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Abstract: Solutions such as symmetric, periodic, and solitary wave solutions play a significant
role in the field of partial differential equations (PDEs), and they can be utilized to explain several
phenomena in physics and engineering. Therefore, constructing such solutions is significantly
essential. This article concentrates on employing the improved exp(−φ(η))-expansion approach and
the method of lines on the variant Boussinesq system to establish its exact and numerical solutions.
Novel solutions based on the solitary wave structures are obtained. We present a comprehensible
comparison between the accomplished exact and numerical results to testify the accuracy of the used
numerical technique. Some 3D and 2D diagrams are sketched for some solutions. We also investigate
the L2 error and the CPU time of the used numerical method. The used mathematical tools can be
comfortably invoked to handle more nonlinear evolution equations.

Keywords: exact solution; numerical solution; traveling waves; Boussinesq system; L2 error;
CPU time
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1. Introduction

Most natural phenomena arising in various nonlinear sciences and engineering are modelled
by nonlinear evolution equations. More specifically, a dramatic increase in the use of PDEs has been
recently seen in some areas such as physics, biology, chemistry, economics, and computer sciences.
Equations that describe shallow water waves appear in various fields of physics. The search for finding
the exact solutions of such equations has been considerably given more attention in recent years.
Although several approaches have been effectively developed, the exact traveling wave solutions
for a massive number of NPDEs cannot be obtained. We point out some proposed techniques such
as the truncated Painleve expansion process [1], the improved exp(−φ(η))-expansion technique [2],
the projective Riccati equation technique [3], the Weierstrass elliptic function method [4], the extended
tanh-procedure [5,6], the exp(− f (ζ))-expansion process [7–9], the sine–cosine approach [10,11],
the Adomian decomposition technique [12,13], the Hirota’s bilinear technique [14,15], the inverse
scattering transform [16], etc. The availability of some mathematical software such as Matlab,
Maple, and Mathematica stimulates mathematicians and scientists to deal with insolvable nonlinear
PDEs. Among the available numerical approaches, we state the following: the finite element method,
the finite differences, the adaptive moving mesh technique [17], and the Parabolic Monge–Ampere
method [18]. For more information about analytical and numerical solutions of NPDEs, one can refer
to [19–25].
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The variant Boussinesq system [26,27] reads

Φt − γΦxxt + Φ Φx + Ψx = 0,
Ψt −Φ Ψx −Φx Ψ− λ Φxxx = 0.

(1)

This system describes shallow water waves, where Φ indicates the velocity of wave, Ψ presents
the height of free wave surface, and x and t play the role of the spatial and the temporal derivatives.
The constants γ and λ > 0 are non-zero. The dynamics of shallow water waves are described
by the Korteweg-de Vries (KdV) equation. However, the Boussinesq equation perfectly governs
shallow water waves and gives much better approximation to such waves [28]. The exact solutions
of system (1) have been derived by various scientists. For instance, the authors in [29] presented
some traveling wave solutions for system (1) using the exp(− f (ζ))-expansion method. Huiqun [26]
applied the extended Jacobi elliptic function expansion process to construct some periodic solutions for
system (1). The improved (G′/G)-expansion technique was used in [27] to extract the exact traveling
wave solutions of system (1). Zheng [30] applied the generalized Bernoulli sub-ODE method to extract
traveling wave solutions for system (1). Patel et al. [31] utilized nonlinear Boussinesq equations to
model the shallow water waves. Then, the Adams–Bashfourth (AB) predictor–corrector approach was
used to derive the numerical solution of a nonlinear Boussinesq equation.

The principal purpose of this work is to seek the exact traveling wave solutions and the
numerical solutions for system (1) using the improved exp(−φ(η))-expansion method and the method
of lines. Since the improved exp(−φ(η))-expansion process depends on Jacobi elliptic functions,
the trigonometric and hyperbolic solutions from the obtained solutions can be simply generated.
The procedure is achieved by utilizing a wave transformation to convert system (1) into a system
of ordinary differential equations (ODEs) solved by using the proposed method. Regarding the
numerical solutions, the spatial derivatives are replaced by the finite difference formulae, whereas the
temporal derivatives are left continuous. We graphically develop appropriate boundary conditions.
The behavior of the exact solutions at the end points of the domain is invoked to construct that
Φx = Ψx = 0, and Φxxx = Ψxxx = 0, as x → ±∞. Thus, the boundary conditions are given by

Φx = Φxxx = 0, and Ψx = 0 at x → ±∞. (2)

2. Analysis of the Improved exp(−φ(η))-Expansion Approach

This section is assigned to summarize the improved exp(−φ(η))-expansion technique,
as illustrated in [2]. Let

P(Φ, Ψ, Φx, Ψx, Φt, Ψxx, Φxx, Ψxxx, Φxxt, . . . ) = 0,
Q(Φ, Ψ, Φx, Ψx, Φxx, Ψt, Φxxx, Ψxxx, . . . ) = 0,

(3)

be a given system of PDEs on the unknown functions Φ = Φ(x, t), and Ψ = Ψ(x, t). P and Q are
polynomials in Φ, Ψ and their partial derivatives. In order to change system (3) into ODEs, we use the
following transformations:

Φ(x, t) = φ(η), Ψ(x, t) = ψ(η), η = h x− w t. (4)

Inserting the transformations (4) into system (3) yields

p(φ, ψ, ψη , φη , ψηη , φηη , ψηηη , φηηη , . . . ) = 0,
q(φ, ψ, ψη , φη , ψηη , φηη , ψηηη , φηηη , . . . ) = 0.

(5)
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System (5) is integrated, if possible, term by term. For the sake of simplicity, we equate the integral
constants to zero. As claimed by the proposed method, the solutions of system (5) are given by

φ(η) =
N

∑
j=0

αj exp(−j g(η)),

ψ(η) =
M

∑
j=0

β j exp(−j g(η)),
(6)

where the function g(η) fulfills the following ODE:

g2
η = k2(r + a0) exp(− g(η))2 + k2 a1. (7)

The constants w, r, a0, a1, k, h, αj and β j, j = 0, 1, ..., n, are evaluated later. N and M are positive
integers which can be easily evaluated using the homogeneous balance. Equation (7) has various Jacobi
elliptic function solutions presented in Appendix A. Plugging Equations (6) and (7) into system (5) and
equating the coefficients of exp(−g(η)) to zero lead to a system of algebraic equations which can be
solved using any mathematical software. The solutions of this system determine the above-mentioned
constants. Substituting these constants into Equation (6) gives the exact traveling wave solutions.

3. Exact Solutions of the Variant Boussinesq System

In this section, we attempt to introduce some new solitary wave solutions for the variant
Boussinesq system [26,27], which is given by

Φt − γΦxxt + Φ Φx + Ψx = 0,
Ψt −Φ Ψx −Φx Ψ− λ Φxxx = 0,

(8)

where γ and λ are arbitrary constants. Inserting Equation (4) into system (8) leads to

−w φη + w h2 γφηηη + h φ φη + h ψη = 0,

−w ψη − h φ ψη − h φη ψ− h3 λ φηηη = 0.
(9)

We now integrate each equation in system (9) once with respect to η. Achieving this, we have

−w φ + w h2 γφηη +
h
2

φ2 + h ψ = 0,

−w ψ− h φ ψ− h3 λ φηη = 0.
(10)

In the first equation in system (10), we balance the highest order φηη with the nonlinear term
φ2 while, in the second equation, we consider the homogeneous balance between φηη and φ ψ.
Consequently, we have N = 2 and M = 2. Thus, the solutions are expressed by

φ(η) = α0 + α1 exp(− g(η)) + α2 exp(−2 g(η)),
ψ(η) = β0 + β1 exp(− g(η)) + β2 exp(−2 g(η)).

(11)

The values of the constants αj and β j are evaluated later. Plugging system (11) into system (10)
and equating the coefficients of exp(−n g(η)), n = 0, 1, 2, 3, 4, to zero lead to some algebraic equations
whose solutions are shown in various cases as follows:
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• Case 1

α0 = ∓

√
λ
(

a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

3
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓
√

3
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
λ
(√

γ2k4
(
a2

1 − 3a0r
)
+ a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 = − 3k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ∓
k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
√

6
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h = − 1

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(12)

• Case 2

α0 =

√
λ
(
−a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

3
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓
√

3
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
λ
(√

γ2k4
(
a2

1 − 3a0r
)
− a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 =
3k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ±
ik2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
√

6
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h = − i

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(13)
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• Case 3

α0 =

√
λ
(
−a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

3
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓
√

3
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
λ
(√

γ2k4
(
a2

1 − 3a0r
)
− a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 =
3k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ∓
ik2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
√

6
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h =
i

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(14)

• Case 4

α0 = ∓

√
λ
(

a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

3
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓
√

3
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
λ
(√

γ2k4
(
a2

1 − 3a0r
)
+ a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 = − 3k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ±
k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
√

6
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h =
1

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(15)
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• Case 5

α0 =

√
λ
(
−3a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓ 9
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
3λ
(√

γ2k4
(
a2

1 − 3a0r
)
+ a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 = − 9k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ∓

√
3
2 k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h = −
√

3

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(16)

• Case 6

α0 = ∓

√
λ
(

3a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓ 9
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
3λ
(√

γ2k4
(
a2

1 − 3a0r
)
− a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 =
9k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ±
i
√

3
2 k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h = − i
√

3

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(17)
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• Case 7

α0 = ∓

√
λ
(

3a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓ 9
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
3λ
(√

γ2k4
(
a2

1 − 3a0r
)
− a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 =
9k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ∓
i
√

3
2 k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h =
i
√

3

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(18)

• Case 8

α0 =

√
λ
(
−3a1

√
γ2k4

(
a2

1 − 3a0r
)
− 3a0γk2r + a2

1γk2
)

2
√

γ
(
a2

1 − 3a0r
)√

γ2k4
(
a2

1 − 3a0r
) ,

α1 = 0,

α2 = ∓ 9
√

λr

2
√

γ
(
a2

1 − 3a0r
) ,

β0 = −
3λ
(√

γ2k4
(
a2

1 − 3a0r
)
+ a1γk2

)
4γ
√

γ2k4
(
a2

1 − 3a0r
) ,

β1 = 0,

β2 = − 9k2λr

4
√

γ2k4
(
a2

1 − 3a0r
) ,

w = ±

√
3
2 k2
√

λ
√

γ
(
a2

1 − 3a0r
)

2
(
γ2k4

(
a2

1 − 3a0r
))3/4 ,

h =

√
3

2
√

2 4
√

γ2k4
(
a2

1 − 3a0r
) .

(19)

Sequentially, we construct the following several cases for the traveling wave solutions of the
approached problem when m = 1, (see Appendix A).

φ1(η) = ±

√
λ
(√

γ2k4 − 2γk2
)

2
√

3γ3/2k2
∓
√

3
√

λ

2
√

γ
tanh2(kη),

ψ1(η) = −
3λ
(√

γ2k4 − 2γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
tanh2(kη).

(20)
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φ2(η) = ±

√
λ
(√

γ2k4 − 2γk2
)

2
√

3γ3/2k2
∓
√

3
√

λ

2
√

γ
coth2(kη),

ψ2(η) = −
3λ
(√

γ2k4 − 2γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
coth2(kη).

(21)

φ3(η) = ±

√
λ
(

γk2 − 3
√

γ2k4
)

2
√

γ
√

γ2k4
± 9
√

λ

2
√

γ
cosh2(kη),

ψ3(η) = −
3λ
(√

γ2k4 + γk2
)

4γ
√

γ2k4
+

9k2λ

4
√

γ2k4
cosh2(kη).

(22)

φ4(η) = ±

√
λ
(

γk2 − 3
√

γ2k4
)

2
√

γ
√

γ2k4
∓ 9
√

λ

2
√

γ
sinh2(kη),

ψ4(η) = −
3λ
(√

γ2k4 + γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
sinh2(kη).

(23)

Thus, the exact solutions of system (8) are

φ1(x, t) = ±

√
λ
(√

γ2k4 − 2γk2
)

2
√

3γ3/2k2
∓
√

3
√

λ

2
√

γ
tanh2(k(

√
3

2
√

2 4
√

γ2k4
x±

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)),

ψ1(x, t) = −
3λ
(√

γ2k4 − 2γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
tanh2(k(

√
3

2
√

2 4
√

γ2k4
x±

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)).

(24)

φ2(x, t) = ±

√
λ
(√

γ2k4 − 2γk2
)

2
√

3γ3/2k2
∓
√

3
√

λ

2
√

γ
coth2(k(

√
3

2
√

2 4
√

γ2k4
x±

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)),

ψ2(x, t) = −
3λ
(√

γ2k4 − 2γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
coth2(k(

√
3

2
√

2 4
√

γ2k4
x±

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)).

(25)

φ3(x, t) = ±

√
λ
(

γk2 − 3
√

γ2k4
)

2
√

γ
√

γ2k4
± 9
√

λ

2
√

γ
cosh2(k(

√
3

2
√

2 4
√

γ2k4
x∓

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)),

ψ3(x, t) = −
3λ
(√

γ2k4 + γk2
)

4γ
√

γ2k4
+

9k2λ

4
√

γ2k4
cosh2(k(

√
3

2
√

2 4
√

γ2k4
x∓

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)).

(26)

φ4(x, t) = ±

√
λ
(

γk2 − 3
√

γ2k4
)

2
√

γ
√

γ2k4
∓ 9
√

λ

2
√

γ
sinh2(k(

√
3

2
√

2 4
√

γ2k4
x∓

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)),

ψ4(x, t) = −
3λ
(√

γ2k4 + γk2
)

4γ
√

γ2k4
− 9k2λ

4
√

γ2k4
sinh2(k(

√
3

2
√

2 4
√

γ2k4
x∓

√
3
2
√

γk2
√

λ

2 (γ2k4)
3/4 t)).

(27)

4. Numerical Solutions of the Variant Boussinesq System

The numerical solutions of system (8) are discussed in this section using the method of lines.
The domain on which we work is given by [0, Lx]. We start by writing the variable U on the form:

U = Φ− γ Φxx. (28)

Thus, system (8) is reformed as
Ut + Φ Φx + Ψx = 0,
Ψt − (Φ Ψ)x − λ Φxxx = 0.

(29)
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The related boundary conditions are presented by Equation (2). For much better numerical results
for system (29), we apply a uniform mesh technique on the domain [0, Lx]. Then, we divide the domain
into Nx sub-intervals [xn, xn+1] with fixed step size hx = Lx/Nx such that

xn = (n− 1) hx, n = 1, 2, . . . , Nx + 1,

where hx plays the role of a uniform width of each sub-interval. Note that the spatial derivatives in
system (29) are replaced with finite differences, whereas the temporal differentiation is left continuous.
As a result, system (29) is discretized as

Ut|n = −Φn
Φn+1/2 −Φn−1/2

hx
− Ψn+1/2 −Ψn−1/2

hx
,

Ψt|n =
(Φ Ψ)n+1/2 − (Φ Ψ)n−1/2

hx
+ β Φxxx|n,

Un = Φn γ Φxx|n,

(30)

where n = 2, . . . , Nx. The space discretization of Φxxx|n, (Φ Ψ)n+1/2, Φxx|n and Φn+1/2, Ψn+1/2 is
presented in Appendix B. The relevant boundary conditions for Equation (2) are provided by

Ut,1 = Ut,Nx+1 = 0,
Ψt,1 = Ψt,Nx+1 = 0.

(31)

The initial condition is derived from Equation (24) by taking t = 0, as shown in Figure 1.
In Figure 2, we present the time evolution of the exact and numerical solutions of Φ(x, t) for 0 ≤ t ≤ 24.
Moreover, Figure 3 illustrates the time evolution of the exact and numerical solution of Ψ(x, t) for
0 ≤ t ≤ 24. In order to evaluate Φxxx, Ψx and Φx at x = 0 and x = Lx, we use some fictitious points
given by

Φ0 = Φ2, ΦNx+2 = ΦNx , ∀t ∈ [0, Tf ],
Ψ0 = Ψ2, Φxx|0 = Φxx|2, ΨNx+2 = ΨNx , Φxx|Nx+2 = Φxx|Nx .

(32)

It is notable mentioning that MATLAB ODE solver (ode15i) is employed to solve the numerical
system. This solver is a variable order implicit time-stepping approach depended on the numerical
differentiation formulas.
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Figure 1. Figure (a) illustrates the behavior of the solution Φ(x, 0) (Equation (24)) while
Figure (b) shows the behavior of the solution Ψ(x, 0) (Equation (24)). The used parameters are
λ = 0.5, γ = 0.7, a1 = −2, a0 = 1, r = 1, k = 1, x0 = −20, x = 0→ 35 and t = 0→ 24.
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Figure 2. Figure (a) shows the time evolution of the exact solution of Φ(x, t) while Figure (b) presents
the time evolution of the numerical solution of Φ(x, t). We consider 0 ≤ t ≤ 24.

Figure 3. Figure (a) shows the time evolution of the exact solution of Ψ(x, t) while Figure (b) presents
the time evolution of the numerical solution of Ψ(x, t). We consider 0 ≤ t ≤ 24.

5. Results and Discussion

The improved exp(−φ(η))-expansion method is greatly applied on system (1) to derive several
exact traveling wave solutions. Although this method is based on the Jacobi elliptic functions,
its solutions can be converted into trigonometric and hyperbolic functions. We effectively extract
many solutions expressed on the form of trigonometric and hyperbolic functions. The validity of the
solutions is verified by substituting the obtained solutions into the leading equations. The presented
exact solutions are more general than those obtained in [29]. Zheng [30] employed the generalized
Bernoulli sub-ODE approach on system (1) and introduced two rational solutions. On the contrary,
by using the improved exp(−φ(η))-expansion approach in this article, we obtain several solutions for
system (1).

The execution of the method of lines leads to efficient and adequate results. For example,
an appropriate coincidence between the numerical solutions is depicted in Figures 4 and 5.
The solutions almost have the same behavior. Moreover, Figure 6 illustrates the accuracy of the
method of lines employed in this paper. As can be seen from Figure 6, we have used a small value
for hx = 0.1. However, the error is high. This error has been successfully reduced by taking smaller
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values of hx. When we consider hx = 0.01, the numerical solutions (green sold lines) nicely converge to
exact solutions. For hx = 0.0035, the numerical results nearly meet the exact results. Note that
the above presented figures are sketched under the values λ = 0.5, γ = 0.7, a1 = −2, a0 = 1,
r = 1, k = 1, x0 = −20, x = 0→ 35 and t = 0→ 24. The error is digitally shown in Table 1. L2 has
rapidly decreased for small values of hx. The L2 error in the numerical solutions of Φ(x, t) and
Ψ(x, t) has reached 9.30 × 10−3 and 2.30 × 10−3, respectively, during 3.43 × 10−2 seconds when
hx = 1× 10−1. Nevertheless, the method works well enough when hx = 3.5× 10−3. Here, the error
stands at 4.42× 10−7 and 2.62× 10−6 for Φ(x, t) and Ψ(x, t), respectively. The CPU time has slowly
increased to hit 1.29× 10+1 s.

Figure 4. 3D figures comparing the performance of the numerical method with the exact solution.
The exact solution of Φ(x, t) (Figure (a)) and the numerical solution of Φ(x, t) (Figure (b)) are graphically
compared in these plots.

Figure 5. Figure (a) presents a 3D surface for the exact solution of Ψ(x, t) while Figure (b) illustrates a
3D surface for the numerical solution of Ψ(x, t). The numerical graph seems to be identical with the
exact one.
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Figure 6. Figure (a) compares some numerical solutions of Φ(x, t) with the exact solution of Φ(x, t) for
various values of hx. In Figure (b), we present a comparison between the exact and numerical solutions
of Ψ(x, t). The numerical solutions of Φ(x, t) and Ψ(x, t) approach the exact solutions if hx is very
small, as can be observed in these figures.

Table 1. L2 error and CPU time consumed to arrive at t = 10 for the numerical process.

hx L2 Error for Φ L2 Error for Ψ CPU

1× 10−1 9.30× 10−3 2.30× 10−3 3.43× 10−2 s
5× 10−2 5.80× 10−4 1.63× 10−4 6.32× 10−2 s
2× 10−2 1.53× 10−5 7.04× 10−6 2.92× 10−1 s
1× 10−2 1.36× 10−6 2.80× 10−6 8.30× 10−1 s
5× 10−3 4.86× 10−7 2.66× 10−6 0.33× 10+1 s

3.5× 10−3 4.42× 10−7 2.62× 10−6 1.29× 10+1 s

6. Conclusions

This article has focused on developing the exact and numerical solutions of system (1) by taking
advantage of the improved exp(−φ(η))-expansion approach and the method of lines, respectively.
The improved exp(−φ(η))-expansion method depends on Jacobi elliptic functions which have been
used to degenerated trigonometric functions. Numerous exact solutions have been well introduced.
The obtained numerical solutions roughly match the exact solutions for a small value of hx. In other
words, the curves of the numerical solutions differ substantially for huge hx and quickly converge
together for small hx. The method of lines performs adequately well when we take the step size
smaller. The utilized techniques are practical and effective to be employed on more sophisticated
nonlinear PDEs.
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read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Jacobi Elliptic Function Solutions

Here, we mention some significant solutions for Equation (7).

• If a0 = 1, a1 = −(1 + m2), and r = m2. Then, g1 = ln(sn(kη, m)).
• If a0 = 1−m2, a1 = −1 + 2m2, and r = −m2. Then, g2 = ln(nc(kη, m)).
• If a0 = m2, a1 = −(1 + m2), and r = 1. Then, g3 = ln(ns(kη, m)).
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• If a0 = −m2, a1 = 2m2 − 1, and r = 1−m2. Then, g4 = ln(cn(kη, m)).
• If a0 = 1, a1 = 2−m2, and r = 1−m2. Then, g5 = ln(cs(kη, m)).
• If a0 = 1−m2, a1 = 2−m2, and r = 1. Then, g6 = ln(sc(kη, m)).

Here, m indicates the modulus of the Jacobi elliptic function.

Appendix A.1. The Modulus of the Jacobi Elliptic Function

It should be noted that, if the modulus m −→ 1, then sn(ξ, m) −→ tanh(ξ),
cn(ξ, m) −→ sech(ξ), ns −→ coth(ξ), cs(ξ, m) −→ csch(ξ). However, if the modulus m −→ 0,
then ns(ξ, m) −→ csc(ξ), nc(ξ, m) −→ sec(ξ), sc(ξ, m) −→ tan(ξ), cs(ξ, m) −→ cot(ξ).

Appendix B. Space Discretization

The high-order terms of Equation (30) are discretized as follows:

Φn+1/2 =
Φn+1 + Φn

2
, Ψn+1/2 =

Ψn+1 + Ψn

2
,

(Φ Ψ)n+1/2 =
Φn+1 Ψn+1 + Φn Ψn

2
,

Φxxx|n =
1

2 h3
x
(Φn+2 − 2 Φn+1 + 2 Φn−1 −Φn−2) ,

Φxx|n =
1
h2

x
(Φn+1 − 2 Φn + Φn−1) .

(A1)
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