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Abstract: The peristaltic flow of Johnson–Segalman fluid in a symmetric curved channel with
convective conditions and flexible walls is addressed in this article. The channel walls are considered
to be compliant. The main objective of this article is to discuss the effects of curvilinear of the
channel and heat/mass convection through boundary conditions. The constitutive equations for
Johnson–Segalman fluid are modeled and analyzed under lubrication approach. The stream function,
temperature, and concentration profiles are derived. The analytical solutions are obtained by using
regular perturbation method for significant number, named as Weissenberg number. The influence
of the parameter values on the physical level of interest is outlined and discussed. Comparison is
made between Jhonson-Segalman and Newtonian fluid. It is concluded that the axial velocity of
Jhonson-Segalman fluid is substantially higher than that of Newtonian fluid.
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1. Introduction

The researchers have great interest in peristaltic transport of fluids due to immense applications
in physiology, biomedical engineering andnindustry. Such motion is caused by a wave of expansion
and contraction that propagates along the channel walls. Peristalsis includes the passage of urine
from kidney to bladder, swallowing of food through oesophagus, the movement of chyme in the
gastrointestinal tract, the vasomotion of small blood vessels, and many others. Blood pumps in the
dialysis and heart lung machine operate on the principle of peristaltic action. The roller and finger
pumps also operate according to this mechanism. In the nuclear industry, toxic materials can be moved
through such a system in order to avoid contaminants from the outside area. Pioneering researches on
the topic are presented by Latham [1], Shapiro et al. [2], and Yin and Fung [3]. Currently, abundant
literature exists on peristaltic flows of viscous and non-Newtonian fluids under different aspects
(see [4–19] and several studies there in). Amongst the several models of non-Newtonian material
there is one fluid model that can describe the “spurt” phenomenon. It is subclass of integral type
non-Newtonian material and is known as the Johnson–Segalman (JS) fluid. The phrase “spurt” is
being used to characterize a significant volume rise to a slight rise in the moving pressure gradient.
The contributions of Hayat et al. [20–22] are fundamental in this direction. Elshahed and Haroun [23]
investigated the peristaltically moving Johnson–Segalman fluid together with the impact of the
magnetism. Wang et al. [24] explored the peristalsis of the Johnson–Segalman fluid across a non-rigid
tube. In reality, the configuration of the most physiological tubes and glandular ducts is curved.
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In this context, the effect of curvature appears to be meaningful. This fact gives great motivation
to study peristaltic flow through curved channels. In the first place, Sato et al. [25] addressed the
two-dimensional peristaltic transport of viscous liquid inside a curved channel. Ali et al. [26] revisited
the analysis of Sato et al. [25] in a wave frame. Some more interesting studies for peristalsis in a curved
channel can be consulted through [27–31].

The effect of heat transfer has vast applications in food processing, dilation of blood vessels,
heat conduction in tissues, and its convection due to blood flow from the pores of the tissues.
The impact of both heat and mass transfer plays an essential part in spreading of chemical pollutants in
saturated soil, underground disposal of nuclear waste, thermal insulation, enhanced oil recovery, etc.
The effects of mass transfer arose in diffusion, combustion, and distillation processes, and in
many other industrial processes. Convective heat transfer through boundary conditions is used
in systems, such as steam turbines, nuclear power stations, thermal energy storage, etc. In this context,
Hina and Hayat [32] examined the effects of heat/mass transfer on Johnson-Segalman liquid inducing
peristaltic movement in a compliant curved channel. Mehmood et al. [33], Hayat et al. [34] and
Riaz et al. [35] analyzed the characteristics of heat flux in peristaltic transport with/without compliant
walls. Hayat et al. [36–39] conducted an analysis of non-Newtonian fluids with peristalsis in the
presence of convective constraints. Yasmin et al. [40] discussed the effects of convective conditions in
peristalsis of Johnson–Segalman fluid in an asymmetric channel.

It is noted that the peristalsis of non-Newtonian fluid in a curved channel with convective mass
transfer conditions at the walls is not addressed so far. Even such analysis is not carried out for
viscous fluids. The current research paper varies from the existing results in terms of convective
boundary conditions. The key focus of this paper is the implementation of a novel definition of
convective heat and mass transfer conditions in the theory of Johnson–Segalman fluid transferred via
a peristaltic motion across a curved channel. Hence, in this attempt, the convective conditions for
both heat and mass transfer are considered. An incompressible Johnson–Segalman fluid is considered
in a curved channel. The set of solutions for the small value of Weissenberg number are developed.
The obtained results are visualized and thoroughly analyzed. Impacts reflecting the influence of
pertinent parameters are pointed out physically.

2. Problem Formulation

We anticipate the peristaltic transport of the incompressible Johnson–Segalman fluid in a
symmetric curved half-width (d1) channel clasped in a circular pattern with center O and radius
R∗ (see Figure 1 and Ref. [32]).

Figure 1. Schematic diagram of the problem.

The flow in the channel is stimulated by small amplitude sinusoidal waves that travel along the
compliant walls. The axial direction of the flow is x and r is radial direction. Here, v and u are the
velocity vector components in the radial and axial directions, respectively. The wave shapes at channel
walls are considered symmetric and given by
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r = ±η(x, t) = ±
[

d1 + a sin
(

2 π

λ
(x− c t)

)]
, (1)

where c is the wave speed and λ is the wavelength, respectively.
The continuity and momentum equations governing the flow can be written as [32]:

∂[(r + R∗)v]
∂r

+ R∗
∂u
∂x

= 0, (2)

ρ

(
∂v
∂t

+ v
∂v
∂r

+
R∗u

r + R∗
∂v
∂x
− u2

r + R∗

)
= − ∂p

∂r
+

1
r + R∗

∂

∂r
[(r + R∗)τrr] +

R∗

r + R∗
∂τxr

∂x
− τxx

r + R∗
, (3)

ρ

(
∂u
∂t

+ v
∂u
∂r

+
R∗u

r + R∗
∂u
∂x

+
uv

r + R∗

)
= − R∗

r + R∗
∂p
∂x

+
1

(r + R∗)2
∂

∂r
[(r + R∗)2τrx] +

R∗

r + R∗
∂τxx

∂x
. (4)

The equations for energy and concentration [32] are given by

ρCp

(
∂T
∂t

+ v
∂T
∂r

+
R∗u

r + R∗
∂T
∂x

)
= κ

(
∂2T
∂x2

(
R∗

r + R∗

)2
+

1
r + R∗

∂T
∂r

+
∂2T
∂r2

)
+ (Srr − Sxx)

∂v
∂r

+Sxr

(
∂u
∂r

+
R∗

r + R∗
∂v
∂x
− u

r + R∗

)
, (5)

∂C
∂t

+ v
∂C
∂r

+
R∗u

r + R∗
∂C
∂x

= D

(
∂2C
∂x2

(
R∗

r + R∗

)2
+

1
r + R∗

∂C
∂r

+
∂2C
∂r2

)

+
DKT
Tm

(
∂2T
∂r2 +

1
r + R∗

∂T
∂r

+

(
R∗

r + R∗

)2 ∂2T
∂x2

)
. (6)

For the Johnson-Segalman fluid, the stress tensor ø is

ø = 2µD + S,

in which the extra stress tensor S needs to satisfy the relationship

S + m
(

dS
dt

+ S(W− ξD) + (W− ξD)TS
)
= 2η1D,

where

D =
[(gradV)T + gradV]

2
,

W =
[gradV−(gradV)T ]

2
.

The relations listed above produce the following equations:

Srr + m
[

dSrr

dt
− 2uSrx

r + R∗
+ Srx

{
(1− ξ)

∂u
∂r
− 1 + ξ

r + R∗
[R∗

∂v
∂x
− u]

}
− 2ξSrr

∂v
∂r

]
= 2η1

∂v
∂r

, (7)

Srx + m
dSrx

dt
+

mu(Srr − Sxx)

r + R∗
+

mSxx

2

{
(1− ξ)

∂u
∂r
− 1 + ξ

r + R∗

[
R∗

∂v
∂x
− u

]}
+

mSrr

2

{
1− ξ

r + R∗

[
R∗

∂v
∂x
− u

]
− (1 + ξ)

∂u
∂r

}
= η1

(
∂u
∂r

+
R∗

r + R∗
∂v
∂x
− u

r + R∗

)
, (8)
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Sxx + m
[

dSxx

dt
+

2uSrx

r + R∗
− Srx

{
(1 + ξ)

∂u
∂r
− 1− ξ

r + R∗

[
R∗

∂v
∂x
− u

]}
+ 2ξSxx

∂v
∂r

]
= −2η1

∂v
∂r

, (9)

where d
dt =

∂
∂t + v ∂

∂r +
R∗u

r+R∗
∂

∂x represents the material derivative with respect to time, ρ denotes the
fluid density, κ the thermal conductivity of fluid, W and D skew-symmetric and symmetrical parts of
the gradient of velocity, ξ the slip parameter, Cp the fluid specific heat, T and C are the fluid temperature
and concentration, respectively, the thermal diffusion ratio is KT , D the mass diffusivity coefficient,
Tm represents the mean/average temperature, µ and η1 the viscosities, and m the relaxation time.

The appropriate boundary conditions are

u = 0 at r = ±η, (10)

k
∂T
∂r

= −h1(T − T0) at r = +η, (11)

k
∂T
∂r

= −h2(T0 − T) at r = −η, (12)

D
∂C
∂r

= −h3(C− C0) at r = +η, (13)

D
∂C
∂r

= −h4(C0 − C) at r = −η, (14)

R∗[−τ
∂3

∂x3 + m1
∂3

∂x∂t2 + d
∂2

∂t∂x
]η =

1
r + R∗

∂

∂r
{(r + R∗)2τrx}+ R∗

∂τxx

∂x
− ρ(r + R∗)[

∂u
∂t

+ v
∂u
∂r

+
R∗u

r + R∗
∂u
∂x

+
uv

r + R∗

]
at r = ±η. (15)

Here, the pressure, the time, the fluid density, and the curvature parameters are p, t, ρ, and R∗,
respectively, T0 and C0 the ambient temperature and concentration, h1 and h2 the coefficients of heat
transfer at upper and lower walls, h3 and h4 the coefficients of mass transfer at upper and lower walls,
Srr, Srx, Sxr and Sxx the components of the extra stress tensor S, τ the elastic tension, d the viscous
damping coefficient, and m1 the mass per unit area. Equation (10) is the no slip condition for velocity
profile. Equations (11) and (12) are the convective boundary conditions for heat transfer. Analogues to
the convective heat transfer at the boundary, we also use the mixed condition for the mass transfer as
well (i.e., Equations (13) and (14)).

Employing the aforementioned dimensionless variables

x∗ =
x
λ

, r∗ =
r

d1
, u∗ =

u
c

, v∗ =
v
c

, Ψ∗ =
Ψ

cd1
, t∗ =

ct
λ

,

η∗ =
η

d1
, k =

R∗

d1
, p∗ =

d2
1 p

cλ(µ + η1)
, ε =

a
d

,δ =
d1

λ
,

θ =
T − T0

T0
, φ =

C− C0

C0
, S∗ij =

d1Sij

cη1
, We =

mc
d1

,

Equations (7)–(9) become

2
∂v
∂r

= Srr + We
[(

δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Srr −

2uSrx

r + k
− 2ξSrr

∂v
∂r

]
+WeSrx

{
(1− ξ)

∂u
∂r
− 1 + ξ

r + k

(
kδ

∂v
∂x
− u

)}
, (16)
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(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
= Srx + We

[(
δ

∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Srx +

u(Srr − Sxx)

r + k

]
+

WeSrr

2

{
1− ξ

r + k

[
kδ

∂v
∂x
− u

]}
− (1 + ξ)

∂u
∂r

+
WeSxx

2

{
(1− ξ)

∂u
∂r
− 1 + ξ

r + k

[
kδ

∂v
∂x
− u

]}
, (17)

−2
∂v
∂r

= Sxx + We
[(

δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Sxx +

2uSrx

r + k
− 2ξSxx

∂v
∂r

]
+WeSrx

{
1− ξ

r + k

(
kδ

∂v
∂x
− u

)
− (1 + ξ)

∂u
∂r

}
, (18)

and Equations (4)–(6) are reduced to

Re δ

[
δ

∂v
∂t

+ v
∂v
∂r

+
∂v
∂x

kδu
r + k

− u2

r + k

]
= − η1 + µ

η1

∂p
∂r

+
4δµ

η1(r + k)
∂v
∂r

+
kδ3

r + k
∂Srx

∂x
+ δ

∂Srr

∂r

+
δ(Srr − Sxx)

r + k
+

δµ

η1

∂2v
∂r2 +

δ2kµ

η1(r + k)

× ∂

∂x

(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
, (19)

Re
[

δ
∂u
∂t

+ v
∂u
∂r

+
kδu

r + k
∂u
∂x
− uv

r + k

]
= − η1 + µ

η1(r + k)
∂p
∂x

+
2Srx

r + k
+

∂Srx

∂r
+

kδ

r + k
∂Sxx

∂x

− 2kδµ

(r + k) η1
× ∂2v

∂r∂x
+

µ

η1

∂

∂x

(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
+

δµ

η1

∂2v
∂r2 +

δ2kµ

η1(r + k)
× ∂

∂r

(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
+

2µ

η1(r + k)

(
∂u
∂r

+
∂v
∂x

kδ

r + k
− u

r + k

)
, (20)

Re
[

δ
∂θ

∂t
+ v

∂θ

∂r
+

∂θ

∂x
kδu

r + k

]
= E

[
Sxr

(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
+ (Srr − Sxx)

∂v
∂r

]
+

1
Pr

[
∂2θ

∂r2 +
1

r + k
∂θ

∂r
+ δ2 ∂2θ

∂x2

]
, (21)

Re
[

δ
∂φ

∂t
+ v

∂φ

∂r
+

kδu
r + k

∂φ

∂x

]
=

1
Sc

[
∂2φ

∂r2 +
1

r + k
∂φ

∂r
+ δ2 ∂2φ

∂x2

]
+Sr

[
∂2θ

∂r2 +
1

r + k
∂θ

∂r
+ δ2 ∂2θ

∂x2

]
, (22)

with
u = 0 at r = ±η, (23)

∂θ

∂r
+ Bi1θ = 0 at r = +η, (24)

∂θ

∂r
− Bi2θ = 0 at r = −η, (25)

∂ϕ

∂r
+ Bi3φ = 0 at r = +η, (26)

∂ϕ

∂r
− Bi4φ = 0 at r = −η, (27)
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k[E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂t∂x
]η =

η1(r + k)
η1 + µ

[
∂

∂r

(
∂u
∂r

+
kδ

r + k
∂v
∂x
− u

r + k

)
− 2kδ

(r + k)
∂2v

∂r∂x

]
−Reµ(r + k)

η1+µ

[
δ

∂u
∂t

+ v
∂u
∂r

+
kδu

r + k
∂u
∂x

+
uv

r + k

]
+

η1(r + k)
η1 + µ

[
∂Srx

∂r
+

∂Srx

∂x
kδ

r + k
+

2Srx

r + k

]
+

2µ

(η1 + µ)

(
∂u
∂r

+
∂v
∂x

kδ

r + k
− u

r + k

)
at r± η. (28)

Defining the stream function ψ(x, r, t) by

u = −∂ψ

∂r
, v = δ

k
r + k

∂ψ

∂x
, (29)

Equation (2) is automatically satisfied and Equations (16)–(28) subject to lubrication approach become

0 = Srr + WeSrx

[
− (1− ξ)ψrr −

1 + ξ

r + k
ψr +

2ψr

r + k

]
, (30)

(
−ψrr +

ψr

r + k

)
= Srx −We

ψr(Srr − Sxx)

r + k

+
WeSrr

2

{
1− ξ

r + k
ψr + (1 + ξ)ψrr

}
−WeSxx

2

{
1 + ξ

r + k
ψr + (1− ξ)ψrr

}
, (31)

0 = Sxx + WeSrx

[
(1 + ξ)ψrr +

1− ξ

r + k
ψr −

2ψr

r + k

]
, (32)

∂p
∂r

= 0, (33)

− k(η1 + µ)

η1 (r + k)
∂p
∂x

+
∂Srx

∂r
+

2Srx

r + k
+

µ

η1

∂

∂r

(
−ψrr +

ψr

r + k

)
+

2µ

η1 (r + k)

(
−ψrr +

ψr

r + k

)
= 0, (34)[

∂2

∂r2 +
1

k + r
∂

∂r

]
θ = −Br

[
Srx

(
−ψrr +

ψr

k + r

)]
, (35)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ, (36)

ψr = 0 atr = ±η = ± [1 + ε sin 2π(x− t)] , (37)

∂θ

∂r
+ Bi1θ = 0 at r = +η, (38)

∂θ

∂r
− Bi2θ = 0 at r = −η, (39)

∂ϕ

∂r
+ Bi3φ = 0 at r = +η, (40)

∂ϕ

∂r
− Bi4φ = 0 at r = −η, (41)

k
[

E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

]
η =

η1(r + k)
η1 + µ

[
µ

η1

∂

∂r

(
−ψrr +

ψr

k + r

)]
+

∂Srx

∂r
+

2Srx

r + k

+
2µ

η1 + µ

(
−ψrr +

ψr

r + k

)
at r = ±η, (42)
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where the amplitude ratio is represented by ε(= a/d1), δ(= d1/λ) is the wave number,

the dimensionless curvature parameter is k, E1 = − τd3
1

λ3η1c , E2 =
m1cd3

1
λ3η1c , E3 =

dd3
1

λ2η1
the non-dimensional

elasticity parameters, Re = cρd1
η1λ2 the Reynolds number, We = mc/d1 the Weissenberg number,

the Prandtl number is denoted by Pr = µCp/κ, the Eckert number is E = c2/CpT0, the Schmidt
numbers is Sc = µ/ρD, the Soret number is Sr(= ρT0DKT/µTmC0), EPr = Br is the Brinkman
number, and Bi1 = h1d/k, Bi2 = h2d/k, Bi3 = h3d/D and Bi4 = h4d/D the Biot numbers for
heat/mass transfer.

From Equations (30)–(32), one can get

Srx =

(
−ψrr +

ψr

r + k

)[
1 + We2

(
1− ξ2

)(
−ψrr +

ψr

r + k

)2
]−1

. (43)

Additionally, Equations (33) and (34) give

(r + k)
∂2Srx

∂r2 + 3
∂Srx

∂r
+

(k + r)µ
η1

∂2

∂r2

(
−ψrr +

ψr

r + k

)
+

3µ

η1

∂

∂r

(
−ψrr +

ψr

k + r

)
= 0. (44)

Heat transfer coefficient at the wall is defined by

Z = ηxθy(η). (45)

3. Method of Solution

We have used the standard perturbation approach relying on a small parameter to solve the
strictly nonlinear differential equations, because the exact solution is not achievable. This approach
is helpful in finding an approximate solution to the problem, beginning with an exact solution to a
similar and simplified problem. This approach is more efficient, as it provides a solution in the form
of a converging series. In order to find the series solution of the problem, we expand ψ, p and Srx in
terms of small parameter We2. Therefore, we can write the flow quantities, as follows:

ψ = ψ0 + We2ψ1 + ..., (46)

Srx = S0rx + We2S1rx + ..., (47)

Srr = S0rr + We2S1rr + ..., (48)

Sxx = S0xx + We2S1xx + ..., (49)

θ = θ0 + We2θ1 + ..., (50)

φ = φ0 + We2φ1 + ..., (51)

Z = Z0 + We2Z1 + .... (52)

4. Results

4.1. Zeroth Order System

Using Equations (46)–(52) into Equations (35)–(45) and then equating the coefficients of We0

we have

(k + r)
∂2

∂r2

(
−ψ0rr +

ψ0r

k + r

)
+ 3

∂

∂r

(
−ψ0rr +

ψ0r

k + r

)
= 0, (53)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ0 = −Br

[
S0rx

(
−ψ0rr +

ψ0r

k + r

)]
, (54)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ0 = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ0 (55)
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ψ0r = 0, at r = ±η, (56)

∂θ0

∂r
+ Bi1θ0 = 0 at r = +η, (57)

∂θ0

∂r
− Bi2θ0 = 0 at r = −η, (58)

∂ϕ0

∂r
+ Bi3φ0 = 0 at r = +η, (59)

∂ϕ0

∂r
− Bi4φ0 = 0 at r = −η, (60)

k
[

E1
∂3η

∂x3 + E2
∂3η

∂x∂t2 + E3
∂2η

∂x∂t

]
= (r + k)

∂

∂r

(
−ψ0rr +

ψ0r
k + r

)
+ 2

(
−ψ0rr +

ψ0r
k + r

)
, at r = ±η, (61)

where

S0rx =

(
−ψ0rr +

ψ0r

r + k

)
.

Solving Equations (53)–(55), we get

ψ0 = C1 + C2 ln(r + k) + C3(r + k)2 + C4(r + k)2 ln(r + k), (62)

θ0 = A1 + A2 ln(r + k) + 4BrC2C4(ln(r + k))2 − Br

(
C4(r + k)2 +

C2
2

(r + k)2

)
, (63)

φ0 = B1 ln(r + k) + B2 +
BrC2

2ScSr
(k + r)2 + BrC2

4(k + r)2ScSr− 4BrC2C4ScSr(ln(r + k))2, (64)

and heat transfer coefficient is given by

Z0 = ηx

(
A2

k + η
+ Br

(
2C2

2

(k + η)3 − 2C2
4 (k + η)

)
+

8BrC2C4 ln(k + η)

k + η

)
, (65)

where
C1 = 0,

C2 = −L(k2 − η2)2(ln(k + η)− ln(k− η)),

C3 =
L(2kη + (k + η)2 ln(k + η)− (k− η)2 ln(k− η))

16kη
,

C4 = − L
4

,

A1 =
BrM1(M10 + M5 −M7 − C2

4 M9)− BrM(M4 + M6 + C2
4 M8 −M11)

M3
,

A2 =
Bi1BrM12 + BrM13 + M14 − 8BrC2C4 ln(k+η)

k+η − 4Bi1BrC2C4 ln(k + η)2

M
,

B1 =
BrScSr(2Bi4Y1 + 4C2C4(Y2 −Y4 + Y5) + 2Bi3(C2

2Y3 + C2
4(η − k(1 + 2Bi4η))))

Y
,

B2 =
BrScSr(M5 + Y9 +

2C2
2

(k+η)3 −
Bi3C2

2
(k+η)2 − 2C2

4 (k + η)− Bi3C2
4 (k + η))

Bi3
.
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4.2. First Order System

The coefficients of O(We2) form the following expressions:

0 = (r + k)
∂2

∂r2

[(
−ψ1rr +

ψ1r
r + k

)
−
(
1− ξ2) η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3
]

+3
∂

∂r

[(
−ψ1rr +

ψ1r
r + k

)
−
(
1− ξ2) η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3
]

, (66)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ1 = −Br

[
S1rx

(
−ψ0rr +

ψ0r

k + r

)
+ S0rx

(
−ψ1rr +

ψ1r
k + r

)]
, (67)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ1 = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ1, (68)

ψ1r = 0, at r = ±η, (69)

∂θ1

∂r
+ Bi1θ1 = 0, at r = +η, (70)

∂θ1

∂r
− Bi2θ1 = 0, at r = −η, (71)

∂φ1

∂r
+ Bi3φ1 = 0, at r = +η, (72)

∂φ1

∂r
− Bi4φ1 = 0, at r = −η, (73)

0 = (r + k)
∂

∂r

[(
−ψ1rr +

ψ1r
r + k

)
−
(
1− ξ2) η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3
]

+2

[(
−ψ1rr +

ψ1r
r + k

)
−
(
1− ξ2) η1

(η1 + µ)

(
−ψ0rr +

ψ0r

r + k

)3
]

, at r = ±η, (74)

with

S1rx =

(
−ψ1rr +

ψ1r
r + k

)
−
(

1− ξ2
)(
−ψ0rr +

ψ0r

r + k

)3
. (75)

The results corresponding to the first order are
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ψ1 = 1/3(k + r)4(η1 + µ)[C3
2η1(−1 + ξ2)]− 1/(k + r)2(η1 + µ)[3C2

2C4η1(−1 + ξ2)]

+krC12 + 1/2r2C12 − 1/4(k + r)2C13

+C14 + C11 log(k + r) + 1/2[(k + r)2C13 log(k + r)], (76)

θ1 = 1/9(k + r)6(η1 + µ)[4BrC4
2(η1 − µ)(−1 + ξ2)]

−1/(k + r)4(η1 + µ)[4BrC3
2C4(η1 − µ)(−1 + ξ2)]

−BrC4(k + r)2(C13 + 4C3
4(−1 + ξ2))

−1/(k + r)2(η1 + µ)[2BrC2(C11(η1 + µ) + 12C2
4C2µ(−1 + ξ2))]

+A12 + A11 log(k + r)

+2Br(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) log(k + r)2, (77)

φ1 = −1/9(k + r)6(η1 + µ)[4BrC4
2ScSr(η1 − µ)(−1 + ξ2)]

+1/(k + r)4(η1 + µ)[4BrC3
2C4ScSr(η1 − µ)(−1 + ξ2)]

+BrC4(k + r)ScSr(C13 + 4C3
4(−1 + ξ2))

+1/(k + r)2(η1 + µ)[2BrC2ScSr(C11(η1 + µ) + 12C2
4C2µ(−1 + ξ2))]

+B12 + B11 log(k + r)

−2BrScSr(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) log(k + r)2, (78)

Z1 = ηx(
A11

k + η
− Br

(
2C2

2

(k + η)3 − 2C2
4 (k + η)

)
+

8BrC4
2 (η1 − µ) (ξ2 − 1)

3 (k + η)7 (η1 + µ)

+
16BrC3

2C4 (η1 − µ) (ξ2 − 1)

3 (k + η)5 (η1 + µ)
− 2BrC4 (k + η)

(
C13 + 4C3

4(ξ
2 − 1)

)
+

4BrC2(C11 (η1 + µ) + 12C2C2
4µ(ξ2 − 1))

(k + η)3 (η1 + µ)

+
4Br(C13C2 + 2C4

(
C11 + 8C2C2

4(ξ
2 − 1)) ln(k + η)

)
k + η

, (79)

in which

C11 =
L2(L1 + 2C2

2(−9C4(k2 − η2)2(k2 + η2) + C2(3k2 + η2)(k2 + 3η2)))

(k− η)4 (k + η)4 ,

C12 =
L2(L3 + C2(9C4(k2 − η2)2 − 4C2(k2 + η2)))

(k2 − η2)4 ,

C13 = −4L2C3
4 ,

C14 = 0,

A11 =
(−Br(Bi2(N1 − N2

(k+η)7(η1+µ)
) + Bi1(

N3
(k−η)7(η1+µ)

− N4)))

9N
,

A12 =

Br(N5 + N6 + N7 − N8 − N9 +
M(Bi1(

N3
(k−η)7(η1+µ)

−N4)+(Bi2(N1−
N2

(k+η)7(η1+µ)
))

N − N9

−18Bi1(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) ln(k + η)2)

9Bi1
,

B11 =
−BrScSr(Bi3(Z2 − Z1

(k−η)7(η1+µ)
) + Bi4( Z

(k+η)7(η1+µ)
− Z3))

9Y
,

B12 =
BrScSr(N7 + N8 + N9 + Z4 − Z5 + Z6 − Z7 −

36Bi3C3
2C4(η1−µ)(−1+ξ2)

(k+η)4(η1+µ)
+ Z8)

9Bi3
.
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The constants appearing in these equations are written in Appendix A.

5. Discussion

The behavior of the axial velocity u(y), temperature θ(y), concentration φ(y), and heat-transfer
coefficient Z(x) with respect to the influential parameters is described in this section.

5.1. Axial Velocity Distribution

Figure 2a–c examines the effect of various parameters on the axial velocity. Figure 2a clearly
shows that the axial velocity increases with an increase in We. Such an increasing trend is due to
increased relaxation time and viscosity decay. The effect of curvature parameter k on u(y) is depicted
in Figure 2b. It is observed that the axial velocity u(y) decreases with an increase in the curvature k
near the lower wall of the channel while the reverse situation is observed near the upper wall of the
channel. Variation in u(y) for the elastic parameters E1, E2, and E3 are shown in Figure 2c. This Figure
indicates that, by increasing E3 (which represents the oscillatory resistance), the velocity u(y) decreases
and the axial velocity u(y) increases by increasing E1and E2.

(a) (b)

(c)

Figure 2. (a) Variation of We on u when E1 = 0.02; E2 = 0.01; E3 = 0.1; ε = 0.2; k = 1.5; ξ = 0.5;
µ = 0.1; η1 = 0.1; t = 0.1; x = −0.2.; (b) Variation of k on u when E1 = 0.02; E2 = 0.01; E3 = 0.1;
ε = 0.2; We = 0.01; ξ = 0.5; µ = 0.1; η1 = 0.1; t = 0.1; x = −0.2.; (c) Variation of E1, E2, E3 on u when
ε = 0.2; We = 0.2; k = 1.5; ξ = 0.5; µ = 0.1; η1 = 0.1; t = 0.1; x = 0.2.

5.2. Temperature Distribution

Figure 3a–g indicates the influence of different parameters on the fluid temperature distribution
θ(y). Figure 3a demonstrates that the magnitude of the temperature profile boosts while increasing the
value of We as Weissenberg number is the ratio of ealstic forces and viscous forces, therefore, an increase
in We dominates the viscosity and enhance the temperature of the fluid. It reveals that temperature
is higher for Johnson–Segalman fluid than that of the viscous fluid temperature. Figure 3b reflects
that when Brinkman number Br increases, the temperature goes up. This increase in the temperature
is due to the viscous dissipation effects. Figure 3c portrays the effects of elastic parameters (E1, E2,
and E3) on the temperature profile θ(y). Increased temperature θ(y) can be seen with an increment in
E1 and E2 and it decreases with increasing in E3. Figure 3d depicts that the temperature falls drastically
towards the lower portion of the channel and continues to rise in the upper portion of the channel
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as the curvature parameter k rises. Figure 3e portrays the slip parameter activity indicating that
temperature declines as the slip parameter rises near the upper channel wall, while it has an opposite
impact close to the lower boundary. Figure 3f illustrates that enhancing the Biot number Bi1 reduces
the temperature profile θ(y) near the upper inlet section but no impact has found in the lower inlet
section. Similarly, Figure 3g reveals that the temperature profile θ(y) for Biot number Bi2 declines near
the lower inlet section and has no noticeable impact near the upper inlet section.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. (a) effect of We on θ when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 1.8; ξ = 1.8;
µ = 0.5; η1 = 0.6; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (b) variation of Br on θ when E1 = 0.04;
E2 = 0.03; E3 = 0.01; ε = 0.15; k = 1.5; We = 0.01; ξ = 1.9; µ = 0.6; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (c) variation of E1, E2, E3 on θ when ε = 0.15; We = 0.01; k = 1.5; Br = 0.5; ξ = 1.9;
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µ = 0.5; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (d) variation of k on θ when E1 = 0.05;
E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.01; Br = 1.8; ξ = 2.9; µ = 0.5; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (e) variation of ξ on θ when E1 = 0.05; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01;
Br = 1.5; k = 2.9; µ = 0.6; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (f) Variation of Bi1 on θ

when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 2.5; ξ = 1.9; µ = 0.6; η1 = 0.8;
k = 1.5 t = 0.1; x = −0.2; Bi2 = 8. (g) variation of Bi2 on θ when E1 = 0.04; E2 = 0.03; E3 = 0.01;
ε = 0.15; We = 0.01; Br = 2.5; ξ = 1.9; µ = 0.6; η1 = 0.8; k = 1.5 t = 0.1; x = −0.2; Bi1 = 10.

5.3. Concentration Distribution

Figure 4a–h represents the effects of emerging parameters on the fluid concentration distribution
φ(y). Figure 4a depicts that concentration φ(y) increases when We increases due to increase in elasticity
of the fluid as We physically represents the ratio of elastic to viscous forces. Figure 4b demonstrates that
the concentration decreases when the Brinkman number intensifies. The effect of elastic parameters
(E1, E2, and E3) are represented in Figure 4c. Here, with the increase in E1 and E2, the concentration
distribution decreases, while for E3 concentration distribution φ(y) increases. Figure 4d shows the
influence of slip parameter on φ(y). This Figure shows that the concentration decays in the lower half
portion of the channel, while the reverse trend is seen throughout the upper half portion of the channel.
Figure 4e shows that the fluid concentration reduces towards the upper wall of the channel and rises
in the lower portion of the channel as the curvature parameter k rises. Figure 4f indicates that the
concentration declines with an increase in the Schmidt number (Sc) which physically represents the
ratio of momentum diffusivity and mass diffusivity. When we increase the value of Schmidt number,
it actually dominates the mass diffusion and thus concentration of the fluid decays. The mass diffusion
decays through increase in Schmidt number and, hence, concentration distribution φ(y) decreases.
The effects of Biot numbers Bi3 and Bi4 are examined separately for the concentration profile φ(y)
in the Figure 4g,h. It is found that variation of Bi3 has significant effect near the upper wall and it
hardly shows any effect near the lower wall. Similarly, the effects of Bi4 are significant across the lower
wall and the concentration profile φ(y) tends to decrease here. Biot number values are assumed to be
greater than 1 and it indicates the non-uniform concentration fields inside the fluid. Also it reveals that
convection is much quicker than conduction. From a realistic point of view, the parameters chosen are
thus appropriate.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

(g) (h)

Figure 4. (a) Variation of We on φ when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; µ = 0.5; η1 = 0.6; t = 0.1; x = −0.2; Sc = 1; Sr = 1; Bi1 = 10; Bi2 = 8. (b) Variation of Br on φ

when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; k = 1.5; We = 0.01; ξ = 1.9; Sc = 1; Sr = 1; µ = 0.6;
η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (c) Variation of E1, E2, E3 on φ when ε = 0.15; We = 0.01;
k = 1.5; Br = 0.5; ξ = 1.9; µ = 0.5; η1 = 0.8; t = 0.1; x = −0.2; Sc = 1; Sr = 1; Bi1 = 10; Bi2 = 8.
(d) Variation of ξ on φ when E1 = 0.05; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 0.5; k = 2.5;
µ = 0.6; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8; Sc = 1; Sr = 1. (e) variation of k on φ when
E1 = 0.05; E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.01; Br = 1.5; ξ = 2.9; µ = 0.5; η1 = 0.8; t = 0.1;
x = −0.2; Bi1 = 10; Bi2 = 8; Sc = 1; Sr = 1. (f) Variation of Sc on φ when E1 = 0.04; E2 = 0.03;
E3 = 0.01; ε = 0.15; We = 0.01; Br = 1; ξ = 1.9; k = 1.5; Sr = 1; µ = 0.6; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (g) Variation of Bi1 on φ when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01;
Br = 0.5; ξ = 1.9; µ = 0.6; η1 = 0.8; k = 1.5; t = 0.1; x = −0.2; Bi2 = 8; Sc = 1; Sr = 1. (h) Variation
of Bi2 on φ when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 0.5; ξ = 1.9; µ = 0.6;
η1 = 0.8; k = 1.5; t = 0.1; x = −0.2; Bi1 = 10; Sc = 1; Sr = 1.

5.4. Coefficient of Heat-Transfer

In Figure 5a–e, we noticed the variability of the coefficient of heat transfer Z(x) for We, Br, k,
Bi1, and Bi2. Due to peristalsis, the nature of the heat transfer coefficient is oscillatory. The absolute
value of the coefficient of overall heat transfer Z(x) falls as We increases (see Figure 5a). Figure 5b
illustrates that the coefficient of heat transfer results in an increase when Brinkman number intensifies.
Figure 5c displays the curvature parameter’s behavior. This indicates that the coefficient of heat
transfer Z(x) boosts with an increase in k. Further, Figure 5d,e analyze the effects of Biot numbers on
heat transfer coefficient Z(x). Increasing Bi1 the magnitude of heat transfer coefficient Z(x) increases
and it decreases for Bi2.
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(a) (b)

(c) (d)

(e)

Figure 5. (a) Variation of We on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; µ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8. (b) Variation of Br on Z when E1 = 0.5; E2 = 0.04;
E3 = 0.01; ε = 0.15; k = 10; We = 0.005; ξ = 1.8; µ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8.
(c) Variation of k on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; We = 0.005; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; µ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8. (d) Variation of Bi1 on Z when E1 = 0.5; E2 = 0.04;
E3 = 0.01; ε = 0.15; We = 0.005; Br = 0.5; ξ = 1.8; µ = 0.5; η1 = 0.6; k = 10; t = 0.1; x = −0.2; Bi2 = 8.
(e) Variation of Bi2 on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.005; Br = 0.5; ξ = 1.8;
µ = 0.5; η1 = 0.6; k = 10; t = 0.1; x = −0.2; Bi1 = 10.

6. Conclusive Remarks

This article addresses the peristalsis of Johnson-Segalman fluid in a circular channel with
walls’ compliance and convective heat and mass transfer conditions. Perturbation solution has been
obtained under the long wave length and low Reynolds number approximation. The axial velocity
of Johnson–Segalman is found to be greater than that of the Newtonian fluid. The velocity profile is
skewed to the left because of curved channel, whereas the concentration and temperature profiles
are inclined towards the right. Further, the velocity profile is not symmetric about the centre line in
curved channel. At a certain level in the curved channel, the fluid approaches maximum velocity,
which decreases in magnitude. The curved channel is transformed into the straight channel with
relatively high value of curvature parameter. The results of this problem in Newtonian fluid model
can be reduced when m = µ = 0.
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Appendix A

The parameters appearing in the solutions are described here.

L1 = k(−8E1π3ε cos(2π(x− t))− 8E2π3ε cos(2π(x− t)) + 4E3π2ε sin(2π(x− t),

L2 =
2η1(−1 + ξ2)

3(η1 + µ)
,

L3 = 3C3
4(−(k− η)2 ln(k− η) + (k + η)2 ln(k + η)),

M =
1

k + η
+ Bi1 ln(k + η),

M1 =
1

k− η
− Bi2 ln(k + η),

M2 =
Bi1
−k + η

+ Bi1Bi2 ln(k− η),

M3 = −Bi2M + M2,

M4 =
8C2C4 ln(k− η)

(k− η)
,

M5 =
8C2C4 ln(k + η)

(k + η)
,

M6 =
C2

2(2 + Bi2(k− η))

(k− η)3 ,

M7 =
C2

2(−2 + Bi1(k + η))

(k + η)3 ,

M8 = (−2 + Bi2(k− η))(k− η),

M9 = (2 + Bi1(k + η))(k + η),

M10 = 4Bi1C2C4 ln(k + η)2,

M11 = 4Bi2C2C4 ln(k− η)2,

M12 =
C2

2
(k + η)

+ C2
4(k + η)2,

M13 = −
2C2

2
(k + η)3 + 2C2

4(k + η),

M14 = Bi1(−BrM1(M10 + M5 −M7 − C2
4 M9) + BM(M4 + M6 + C2

4 M8 −M11),

N =
Bi1

k− η
+

Bi2
k + η

+ Bi1Bi2(− ln(k− η) + ln(k + η)),

N1 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)(2 + Bi1(k + η)) ln(k + η)

k + η
,

N2 = (18(C11C2(k + η)4(−2 + Bi1(k + η))(η1 + µ)− 4C4
2(−6 + Bi1(k + η))(η1 − µ)(−1 + ξ2)

+36C4C3
2(−4 + Bi1(k + η))(η1 − µ)(−1 + ξ2)

+216C2
2C2

4(k + η)4(−2 + Bi1(k + η))µ(−1 + ξ2)

+9C4(k + η)8(2 + Bi1(k + η))(η1 + µ)(C13 + 4C3
4(−1 + ξ2))),
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N3 = (18(C11C2(k + η)4(2 + Bi2(k− η))(η1 + µ)− 4C4
2(6 + Bi2(k− η))(η1 − µ)(−1 + ξ2)

+36C4C3
2(4 + Bi2(k− η))(k− η)2(η1 − µ)(−1 + ξ2)

+216C2
2C2

4(k− η)4(2 + Bi2(k− η))(k− η)4µ(−1 + ξ2)

+9C4(k− η)8(−2 + Bi2(k− η))(η1 + µ)(C13 + 4C3
4(−1 + ξ2))),

N4 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k− η)(−2 + Bi2(k− η)) ln(k− η)

k− η
,

N5 =
18Bi1C2(C11(η1 + µ) + 12C2C2

4µ(−1 + ξ2))

(k + η)2(η1 + µ)
+

36Bi1C3
2C4(η1 − µ)(−1 + ξ2)

(k + η)4(η1 + µ)
,

N6 = 18C4(k + η)(C13 + 4C3
4(−1 + ξ2) + 9Bi1C4(k + η)2(C13 + 4C3

4(−1 + ξ2))

+
24C2

2(η1 − µ)(−1 + ξ2)

(k + η)7(η1 + µ)
,

N7 =
36(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)

k + η
,

N8 =
36C2(C11(η1 + µ) + 12C2C2

4µ(−1 + ξ2))

(k + η)3(η1 + µ)
,

N9 =
144C3

2C4(η1 − µ)(−1 + ξ2))

(k + η)5(η1 + µ)
, N10 =

4C4
2(η1 − µ)(−1 + ξ2))

(k + η)6(η1 + µ)
,

Y =
Bi3

k− η
+

Bi4
k + η

+ Bi3Bi4(− ln(k− η) + ln(k + η)),

Y1 =
C2

2
(k + η)3 − C2

4(k + η), Y2 =
2Bi3 ln(k− η)

k− η
,

Y3 =
1

(k− η)3 +
2Bi4kη

(k2 − η2)2 , Y4 = Bi3Bi4 ln(k− η)2,

Y5 = Bi4 ln(k + η)(
2

k + η
+ Bi3 ln(k + η)),

Y6 =
1

(−k + η)3 −
2Bi4kη

(k2 − η2)2 ,

Y7 = 4C2C4(Y4 +
2Bi3 ln(k− η)

−k + η
+ Bi4 ln(k + η)(

−2
k + η

− Bi3 ln(k + η))),

Y8 = Y7 + 2Bi4(
−C2

2
(k + η)3 + C2

4(k + η)) + 2Bi3(C2
2Y6 + C2

4(k− η + 2Bi4kη)),

Y9 = 4Bi3C2C4 ln(k + η)2 +
Y8(

1
k+η + Bi3 ln(k + η))

Y
,

D = (18(C11C2(k + η)4(−2 + Bi3(k + η))(η1 + µ)− 4C4
2(−6 + Bi3(k + η))(η1 − µ)(−1 + ξ2)

+36C4C3
2(k + η)2(−4 + Bi3(k + η))(η1 − µ)(−1 + ξ2)

+216C2
2C2

4(k + η)4(−2 + Bi3(k + η))µ(−1 + ξ2)

+9C4(k + η)8(2 + Bi3(k + η))(η1 + µ)(C13 + 4C3
4(−1 + ξ2))),

D1 = (18(C11C2(k− η)4(2 + Bi4(k− η))(η1 + µ)− 4C4
2(6 + Bi4(k− η))(η1 − µ)(−1 + ξ2)

+36C4C3
2(k− η)2(4 + Bi4(k− η))(η1 − µ)(−1 + ξ2)

+216C2
2C2

4(k− η)4(2 + Bi4(k− η))µ(−1 + ξ2)

+9C4(k− η)8(−2 + Bi4(k− η))(η1 + µ)(C13 + 4C3
4(−1 + ξ2))),

D2 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k− η)(−2 + Bi4(k− η)) ln(k− η)

k− η
,

D3 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)(2 + Bi3(k + η)) ln(k + η)

k + η
,

D4 = 18Bi3(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) ln(k + η)2,
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D5 = 18C4(k + η)(C13 + 4C3
4(−1 + ξ2) + 9Bi3C4(k + η)2(C13 + 4C3

4(−1 + ξ2))

+
24C2

2(η1 − µ)(−1 + ξ2)

(k + η)5(η1 + µ)
,

D6 =
4Bi3C4

2(η1 − µ)(−1 + ξ2)

(k + η)6(η1 + µ)
,

D7 =
18Bi3C2(C11(η1 + µ) + 12C2C2

4µ(−1 + ξ2))

(k + η)2(η1 + µ)
,

D8 =
1
Y
(Bi3(D2 −

D1
(k− η)7(η1 + µ)

) + Bi4(
D

(k + η)7(η1 + µ)
− D3))(

1
k + η

+ Bi3 ln(k + η)).
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