dimensional,
which enables us to obtain the substantial information on turbulence statistics as it has been done in
the Conformal Field Theory [2].

In 3D turbulent flows, the energy is transported in a cascade process from the largest down to
the smallest eddies where it is dissipated by viscous effects. In the case of thin layers of fluid, where,
possibly, stable stratification and/or rotation additionally suppress vertical motions, these flows
share certain common properties with 2D turbulence. In particular, an inverse energy cascade,
from smaller to larger eddies is possible and could enhance the formation of stable large-size structures.
Two examples are flows of thin soap films [3], where the horizontal-to-vertical aspect ratio is large (104)
and atmospheric or oceanic flows [4], where the dominant role of Coriolis force, balanced by pressure
gradients leads to the development of geostrophic turbulence.

Studies by Bernard et al. [5] on 2D turbulence confirmed that the statistics of zero-vorticity
boundaries of large vorticity clusters are conformally invariant. This was done by analysis of the fractal
structure of these isoline curves, see for details [5,6] and also review [7]. It was shown numerically that
zero-vorticity isolines belong to the class of conformally invariant curves that can be mapped into a
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one-dimensional Brownian walk called Schramm–Löwner evolution (SLEκ) curves [8] with diffusion
coefficient κ = 6. However, this property was not observed at small scales. It was hence argued,
the CG is present only in the inverse cascade regime, observed for scales larger than the forcing scale,
but it is broken in the direct enstrophy cascade at smaller scales. A theoretical explanation of these
observations based on underlying equations is still missing.

A step towards analytical confirmation of CG in 2D turbulence was obtained in [9] using a
group-theoretical method developed in [10]. Therein we performed a Lie group analysis of the first
equation from the infinite Lundgren–Monin–Novikov (LMN) hierarchy [11–13] for the probability
density functions (pdfs) of vorticity, with the assumptions of zero viscosity, zero friction and no
forcing. These studies can be placed in the broader context of the search for new symmetries in
the statistical approach [14–16]. In Ref. [9], we showed that the CG is generally broken for the first
LMN equation, apart from points on the associated characteristic with zero-vorticity. Notice that the
characteristics of the LMN chain exhibit a direct analogy to the Lagrangian description of turbulence.
Specifically, the characteristic equations describe the dynamics of the statistics of a class of fluid
particles. This Lagrangian point of view was further taken in Ref. [17], where the CG invariance of the
Lagrangian path along the zero-vorticity characteristics was established.

In the above-mentioned publications, we also proved the CG invariance of the normalisation
and reduction properties, the separation and coincidence properties of the pdfs. We showed that
the infinitesimal operator admitted by the characteristic equations forms an infinite-dimensional Lie
algebra and a Lie pseudo-group G, which acts as the conformal group on a domain D1 ⊂ R2.

To link these findings closer to the results of the works [5,6], in this paper we include the effects
of non-zero forcing and large scale friction. Moreover, we consider a wide class of equations for a
scalar variable φ(x, t), as is done in Ref. [18]. Depending on the value of a parameter m, the considered
equation can describe vorticity in 2D turbulence, temperature in the surface quasi-geostrophic
approximation (SQG) [4], the asymptotic case of the Hasegawa–Mima equation for drift waves in
magnetized plasma [19] or the Charney and Oboukhov equation for waves in rotating fluids [20].

The aim of this paper is to expand the findings from Ref. [17] to this broader class of hydrodynamic
models. This will be done in Section 3, assuming first zero viscosity and friction. Next, results will
be generalised to non-zero viscosity and friction in Section 4. We demonstrate that the CG invariance
is present in case of non-zero friction, however, it is broken if the viscous term is included into the
equation. Section 5 presents a particular example of conformal invariance with transformations of
all the considered variables. In Section 6, a certain approximation of conformal transformation is
introduced. Results are further discussed in Section 7.

2. Basic 2D Model Equations

In this work, we consider a class of hydrodynamic models for a scalar variable Φ(x, t) with x ∈ R2

and t ∈ R+. Evolution of the scalar variable is governed by the following equation

∂Φ
∂t

+ u · ∇Φ = ν∇2Φ− γΦ, (1)

where components of the vector x will be denoted as x = (x, y) and the components of the vector u
are u = (u, v). In Equation (1), ν denotes molecular viscosity (or diffusivity), the second RHS term,
i.e., −γΦ, represents the frictional damping which removes energy from large scales. Here, γ is a
constant coefficient with the dimension 1/τ where τ is a time scale. The solenoidal velocity field

u =

(
∂Ψ
∂y

,−∂Ψ
∂x

)
,
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is calculated from the stream function Ψ, i.e.,

Ψ = β
∫

dx′Φ(x′, t)|x− x′|−m+2, (2)

or, for m = 2
Ψ = β

∫
dx′Φ(x′, t)ln|x− x′|, (3)

where β is a model specific constant that can be set to 1 by rescaling of the system. For the models
known in the literature to be detailled below, m is an integer. Still, there is no principle limit on m that
we need to presuppose except m > 1. Both, Equations (2) and (3), lead to the following form of the
velocity components u = (u, v)

u = β
∫

dx′Φ(x′, t)
(y− y′)
|x− x′|m , (4)

v = −β
∫

dx′Φ(x′, t)
(x− x′)
|x− x′|m , (5)

The Equations (4) and (5) provide a family of long-range couplings between the velocity field u
and the scalar variable Φ(x, t) and depending on the parameter m, correspond to different models
of physical interest. For m = 3, Equations (1), (4) and (5) describe the surface quasi-geostrophic
(SQG) model, with the variable Φ being a temperature. The model mimics the evolution of rotating
buoyancy-driven flows near a solid surface and provides a good approximation of atmospheric flows
in mid-lattitudes [4]. For m = 2, the variable Φ is the vorticity in 2D turbulence and the case m = 6
is the asymptotic limit of an equation which describes large-scale flows of a rotating shallow fluid
flow [20] or a certain regime of plasma flows [19].

The presence of CG is revealed in the statistical approach, see Refs. [9,17]. Hence, instead of the
instantaneous scalar Φ(x, t), we will rather consider its probability density function f1(φ, x, t), where φ

is the sample space of the scalar Φ(x, t) (i.e., the space of values which Φ can take at point x and
at time t). The term f1(φ, x, t)dφ denotes a probability that the value of Φ(x, t) is contained within
the bounds

φ < Φ(x, t) ≤ φ + dφ.

The one-point pdf function f1(φ, x, t) cannot fully describe statistical dependencies between
fluctuations at different points of a stochastic field governed by Equation (1). Hence, in principle,
the multi-point pdfs need to be considered. In particular, the two-point pdf will be denoted as
f2(φ, x, φ′, x′, t), where φ′ denotes sample space of the scalar at points x′. The transport equation for
the one-point pdf contains unclosed terms connected to the two-point pdf [11]. Further, the transport
equation for the two-point pdf contains unclosed three-point pdf and so on. Hence, the transport
equations form an infinite hierarchy of equations, called the Lundgren–Monin–Novikov hierarchy.
Here, we limit ourselves to the first equation from this hierarchy and consider first the inviscid case
with no friction, i.e.,

∂ f1

∂t
+

∂

∂x

∫
dx′dφ′φ′α1(x− x′) f2(φ, x, φ′, x′, t) +

∂

∂y

∫
dx′dφ′φ′α2(x− x′) f2(φ, x, φ′, x′, t) = H, (6)

where

α1(x− x′) = − y− y′

|x− x′|m , α2(x− x′) =
x− x′

|x− x′|m . (7)

The termH will represent effects of non-zero viscosity and friction. For the time being we assume
H = 0. The caseH 6= 0 will be considered further in Section 4. For a detailed derivation of Equation (6),
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the reader is referred to Ref. [21]. Equation (6) is supplemented with the normalisation, separation and
coincidence conditions. The normalisation condition reads∫

dφ f1 = 1,
∫

dφ′ f2(φ, x, φ′, x′, t) = f1(φ, x, t), (8)

where the second formula holds for each fixed x′. The separation property states that when a distance
between points tends to infinity, fluctuations at these points become statistically independent. In terms
of the 2-point pdf, this can be written as

lim
|x−x′ |→∞

f2(x1, φ1, x′, φ′, t) = f1(φ, x, t) f1(φ
′, x′, t). (9)

The coincidence condition has the form

lim
|x−x′ |→0

f2 = δ(φ− φ′) f1, (10)

where δ(φ− φ′) is the the delta-function.
Characteristics of Equation (6) represent trajectories of Lagrangian particles moving in a

conditional velocity field 〈u(x, t)|φ, x〉 [21]. ForH = 0 we obtain

d
ds

t(s) = 1, (11)

d
ds

X(s) = 〈u(x, t)|φ, x〉
∣∣∣
{φ,x}={Φ(s),X(s)}

, (12)

d
ds

Φ(s) = 0, (13)

where

〈u(x, t)|φ, x〉 =
∫

dx′dφ′φ′α1(x− x′) f2(φ, x, φ′, x′, t) f−1
1 (φ, x, t) (14)

〈v(x, t)|φ, x〉 =
∫

dx′dφ′φ′α2(x− x′) f2(φ, x, φ′, x′, t) f−1
1 (φ, x, t). (15)

Equations (11)–(13) are supplemented by the initial conditions {φ0, x0}:

X(0, {φ0, x0}) = x0, (16)

Φ(0, {φ0, x0}) = φ0. (17)

From (11), (13) and (17), it is apparent that the scalar φ0 is conserved in time along the characteristic
curve X(s).

Along the characteristics, Equation (6) becomes the ordinary differential equation

d f1(s)
ds

= − f1(s)
[

∂

∂x
〈u(x, t)| {φ, x}〉+ ∂

∂y
〈v(x, t)| {φ, x}〉

]∣∣∣∣
{φ,x}={Φ(s),X(s)}

, (18)

which determines the pdf at points along the characteristic provided that the pdf at the initial point
f1(0) = f0({φ0, x0}) is known.

3. CG Invariance of Zero-Scalar Characteristic Line of the First LMN-Type Equation with Zero
Viscosity and Friction

The Lie group analysis for the present problem, i.e., for Equations (6), (7) and (11)–(13) with
m = 2 in conjunction with the normalisation, separation and coincidence conditions was performed
in Refs. [9,17]. Moreover, in Refs. [9,17] zero viscosity, friction and zero forcing was assumed, that is
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in Equation (6) H = 0. In this section, we generalise the basic results obtained therein to the cases
of arbitrary m. To start the analysis with the possibly simplest case we first assume H = 0. We will
further proceed in Section 4 to a more complicated case, by taking into account the presence of viscosity
and friction, hence,H 6= 0.

Recall that in Lie symmetry transformations, the transformed variables depend on the group
parameter ε and can be expanded in the Taylor series about ε = 0, e.g.,

f ∗1 = f1 + εη1 +O(ε2). (19)

According to the Lie’s first theorem, global transformation can be obtained from the infinitesimals
by solving the initial value problem [22]:

d f ∗1
dε

= η1( f ∗1 , x∗, t∗), for ε = 0, f ∗1 = f1. (20)

We start the analysis by transforming the conditional velocities defined by Equations (4) and (5)
and their derivatives from Equation (18). The following form of the symmetry operator is postulated:

X = ξt ∂

∂t
+ ξx ∂

∂x
+ ξy ∂

∂y
+ ξφ ∂

∂φ
+ η1

∂

∂ f1
(21)

+ ξx′ ∂

∂x′
+ ξy′ ∂

∂y′
+ ξφ′ ∂

∂φ′
+ η2

∂

∂ f2
.

As it was found in Ref. [9] the infinitesimal ξφ(x, x′, φ, φ′, t) is subject to the following constraint

∂ξφ

∂x
=

∂ξφ

∂y
= 0 or ξ

φ
x = ξ

φ
y = 0, (22)

which will also appear in the further part of the derivation. Following our previous study [9] on
vorticity in 2D turbulence, we assume the following form of the infinitesimal transformations

ξt = 0, (23)

ξx = cxx(x)x + cxy(x)y + dx(x), (24)

ξy = cyx(x)x + cyy(x)y + dy(x), (25)

ξx′ = cxx(x)x′ + cxy(x)y′ + dx(x), (26)

ξy′ = cyx(x)x′ + cyy(x)y′ + dy(x), (27)

ξφ = 6cxx(x)φ, (28)

ξφ′ = mcxx(x)φ′, (29)

η1 = a1 f1, a1 = −6cxx(x), (30)

η2 = a2 f2, a2 = −(6 + m)cxx(x), (31)

where derivatives of the functions dx(x) and dy(x) with respect to x and y read

dx
x(x) = 2cxx(x)− cxx

x (x)x− cxy
x (x)y, (32)

dx
y(x) = −cxx

y (x)x− cxy
y (x)y, (33)

dy
x(x) = cxy

x (x)x− cxx
x (x)y, (34)

dy
y(x) = 2cxx(x) + cxy

y (x)x− cyy
y (x)y, (35)
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where cxx = cyy and cxy = −cyx. The functions (23)–(35) for m = 2 are special forms of the ones
derived in Ref. [9]. In this work we show they also represent transformations of the considered set of
equations for arbitrary m > 1.

From the compatibility conditions dx
yx = dx

xy, dy
yx = dy

xy it follows that

cxy
x = 3cxx

y , cxy
y = −3cxx

x . (36)

Hence, cxx and cxy are harmonic functions of x, as from the derivative of Equation (36), we deduce
cxy

xx + cxy
yy = 0 and cxx

xx + cxx
yy = 0. Moreover, it follows from relations (24), (25) and (32)–(35) that

ξx
x = 3cxx, ξx

y = cxy, ξ
y
x = cyx, ξ

y
y = 3cyy, (37)

which assures that the Cauchy–Riemann conditions

ξx
y = −ξ

y
x, ξx

x = ξ
y
y (38)

are satisfied (for details see Refs. [9,17]).
The explicit form of the infinitesimal ξφ given in Equation (28) leads to the relationships

ξ
φ
x = 6cxx

x (x)φ, ξ
φ
y = 6cxx

y (x)φ. (39)

As it was discussed in [9,17], due to the constraint (22) the CG is generally broken in the first LMN
equation, however, it is recovered on its zero-vorticity characteristic line, that is for Equations (11)–(18)
with φ0 = 0. Along these lines the condition (22) is satisfied. An analogous result is valid also for the
presently considered class of hydrodynamic models (1)–(3). To show this, we first establish how the
derivatives with respect to time, the functions α1, α2 and the infinitesimal term dx′dφ′ in Equations (14)
and (15) transform. To present the latter in new variables, we use the method from Ref. [23] and, using
relations (26), (27), (29) we obtain

dx′∗dφ′∗ = dx′dφ′
[

1 + ε

(
∂ξx′

∂x′
+

∂ξy′

∂y′
+

∂ξφ′

∂φ′

)]
+O(ε2) = dx′dφ′ [1 + (2 + m)cxxε] +O(ε2). (40)

To transform α1, α2 in Equations (14) and (15), we use the definition (7) and introduce infinitesimals
from Equations (24)–(27). We obtain

α1∗ =
[
α1 + ε

(
cyyα1 − cyxα2

)]
(1 + 2cxxε)−m/2 +O(ε2), (41)

α2∗ =
[
α2 + ε

(
cxxα2 − cxyα1

)]
(1 + 2cxxε)−m/2 +O(ε2), (42)

where the terms raised to the power −m/2 can be developed in the Taylor series around ε = 0,
which gives

α1∗ =
[
α1 + ε

(
cyyα1 − cyxα2

)]
(1−mcxxε) +O(ε2), (43)

α2∗ =
[
α2 + ε

(
cxxα2 − cxyα1

)]
(1−mcxxε) +O(ε2), (44)

Finally, the transformed ratio f ∗2 f ∗−1
1 from Equations (14) and (15) reads

f ∗2 f ∗−1
1 = f2 f−1

1 [1− (6 + m)εcxx] (1− 6εcxx)−1 +O(ε2) = f2 f−1
1 (1−mεcxx) +O(ε2) (45)
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Introducing (40), (43)–(45) and φ
′∗ = φ′ + εξφ′ +O(ε2), with ξφ′ described in Equation (29) into

Equations (14) and (15), we obtain the following zero and first-order expansion terms

〈u(x, t)|φ, x〉∗=〈u(x, t)|φ, x〉+ 3cxx〈u(x, t)|φ, x〉ε + cxy〈v(x, t)|φ, x〉ε +O(ε2), (46)

〈v(x, t)|φ, x〉∗=〈v(x, t)|φ, x〉 − cxy〈u(x, t)|φ, x〉ε + 3cxx〈v(x, t)|φ, x〉ε +O(ε2). (47)

Derivatives of the conditional velocities, presented in Equation (18), transform according to

[〈u(x, t)| {φ, x}〉x]∗ = 〈u(x, t)| {φ, x}〉x + ζu
x ε +O(ε2), (48)[

〈v(x, t)| {φ, x}〉y
]∗

= 〈v(x, t)| {φ, x}〉y + ζv
yε +O(ε2), (49)

where with the use of relation (36) and standard transformations of Lie group analysis we obtain

ζu
x + ζv

y = 6cxx
x 〈u(x, t)| {φ, x}〉+ 6cxx

y 〈v(x, t)| {φ, x}〉 (50)

− 6cxx
x φ〈u(x, t)| {φ, x}〉φ − 6cxx

y φ〈v(x, t)| {φ, x}〉φ. (51)

We postulate, the Lagrangian variables in Equations (11)–(13) and (18) transform as follows

X(t)∗ = X + ηXε +O(ε2) = X + ε [cxx(X, Y)X + cxy(X, Y)Y + dx(X, Y)] +O(ε2), (52)

Y(t)∗ = Y + ηYε +O(ε2) = Y + ε [cyx(X, Y)X + cyy(X, Y)Y + dy(X, Y)] +O(ε2), (53)

Φ∗(t) = Φ + ηΦε +O(ε2) = Φ + ε6cxx(X, Y)Φ(t) +O(ε2), (54)

f ∗(t) = f (t) + η f ε +O(ε2) = f − ε6cxx(X, Y) f (t) +O(ε2). (55)

Derivatives with respect to time will transform as

X∗t = Xt + εζX
t +O(ε2) = Xt + εDt(η

X) +O(ε2), (56)

Y∗t = Yt + εζY
t +O(ε2) = Yt + εDt(η

Y) +O(ε2), (57)

Φ∗t = Φt + εζΦ
t +O(ε2) = Φt + εDt(η

Φ) +O(ε2), (58)

f ∗t = ft + εζ
f
t +O(ε

2) = ft + εDt(η
f ) +O(ε2), (59)

where the differential operator Dt for the present problem reads

Dt =
∂

∂t
+ Xt

∂

∂X
+ Yt

∂

∂Y
+ Φt

∂

∂Φ
+ ft

∂

∂ f
. . . . (60)

With this we obtain

ζX
t = 3cxxXt + cxyYt, (61)

ζY
t = cyxXt + 3cxxYt, (62)

ζΦ
t = 6cxxΦt + 6Φ(t)cxx

X Xt + 6Φ(t)cxx
Y Yt, (63)

ζ
f
t = −6cxx ft − 6 f (t)cxx

X Xt − 6 f (t)cxx
Y Yt. (64)

Next, we introduce the transformations (46), (47), (50), (56)–(59) into Equations (12), (13) and (18).
With this, Equation (12) changes to the following form

Xt + ε [3cxxXt + cxyYt] = (65)

[〈u(x, t)|φ, x〉+ ε3cxx〈u(x, t)|φ, x〉+ εcxy〈v(x, t)|φ, x〉]{φ,x}={Φ(s),X(s)} +O(ε
2),

Yt + ε [cyxXt + 3cxxYt] = (66)

[〈v(x, t)|φ, x〉 − cxyε〈u(x, t)|φ, x〉+ 3cxxε〈v(x, t)|φ, x〉]{φ,x}={Φ(s),X(s)} +O(ε
2),
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and we observe that the terms of order ε cancel if Equation (12) and relation cxy = −cyx are used.
Further, Equation (13) in the transformed variables (58) reads

Φt + ε
[
6cxxΦt + 6cxx

x ΦXt + 6cxx
y ΦYt

]
+O(ε2) = 0 (67)

and will reduce to (13) under the condition Φ = 0, if the original Equation (13), i.e., Φt = 0, is
also employed. Note that this is the place where the previously mentioned condition (22) appears,
as according to relation (39), ξ

φ
x = 6cxx

x (x)φ, ξ
φ
y = 6cxx

y (x)φ. As it is seen, the constraint (22) is satisfied
on the zero-scalar characteristic where φ = Φ(s) = 0. The same result was obtained in [17] for vorticity
isolines. Here, we see that it also holds for a more general case, i.e., for the whole class of the considered
hydrodynamic models (1)–(3). Finally, the ordinary differential equation for the pdf f (s) along the
characteristic, Equation (18), may be rewritten in the new variables with (46), (47), (50), (56)–(59)

ft + ε [−6cxx ft − 6 f (t)cxx
X Xt − 6 f (t)cxx

Y Yt] = (68)

− ( f − ε6cxx f )
[
〈u(x, t)| {φ, x}〉x + 〈v(x, t)| {φ, x}〉y

+6cxx
x ε〈u(x, t)| {φ, x}〉+ 6cxx

y ε〈v(x, t)| {φ, x}〉

− 6cxx
x φε〈u(x, t)| {φ, x}〉φ − 6cxx

y φε〈v(x, t)| {φ, x}〉φ
]
{φ,x}={Φ(s),X(s)}

+O(ε2).

For the terms of order ε, we obtain

−6cxx ft − 6 f cxx
X Xt − 6 f cxx

Y Yt = − f
[
6cxx

x 〈u(x, t)| {φ, x}〉 − 6cxx
y 〈v(x, t)| {φ, x}〉

]
{φ,x}={Φ(s),X(s)}

(69)

+ 6cxx f
[
〈u(x, t)| {φ, x}〉x + 〈v(x, t)| {φ, x}〉y

]
{φ,x}={Φ(s),X(s)}

+ Φ
[
6cxx

x f 〈u(x, t)| {φ, x}〉φ + 6cxx
y f 〈v(x, t)| {φ, x}〉φ

]
{φ,x}={Φ(s),X(s)}

Here again, as in Equation (67), the last bracketed term vanishes on the isoline Φ = 0.
From Equation (69) we obtain an identity if the original Equations (12) and (18) are additionally
employed. This finally proves the invariance of zero-scalar characteristics (11–13), (18) of the first
LMN-type equation.

4. CG Invariance of Zero-Scalar Characteristic Line of the First LMN-Type Equation with
Viscosity and Friction

In this section, the results presented above will be generalised and instead of Equation (6) we
will consider

∂ f1

∂t
+

∂

∂x

∫
dx′dφ′φ′α1(x− x′) f2(φ, x, φ′, x′, t) +

∂

∂y

∫
dx′dφ′φ′α2(x− x′) f2(φ, x, φ′, x′, t) = H, (70)

where in the termH the large-scale friction and viscosity are encoded (see [21])

H = γ
∂

∂φ
(φ f1)− ν

∂

∂φ

[∫
dφ′

∫
dx′δ(x− x′)φ′

(
∂2 f2

(∂x′)2 +
∂2 f2

(∂y′)2

)]
. (71)

The RHS first term represents the frictional damping, which removes energy from the large scales,
mimicking the statistically stationary inverse cascade [24]. Physically, this term results from a real 3D
geometry in which the considered 2D flow is embedded. The second RHS term in (71) contributes to
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the direct energy cascade and removes enstrophy at small scales due to viscosity. This term can also be
reformulated as follows

−ν
∂

∂φ

(∫
dφ′

∫
dx′δ(x− x′)φ′

(
∂2 f2

(∂x′)2 +
∂2 f2

(∂y′)2

))
= (72)

−ν lim
|x′−x|→0

∫
dφ′φ′

∂

∂φ

[
∂2 f2

(∂x′)2 +
∂2 f2

(∂y′)2

]
≡ −ν

∂

∂φ
lim

|x′−x|→0

∫
dφ′φ′∆′ f2.

The presence of additional terms in the pdf Equation (70) modifies the characteristic
Equations (11)–(18), which are now generalised to

d
dt

X(t) = 〈u(x, t)|φ, x〉|{φ,x}={Φ(s),X(t)} , (73)

d
dt

Φ(t) = −γΦ + ν lim
|x′−x|→0

∫
dφ′φ′ f−1

1 ∆′ f2

∣∣∣∣
{φ,x}={φ(t),X(t)}

, (74)

and

d f1(t)
dt

= − f1(t)
[

∂

∂x
〈u(x, t)| {φ, x}〉+ ∂

∂y
〈v(x, t)| {φ, x}〉

]∣∣∣∣
{φ,x}={Φ(t),X(t)}

(75)

+ γ f1(t)− ν f1(t)
[

∂

∂φ
lim

|x′−x|→0

∫
dφ′φ′ f−1

1 ∆′ f2

] ∣∣∣∣∣
{φ,x}={φ(t),X(t)}

.

We first note that the presence of the large-scale friction does not break the CG at the isoline Φ = 0.
The transformed first RHS term in Equation (74) reads

−γΦ∗ = −γΦ− γε6cxxΦ +O(ε2)

and the term of order ε is zero at the isoline Φ = 0.
The transformed term γ f1(t) in Equation (75) reads

γ f ∗1 = γ f1 − εγ6cxx f1 +O(ε2)

The same multiplication factor −6cxx is also present in the remaining terms in Equation (69),
hence, the CG is not broken due to the presence of large-scale friction.

To transform the viscous terms from Equations (74) and (75), we first note that with (29) the
infinitesimal dφ′∗ is transformed according to

dφ′∗ = dφ′
(

1 + εξ
φ′

φ′ +O(ε
2)
)
= dφ′ (1 + mcxxε) +O(ε2). (76)

Using (24)–(27), the module |x∗ − x′∗| reads

|x∗ − x′∗| = |x− x′|(1 + 2εcxx) +O(ε2). (77)

Hence, if |x∗− x′∗| → 0, then we get that |x− x′| → 0. Further, the Laplacian ∆′ f2 ≡ f2,x′x′ + f2,y′y′

present in Equation (75) will be transformed according to[
∆′ f2

]∗
= ∆′ f2 + ε(ζ2,x′x′ + ζ2,y′y′) +O(ε2). (78)
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Introducing the following differential operators for the present problem

Dx′ =
∂

∂x′
+ f2,x′

∂

∂ f2
+ f2,x′x′

∂

∂ f2,x′
+ f2,x′y′

∂

∂ f2,y′
+ · · · , (79)

Dy′ =
∂

∂y′
+ f2,y′

∂

∂ f2
+ f2,y′y′

∂

∂ f2,y′
+ f2,x′y′

∂

∂ f2,x′
+ · · · , (80)

we can use relations (26), (27) and (31) to calculate first

ζ2,x′ = Dx′ (η2)− f2,x′ξ
x′
x′ − f2,y′ξ

y′

x′ = −(7 + m)cxx f2,x′ − cyx f2,y′ , (81)

ζ2,y′ = Dy′ (η2)− f2,x′ξ
x′
y′ − f2,y′ξ

y′

y′ = −(7 + m)cxx f2,y′ − cxy f2,x′ , (82)

and next

ζ2,x′x′ = Dx′
(
ζ2,x′

)
− f2,x′x′ξ

x′
x′ − f2,x′y′ξ

y′

x′ = −(8 + m)cxx f2,x′x′ − 2cyx f2,y′x′ , (83)

ζ2,y′y′ = Dy′(ζ2,y′)− f2,y′x′ξ
x′
y′ − f2,y′y′ξ

y′

y′ = −(8 + m)cxx f2,y′y′ − 2cxy f2,y′x′ . (84)

With this we finally obtain the transformed Laplacian in the form

f ∗2,x′x′ + f ∗2,y′y′ =
(

f2,x′x′ + f2,y′y′
)
(1− (8 + m)εcxx) +O(ε2). (85)

Collecting all terms, the transformed integral term in Equation (74) reads

lim
|x′−x|→0

∫
dφ′φ′(1 + mcxxε)(1 + mcxxε)(1 + 6cxxε) (1− (8 + m)εcxx) f−1

1 ∆′ f2

= (1 + (m− 2)cxxε) lim
|x′−x|→0

∫
dφ′φ′ f−1

1 ∆′ f2 +O(ε2). (86)

For the invariance of Equation (74), it is necessary for the coefficient of order ε to be equal 6cxx.
This is true only in the case m− 2 = 6, hence m = 8. The viscous term in Equation (75), after the
transformation, has the following O(ε) contribution

(m− 14)cxx f1(t)
∂

∂φ
lim

|x′−x|→0

∫
dφ′φ′ f−1

1 ∆′ f2

∣∣∣∣∣
{φ,x}={φ(t),X(t)}

. (87)

In this case, for the invariance of Equation (75) the condition (m− 14)cxx = −6cxx should be
satisfied, as all terms in Equation (69) are multiplied by this factor. This is possible again for m = 8.

We conclude that viscosity is symmetry breaking with respect to the CG for all values of m,
except for m = 8. We suspect that this could be the reason why the CG was not observed at small
scale turbulence in the studies [5–7,18]. The present group theoretical analysis provides a theoretical
explanation of this fact.

5. Example of CG Transformation

Presently, we will consider an example of the conformal transformation which satisfies all the
necessary conditions (23)–(35) and derive the global form of transformations for the Lagrangian
quantities X(t), Y(t), Φ(t), f1(t) and the coordinates x′, y′, φ′. Transformations of the three latter
quantities will be calculated at point x = X(t), y = Y(t). Let us choose cxx = cyy = aX, where a is an
arbitrary constants and cxy = −cyx = −3aY. From Equations (32)–(35), it follows that

dx =
a
2

X2 +
3a
2

Y2, dy = −aXY.
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This leads to the following infinitesimals, presented in general form in Equations (26), (27), (29)
and (52)–(55),

ξx =
3a
2

x2 − 3a
2

y2 (88)

ξy = 3axy (89)

ξx′ = axx′ +
a
2

x2 − 3ayy′ +
3a
2

y2 (90)

ξy′ = 3ayx′ + axy′ − axy, (91)

ξφ′ = maxφ′, (92)

ηX =
3a
2

X2 − 3a
2

Y2 (93)

ηY = 3aXY (94)

η f = −6aX f1(t), (95)

With this and using Lie’s first theorem [22], see Equation (20), it can be shown that (88), (89) and
(93), (94) result in the following global form of transformations:

x∗ =
x− 3

2 aε(x2 + y2)

1− 3axε + 9
4 a2ε2(x2 + y2)

= F (x, y), X∗ = F (X, Y), (96)

y∗ =
y

1− 3axε + 9
4 a2ε2(x2 + y2)

= G(x, y), Y∗ = G(X, Y), (97)

where the following relationships, important for further transformations, hold

∂F
∂X

=
∂G
∂Y

,
∂F
∂Y

= − ∂G
∂X

(98)

and (
∂F
∂X

)2
+

(
∂F
∂Y

)2
=

(
∂G
∂X

)2
+

(
∂G
∂Y

)2
=

1[
1− 3aXε + 9

4 a2ε2(X2 + Y2)
]2 . (99)

We define
D(X, Y) = 1− 3aXε +

9
4

a2ε2(X2 + Y2). (100)

In order to find global transformations of x′ and y′ we introduce new variables rx = (X− x′) and
ry = (Y− y′) with infinitesimals, respectively

ξx − ξx′ ∣∣
x=X = rxaX− 3ryaY, (101)

ξy − ξy′ ∣∣
x=X = 3rxaY + ryaX. (102)

According to the Lie’s theorem [22], see Equation (20), the global forms of transformations can be
found from the solution of equation

drx∗

dε
= rx∗aX∗ − 3ry∗aY∗, (103)

dry∗

dε
= 3rx∗aY∗ + ry∗aX∗, (104)

with boundary conditions rx∗ = rx and ry∗ = ry for ε = 0.
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After some further transformations presented in more detail in the Appendix A and with the use
of relations (98)–(100), the following final solution for the transformed quantities rx∗ = (X∗ − x′∗) and
ry∗ = (Y∗ − y′∗) is derived

(X∗ − x′∗) = [D(X, Y)]2/3
[
(X− x′)

∂F (X, Y)
∂X

+ (Y− y′)
∂F (X, Y)

∂Y

]
, (105)

(Y∗ − y′∗) = [D(X, Y)]2/3
[
(X− x′)

∂G(X, Y)
∂X

+ (Y− y′)
∂G(X, Y)

∂Y

]
. (106)

Due to relation (98), Equations (105) and (106) represent the classical scaling and rotation
transformations. As it is seen, while x and X are transformed conformally according to
Equations (96) and (97), the space x′ is only translated, rotated and rescaled. The scaling factor
and the angle depend on X (see also Appendix A).

Finally, in order to find the global transformations of φ, we solve

dφ∗

φ∗
= maX∗dε, (107)

which gives the following scaling of φ′

φ
′∗ = φ′ [D(x, y)]−m/3 (108)

and, analogously, for f1 and f2 we have

f ∗1 = f1 [D(x, y)]2 , f ∗2 = f2 [D(x, y)]2+m/3 . (109)

The transformed pdf’s satisfy the normalisation conditions (8). For further comparison we present
also the transformed conditional velocities calculated from the integrals, Equations (14) and (15),
written in the new variables

〈u(x, t)|φ, x〉∗ = F (x, y)
∂x

〈u(x, t)|φ, x〉+ F (x, y)
∂y

〈v(x, t)|φ, x〉 (110)

〈v(x, t)|φ, x〉∗ = G(x, y)
∂x

〈u(x, t)|φ, x〉+ G(x, y)
∂y

〈v(x, t)|φ, x〉. (111)

Such form assures the invariance of Equation (12).
We illustrate the derived transformations with an example given in the schematic Figure 1. Let us

consider an exemplary Lagrangian path of Φ = 0, which is, similarly as in Ref. [5] divided into
small segments and parametrized. We move along the isoline, by tracking a growing tip of the curve
(Figure 1, left panel) and transform it according to Equations (96) and (97) (right panel in Figure 1).
Points of space x′ are translated, rotated and rescaled according to Equations (105) and (106).
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Figure 1. Illustrative zero-scalar Lagrangian particle path (left panel) and its conformal transformation
(right panel). The growing tip of the curve is denoted by the symbol ∗.
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6. Approximate Shape of the Scalar Isolines for the Conformal Transformations of Both x and x′

It was shown above that the considered set of Equations (11)–(13) and (18) are invariant under the
proposed set of transformations (23)–(31). In spite of this, it is not easy to interpret these results from the
physical point of view. In particular, the fact that x and x′ spaces transform differently. As it is evident
from the example of global transformations from Section 5, the x space is transformed conformally
according to Equations (96) and (97), whereas the x′ space is rotated and rescaled, according to
Equations (105) and (106), see also Figure 1.

We argue here that the obtained transformed isoline could be interpreted as an approximation
of an isoline in the conformally transformed geometry both for x and x′, under certain conditions.
To show it let us first assume that both x and x′ transform conformally according to

x∗ = F (x, y), y∗ = G(x, y), x′∗ = F (x′, y′), y′∗ = G(x′, y′), (112)

see also Equations (96) and (97) for the definitions of functions F and G. The goal is to calculate the
conditional velocities 〈u(x, t)|φ, x〉 and 〈v(x, t)|φ, x〉 form Equations (14) and (15) which determine the
shape of the isoline. For this we assume φ′ and f2 f−1

1 transform according to

φ
′∗ = φ′

[(
∂F (x′, y′)

∂x′

)2

+

(
∂F (x′, y′)

∂y′

)2
]A

= φ′
[
D(x′, y′)

]−2A , (113)

f ∗2 f ∗−1
1 = f2 f−1

1

[(
∂F (x′, y′)

∂x′

)2

+

(
∂F (x′, y′)

∂y′

)2
]−A

= f2 f−1
1
[
D(x′, y′)

]2A , (114)

where A is a constant, which remains unspecified so far. With this, after calculating the
determinant of the Jacobi matrix, the transformed increment dx′∗dy′∗dφ′∗ present in the integrals in
Equations (14) and (15) reads

dx′∗dy′∗dφ′∗ = dx′dy′dφ′
[(

∂F (x′, y′)
∂x′

)2
+

(
∂F (x′, y′)

∂y′

)2
]A+1

= dx′dy′dφ′
[
D(x′, y′)

]−2−2A . (115)

It is clear the considered set of Equations (11)–(13) and (18) is not invariant under the above set
of transformations. However, we note the coefficients α1 and α2 defined in Equation (7) are singular
at point x = x′. This singularity means that the largest contribution to the value of the integrals
in Equations (14) and (15) for transformed variables comes from points x′∗ which are close to x∗.
Hence, we argue we can approximate transformed conditional velocities by developing the functions
F (x′, y′)′ and G(x′, y′)′ in the Taylor series as follows

x′∗ ≈ F (x, y)︸ ︷︷ ︸
=x∗

+
∂F (x′, y′)

∂x′

∣∣∣∣∣
x′=x

(x′ − x) +
∂F (x′, y′)

∂y′

∣∣∣∣∣
x′=x

(y′ − y), (116)

y′∗ ≈ G(x, y)︸ ︷︷ ︸
=y∗

+
∂G(x′, y′)

∂x′

∣∣∣∣∣
x′=x

(x′ − x) +
∂G(x′, y′)

∂y′

∣∣∣∣∣
x′=x

(y′ − y). (117)

This form is already similar to the solution (105) and (106) from the previous section, apart from
the scaling factor D2/3 which is not present here.
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With this, and after some straightforward transformations, the coefficients α1∗ and α2∗ in
Equation (7) can be approximated by

α1∗ ≈ α1(x− x′) [D(x, y)]m
∂F (x′, y′)

∂x′

∣∣∣∣∣
x′=x

+ α2(x− x′) [D(x, y)]m
∂F (x′, y′)

∂y′

∣∣∣∣∣
x′=x

(118)

α2∗ ≈ α1(x− x′) [D(x, y)]m
∂G(x′, y′)

∂x′

∣∣∣∣∣
x′=x

+ α2(x− x′) [D(x, y)]m
∂G(x′, y′)

∂y′

∣∣∣∣∣
x′=x

, (119)

The same approximation will be used to replace the transformed increment dx′∗dy′∗dφ′∗ from
Equation (115) by dx′dy′dφ′ [D(x, y)]−2−2A. With this, the transformed conditional velocities from
Equations (14) and (15) read

〈u(x, t)|φ, x〉∗ ≈ [D(x, y)]−2−2A+m
[
F (x, y)

∂x
〈u(x, t)|φ, x〉+ F (x, y)

∂y
〈v(x, t)|φ, x〉

]
, (120)

〈v(x, t)|φ, x〉∗ ≈ [D(x, y)]−2−2A+m
[
G(x, y)

∂x
〈u(x, t)|φ, x〉+ G(x, y)

∂y
〈v(x, t)|φ, x〉

]
, (121)

and are identical to Equations (110) and (111) from the previous section provided that−2− 2A+m = 0.
This means that the shape of isolines in the conformally transformed geometry for both x and x′ can
be very close to the shape of isolines determined by the transformations presented in Section 5.

7. Discussion

In Section 3, the CG invariance derived in Refs. [9,17] for certain 2D vorticity statistics along
characteristic lines of LMN equation has been generalised to a broader class of hydrodynamic models
with a parameter m > 1, see Equations (4) and (5). The value m = 2 corresponds to vorticity in 2D,
m = 3 describes the SQG model and m = 6 refers to the large-scale flows in a rotating shallow fluid.
Invariance of scalar isolines in such model was investigated in Ref. [18], based on numerical data
analysis. Derivations presented here concern analogous problem of zero-scalar characteristic lines and
provide analytical confirmation of the CG invariance, under certain conditions.

Further, in Section 4, non-zero viscosity and friction were included in the analysis. It was found
that the viscosity breaks the CG (apart from the case m = 8), while equations with zero viscosity,
but non-zero large-scale friction are still conformally invariant. This directly explains CG invariance in
the inverse cascade, as observed in Refs. [5,6]. When energy is pumped into the system at a certain
forcing scale (certain wavenumber), the double-cascade scenario occurs in 2D flows, as found in the
seminal work by R. Kraichnan [25]. The energy is transported in the inverse cascade towards large
scales and finally extracted by the large-scale friction. On the other hand, the direct enstrophy cascade
takes place between the forcing scale and the small, Kolmogorov’s eddies were enstrophy dissipation
due to viscosity takes place. Our study, which shows breaking of CG by the viscous term, could explain
why the conformal invariance was not observed at small scales in Refs. [5,6].

In Section 5 explicit, global forms of the transformed quantities were derived. It was shown that
the x space is transformed conformally while the x′ space, needed to calculate two-point statistics in
the integrals (14), (15), was translated, rotated and rescaled, see Figure 1. To interpret this result, we
showed in Section 6 that the transformed characteristic isolines could be understood as approximation
of isolines in conformally transformed geometry for both x and x′, under certain conditions. We argued,
due to the singular nature of functions α1 and α2 defined in Equation (7), the most significant
contribution to the value of integral (14), (15) comes from points x′ close to x. Hence, we proposed
to replace the functions F (x′, y′) and G(x′, y′), see Equations (112) in the transformed integral by
their Taylor series expansions (116) and (117). With this, the conditional velocities (120), (121) which
determine the shape of the zero-scalar characteristic were approximately equal to the conditional
velocities (110), (111) determined by the derived transformations. This result opens room for a further
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study. It should be validated, based on numerical data, whether the assumed approximation is good
enough and how the exact zero-vorticity characteristics in the conformally-transformed flow will
deviate from the result (120) and (121).

Finally, we note the obtained analytical results hold irrespective of the value of the friction
coefficient γ in Equation (1). There is numerical and experimental evidence that this coefficient affects
the scaling of energy spectra in the direct cascade regime [26,27]. Large values of γ result in larger
deviations from the Kraichnan’s scaling [25] and, hence, are symmetry breaking. It could be that with
increasing γ and steeper energy spectrum the approximation discussed in Section 6 becomes less
satisfied due to higher energy contribution of the large scales. However, as the studies in Refs. [26,27]
concern forced turbulence, in order to draw conclusions about behaviour of turbulent systems, the role
of forcing and its effect on CG should first be investigated.

8. Conclusions and Outlook

The results devoted to the conformal invariance of the statistics of two-dimensional turbulence
were reviewed in Refs. [7,18]. The main result presented therein was that the scalar isolines in 2D
turbulence are conformally invariant curves, provided that they are boundaries of large-scale clusters.
CG invariance was not confirmed at small scales. It was hence argued that the CG is present only in
the inverse cascade. A question posed in Ref. [7] was whether the conformal invariance of statistics of
the zero-vorticity isolines could be explained by symmetry analysis of the underlying equations.

In the present work, we considered an analogous problem of the first equation from the infinite
LMN hierarchy for the probability density function of the scalar. This equation is of hyperbolic type
and can be solved by the method of characteristics. As argued in Ref. [21] analogies to the Lagrangian
description of turbulence can be found here. The characteristic curves represent tracks of Lagrangian
particles moving in the conditionally averaged velocity field. It can be concluded that the characteristic
equations describe the average dynamics of a class of fluid particles.

As we showed in the present paper, the zero-scalar characteristic equations are CG invariant in
the inviscid case. The presence of large-scale friction does not break CG. This finding could explain
why in previous studies in Refs. [5–7] the CG was observed only at large scales. These scales are not
influenced by viscosity, which breaks CG. The energy transfer among these scales occurs backwards,
i.e., from the forcing scale towards larger structures where it is finally removed by the large-scale
friction term. Even though the scalar isolines as considered in [7] are not the same objects as the
characteristic lines investigated in the present paper, the mechanism which leads to the breaking or
sustaining of CG is the same, due to the same underlying Equation (1).

In future studies, the analysis will be extended to arbitrary n-th equation from the infinite LMN
hierarchy, such that invariance of multi-point pdf’s and multi-point statistics can be investigated.
Moreover, we will add the forcing into the analysis. To include this, an extension to at least two-point
statistics (second equation from the LMN hierarchy) is needed.

Finally, the results presented in Sections 5 and 6 needs further careful studies. The first equation
from the LMN hierarchy contains one-point and two-point pdf’s of the scalar. However, the latter is
integrated over the variables x′ and φ′ and all terms in this equation are functions of x only. We showed
that equation which describes evolution of the one-point pdf along zero-scalar characteristic line is
conformally invariant, as the x space transforms conformally. In Section 6, we considered a different
case, where both x and x′ were transformed conformally. We calculated integrals which define the
transformed conditional velocities using certain approximation, making use of the singular form
of function under the integral. The obtained conditional velocities were, under certain conditions,
identical to those derived in Section 5. Further studies are needed to find out whether and when the
assumed approximation is good enough. For this, analysis of numerical data of 2D turbulence will be
performed. It is also possible that similar approximation can be found in the 3D case, e.g., for flows in
thin layers or for rotating fluids. There is numerical evidence that vorticity isolines are conformally
invariant curves also in such case [28].
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Appendix A

We present the solution of Equations (103) and (104) rewritten here as

drx∗

dε
= rx∗aX∗ − 3ry∗aY∗, (A1)

dry∗

dε
= 3rx∗aY∗ + ry∗aX∗, (A2)

with boundary conditions rx∗ = rx and ry∗ = ry for ε = 0.
In order to solve the above equations, we first multiply Equation (103) by rx∗ and Equation (104)

by ry∗ and add the two to obtain

d
[
(rx∗)2 + (ry∗)2]

[(rx∗)2 + (ry∗)2]
= 2aX∗dε (A3)

If we introduce the forms of X∗ and Y∗ from Equations (96) and (97) and integrate with the
prescribed boundary conditions, we obtain

ln
(rx∗)2 + (ry∗)2

(rx)2 + (ry)2 = −2
3

lnD(x, y)

where

D(x, y) =
(

1− 3aXε +
9
4

a2ε2(X2 + Y2)

)
(A4)

or rx∗ = rx and ry∗ = ry if X = 0 and Y = 0.
We see the solution is a scaling transformation of the module of the distance vector√

(rx∗)2 + (ry∗)2 =
√
(rx)2 + (ry)2 [D(x, y)]−1/3 (A5)

It should also be noted that D can be written in terms of functions F and G from
Equations (96) and (97)

[D(X, Y)]−2 =

(
∂F
∂x

)2
+

(
∂F
∂y

)2
=

(
∂G
∂x

)2
+

(
∂G
∂y

)2
(A6)
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Next, we note
d
dε

(
ry∗

rx∗

)
=

1
rx∗

dry∗

dε
− ry∗

(rx∗)2
drx∗

dε
.

Manipulating Equations (103) and (104), we obtain

d
(

ry∗
rx∗

)
[

1 +
(

ry∗
rx∗

)2
] = 3aY∗dε. (A7)

We substitute again Equations (96) and (97) for x∗ and y∗ and integrate, taking into account the
condition ry∗/rx∗ = ry/rx for ε = 0. With this we obtain

θ = arctan
(

ry∗

rx∗

)
− arctan

(
ry

rx

)
= 2 arctan

[
3a2 (X2 + Y2) ε− 2aX

2aY

]
+ 2 arctan

(
X
Y

)
(A8)

for Y 6= 0 and

arctan
(

ry∗

rx∗

)
= arctan

(
ry

rx

)
. (A9)

for Y = 0. These transformations present an angle θ the x′ space is rotated.
In order to calculate transformed variables rx and ry, sine and cosine of this angle should first be

derived. With basic trigonometric formulas, we obtain

sin θ =
6aεY(2− 3aεX)

4D(X, Y)
= D(X, Y)

∂G
∂x

= −D(X, Y)
∂F
∂y

(A10)

cos θ =
9a2ε2(X2 −Y2)− 12aεX + 4

4D(X, Y)
= D(X, Y)

∂G
∂y

= D(X, Y)
∂F
∂x

. (A11)

Taking into account also the scaling (A5), we finally have

(X∗ − x′∗) = [D(X, Y)]2/3
[
(X− x′)

∂F (X, Y)
∂X

+ (Y− y′)
∂F (X, Y)

∂Y

]
, (A12)

(Y∗ − y′∗) = [D(X, Y)]2/3
[
(X− x′)

∂G(X, Y)
∂X

+ (Y− y′)
∂G(X, Y)

∂Y

]
. (A13)
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