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Abstract

:

This paper aims to introduce the notion of r-single-valued neutrosophic connected sets in single-valued neutrosophic topological spaces, which is considered as a generalization of r-connected sets in Šostak’s sense and r-connected sets in intuitionistic fuzzy topological spaces. In addition, it introduces the concept of r-single-valued neutrosophic separated and obtains some of its basic properties. It also tries to show that every r-single-valued neutrosophic component in single-valued neutrosophic topological spaces is an r-single-valued neutrosophic component in the stratification of it. Finally, for the purpose of symmetry, it defines the so-called single-valued neutrosophic relations.
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1. Introduction


Under a neutrosophic environment, Smarandache had established a generalization of intuitionistic fuzzy sets. His neutrosophic framework has a very large impact of constant applications for different fields in applied and pure sciences. In 1965, Zadeh [1] defined the so-called fuzzy sets   ( FS )   and, later on, Atanassov [2] defined the intuitionistic fuzzy sets   ( IFS )   in 1983. Topology is, of course, a cornerstone notion of mathematics, especially for ordinary subjects. The main concept of fuzzy topology   ( FT )   was defined by Chang [3]. Moreover, Lowen [4] gave the introduction to the concept of stratified fuzzy topology in the sense of Chang’s fuzzy topology. Lee et al. and Liu et al. in their papers [5,6] investigated fuzzy connectedness   ( F  -  c o n n e c t e d )   in fuzzy topological spaces. Again, researchers in [7,8,9,10] have studied the concept of   ( F  -  c o n n e c t e d )  . Sostak [11], however, also introduced the concept of smooth topology as an extension of Lowen and Chang’s work.



In his paper [12], Smarandache characterized the neutrosophic set into three segment neutrosophic sets (F-Falsehood, I-Indeterminacy, T-Truth), and neutrosophic topological spaces ( SVNT ) presented by Salama et al. [13,14]. Single valued neutrosophic sets (in sort,  SVN ) were proposed by Wang et al. [15]. Meanwhile, Kim et al. [16] inspected the single valued neutrosophic relations (  SVNR s   ) and symmetric closure of  SVNR , respectively. In recent times, Saber et al. [17] familiarized the concepts of single-valued neutrosophic ideal open local function and single-valued neutrosophic topological space.



In this paper, we introduce the concept of r-single-valued neutrosophic connected sets and r-single-valued neutrosophic component in single-valued neutrosophic topological spaces. We then define the stratification of the single-valued neutrosophic topological spaces and show that every r-single-valued neutrosophic component in a single-valued neutrosophic is an r-single-valued neutrosophic component in the stratification of it. We have performed distinguished definitions, theorems, and counterexamples in-depth analysis to investigate some of their significant properties and to find out the best results and consequences. It can be said that different crucial notions in single valued neutrosophic topology were developed and generalized in this article. Different attributes like connectedness and stratification which have a significant impact on the overall topology’s notions were also studied.



Innovative aspects and benefits of this article compared to relevant recent research on groups related to it are very useful. This paper studies connectedness and stratification of single-valued neutrosophic topological spaces. What makes this paper interesting is the introduction of the concept of r-single-valued neutrosophic separated. The authors obtain some of its basic properties. They show that every r-single-valued neutrosophic component in single-valued neutrosophic topological spaces is an r-single-valued neutrosophic component in the stratification of it.



A neutrosophic set is a power general formal framework, which generalizes the concept of the classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and interval intuitionistic fuzzy set from a philosophical point of view. The applications aspects of these kinds of sets can be further noted. It can be seen In Geographical Information Systems (GIS) where there is a need to model spatial regions with indeterminate boundary and under indeterminacy (see [18]). In addition, possible applications to superstrings and   ζ ∞   space–time are touched upon (see [19]). It can also be applicable to control engineering in average consensus in multi-agent systems with uncertain topologies, multiple time-varying delays, and emergence in random noisy environments (see [20]).



In this work,   X ˜   is assumed to be a nonempty set,   ζ = [ 0 , 1 ]   and    ζ 0  =  ( 0 , 1 ]   . For   α ∈ ζ  ,    α ˜   ( x )  = α   for all   x ∈  X ˜   . The family of all single-valued neutrosophic sets on   X ˜   is denoted by   ζ  X ˜   .




2. Preliminaries


This section is devoted to bring a complete survey and previous studies and important related notions and ideas.



Definition 1

([21]). Let   X ˜   be a non-empty set. A neutrosophic set (briefly,  NS ) in   X ˜   is an object having the form


     S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  } ,     








where     γ ˜  S  ,   η ˜  S  ,   μ ˜  S    and the degree of membership (namely     γ ˜  S   ( x )   ), the degree of indeterminacy (namely     η ˜  S   ( x )   ), and the degree of non-membership (namely     μ ˜  S   ( x )   ); for all   x ∈  X ˜    to the set  S . A neutrosophic set   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   can be identified as     γ ˜  S  ,   η ˜  S  ,   μ ˜  S    in     ⌋  −  0 ,  1 +   ⌊    in   X ˜  .





Definition 2

([22]). Suppose that  S  and  E  are    NS ′  s   of the form   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   and   E = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   Then,   S ⊆ E  , iff for every   x ∈  X ˜   ,


     inf   γ ˜  S   ( x )  ≤ inf   γ ˜  E   ( x )  ,  inf   η ˜  S   ( x )  ≥ inf   η ˜  E   ( x )  ,  inf   μ ˜  S   ( x )  ≥ inf   μ ˜  E   ( x )  ,     










     sup   γ ˜  S   ( x )  ≤ sup   γ ˜  E   ( x )  ,  sup   η ˜  S   ( x )  ≥ sup   η ˜  E   ( x )  ,  sup   μ ˜  S   ( x )  ≥ sup   μ ˜  E   ( x )  .     













Definition 3

([15]). Let   X ˜   be a space of points (objects), with a generic element in   X ˜   denoted by x. Then,  S  is called a single valued neutrosophic set (briefly,  SVNS ) in   X ˜  , if  S  has the form   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }  , where     γ ˜  S  ,   η ˜  S  ,   μ ˜  S  :  X ˜  →  [ 0 , 1 ]   .



In this case,     γ ˜  S  ,   η ˜  S  ,   μ ˜  S    are called truth-membership, indeterminacy-membership, falsify-membership mappings, respectively, and we will denote the set of all    SVNS ′  s   in   X ˜   as   I  X ˜   . Moreover, we will refer to the Null (empty)  SVNS  (resp. the absolute (universe)  SVNS ) in   X ˜   as   0 ˜   (resp.   1 ˜  ) and defined by    0 ˜  =  〈 0 , 1 , 1 〉    (resp.    1 ˜  =  〈 1 , 0 , 0 〉   ) for each   x ∈  X ˜   .





Definition 4

([15]). Let   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   be an  SVNS  on   X ˜  . The complement of the set  S  (briefly   S c  ) is defined as follows:


       γ ˜   S c    ( x )  =   μ ˜  S   ( x )  ,    η ˜   S c    ( x )  = 1 −   η ˜  S   ( x )  ,    μ ˜   S c    ( x )  =   γ ˜  S   ( x )  ,     








for every   x ∈  X ˜   .





Definition 5

([23]). Let   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   and   E = {  〈 x ,   γ ˜  E  ,   η ˜  E  ,   μ ˜  E  〉  : x ∈  X ˜  }   be an  SVNS . Then,




	(i) 

	
A  SVNS  S  is contained in the other  SVNS  E  (briefly,   S ⊆ E  ), if and only if


        γ ˜  S   ( x )  ≤   γ ˜  E   ( x )  ,    η ˜  S   ( x )  ≥   η ˜  E   ( x )  ,    μ ˜  S   ( x )  ≥   μ ˜  E   ( x )      








for every   ω ∈  X ˜   ,




	(ii) 

	
we say that  S  is equal to  E , denoted by   S = E  , if   S ⊆ E   and   S ⊇ E  .











Definition 6

([22]). Let   S = {  〈 x ,   γ ˜  S  ,   η ˜  S  ,   μ ˜  S  〉  : x ∈  X ˜  }   and   E = {  〈 x ,   γ ˜  E  ,   η ˜  E  ,   μ ˜  E  〉  : x ∈  X ˜  }   be an  SVNS . Then,




	(i) 

	
the intersection of  S  and  E  (briefly,   S ∩ E  ) is a  SVNS  in   X ˜   defined as:


     S ∩ E = (   γ ˜  S  ∩   γ ˜  E  ,   η ˜  S  ∪   η ˜  E  ,   μ ˜  S  ∪   μ ˜  E  )     








where    (   μ ˜  S  ∪   μ ˜  E  )   ( x )  =   μ ˜  S   ( x )  ∪   μ ˜  E   ( x )    and    (   γ ˜  S  ∩   γ ˜  E  )   ( x )  =   γ ˜  S   ( x )  ∩   γ ˜  E   ( x )   , for all   x ∈  X ˜   ,




	(ii) 

	
the union of  S  and  E  (briefly,   S ∪ E  ) is an  SVNS  on   X ˜   defined as:


     S ∪ E = (   γ ˜  S  ∪   γ ˜  E  ,   η ˜  S  ∩   η ˜  E  ,   μ ˜  S  ∩   μ ˜  E  ) .     



















Definition 7

([13]). Let   {  S j  , j ∈ Γ }   be an arbitrary family of    SVNS ′  s   on   X ˜  . Then,




	(i) 

	
the intersection of   {  S j  , j ∈ Γ }   (briefly,    ⋂  j ∈ Γ    S j   ) is  SVNS  over   X ˜   defined as:


      (   ⋂  J ∈ Γ     S j  )   ( x )  =  (   ⋂  j ∈ Γ      γ ˜   S j    ( x )  ,    ⋃  j ∈ Γ      η ˜   S j    ( x )  ,    ⋃  j ∈ Γ      μ ˜   S j    ( x )  )  ,     








for all   x ∈  X ˜   ,




	(ii) 

	
the union of   {  S j  , j ∈ Γ }   (briefly,    ⋃  j ∈ Γ    S j   )    is  SVNS  over   X ˜   defined as:


      (   ⋃  j ∈ Γ     S j  )   ( x )  =  (   ⋃  j ∈ Γ      γ ˜   S j    ( x )  ,    ⋂  j ∈ Γ      η ˜   S j    ( x )  ,    ⋂  j ∈ Γ      μ ˜   S j    ( x )  )  ,     








for all   x ∈  X ˜   .











Definition 8

([24]). A single-valued neutrosophic topology   ( SVNT )   on   X ˜   is an ordered triple (    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜    ) as mappings from   ζ  X ˜    to ζ such that:




	(SVNT1) 

	
    τ ˜   γ ˜    (  0 ˜  )  =   τ ˜   γ ˜    (  1 ˜  )  = 1   and     τ ˜   η ˜    (  0 ˜  )  =   τ ˜   η ˜    (  1 ˜  )  =   τ ˜   μ ˜    (  0 ˜  )  =   τ ˜   μ ˜    (  1 ˜  )  = 0  ,




	(SVNT2) 

	
    τ ˜   γ ˜    ( S ∩ E )  ≥   τ ˜   γ ˜    ( S )  ∩   τ ˜   γ ˜    ( E )   ,        τ ˜   η ˜    ( S ∩ E )  ≤  τ  η ˜    ( S )  ∪   τ ˜   η ˜    ( E )   ,



    τ ˜   μ ˜    ( S ∩ E )  ≤   τ ˜   μ ˜    ( S )  ∪   τ ˜   μ ˜    ( E )   , for all   S , E ∈  ζ  X ˜    ,




	(SVNT3) 

	
    τ ˜   γ ˜    (  ∪  j ∈ Γ    S j  )  ≥  ∩  j ∈ Γ     τ ˜   γ ˜    (  S j  )   ,        τ ˜   η ˜    (  ∪  i ∈ Γ    S j  )  ≤  ∪  j ∈ Γ     τ ˜   η ˜    (  S j  )   ,



    τ ˜   μ ˜    (  ∪  j ∈ Γ    S j  )  ≤  ∪  j ∈ Γ     τ ˜   μ ˜    (  S j  )    for all    {  S j  , j ∈ Γ }  ∈  ζ  X ˜    .











The quadruple   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is called  SVNTS .    τ ˜   γ ˜   ,    τ ˜   η ˜    and    τ ˜   μ ˜    may be interpreted as the degree of openness, the degree of indeterminacy, and the degree of non-openness, respectively, and any single valued neutrosophic (briefly,  SVNS ) set in   X ˜   is known as a single valued neutrosophic open set (briefly, r- SVNO ) set in   X ˜  . The elements of     τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜     are called open single valued neutrosophic sets (such that, for any  SVNS   S ∈  X ˜    and   r ∈  I 0   , we obtain     τ ˜   γ ˜    ( S )  ≥ r  ,     τ ˜   η ˜    ( S )  ≤ 1 − r  , and     τ ˜   η ˜    ( S )  ≤ 1 − r  ]. Then, the complement of r- SVNO  is a single valued neutrosophic closed set (briefly, r- SVNC ), and this will cause no ambiguity. Occasionally, we will write    τ ˜    γ ˜   η ˜   μ ˜     for   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , and it will be no ambiguity.



Definition 9

([17]). Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . A mapping   C :  ζ  X ˜   ×  ζ 0  →  ζ  X ˜     is called a single-valued neutrosophic closure operator if, for every   S , E ∈  ζ  X ˜     and   r , s ∈  ζ 0   , it satisfies the following conditions:




	(C1)

	
  C  (  0 ˜  , r )  =  0 ˜   ,




	(C2)

	
  S ≤ C ( S , r )  ,




	(C3)

	
  C ( S , r ) ∪ C ( E , r ) = C ( S ∪ E , r )  ,




	(C4)

	
  C ( S , r ) ≤ C ( S , s )   if   r ≤ s  .




	(C5)

	
  C ( C ( S , r ) , r ) = C ( S , r )  .











The pair   (  X ˜  , C )   is a single-valued neutrosophic closure space (briefly,  SVNCS ).



Theorem 1

([17]). Let   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      be an single-valued neutrosophic closure operator on   X ˜  . Define the mappings     τ ˜    C   τ ˜   γ ˜      γ ˜   ,   τ ˜    C   τ ˜   η ˜      η ˜   ,   τ ˜    C   τ ˜   μ ˜      μ ˜   :  ζ  X ˜   → ζ   by


       τ ˜    C   τ ˜   γ ˜      γ ˜    ( S )  = ⋃  { r ∈  ζ 0  ∣  C   τ ˜   γ ˜     (  S c  , r )  =  S c  }  ,       τ ˜    C   τ ˜   η ˜      η ˜    ( S )  = ⋂  { 1 − r ∈  ζ 0  ∣  C   τ ˜   η ˜     (  S c  , r )  =  S c  }  ,     










       τ ˜    C   τ ˜   μ ˜      μ ˜    ( S )  = ⋂  { 1 − r ∈  ζ 0  ∣  C   τ ˜   μ ˜     (  S c  , r )  =  S c  }  .     








Then,   (  τ  C   τ ˜   γ ˜     γ ˜   ,  τ  C   τ ˜   η ˜     η ˜   ,  τ  C   τ ˜   μ ˜     μ ˜   )   is an  SVNT  on   X ˜  .





Definition 10

([25]). Let   f :  (  X ˜  ,   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )  →  (  Y ˜  ,   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )    be a mapping and   r ∈  ζ 0   . Then, f is said to be  SVN -continuous if     τ ˜   2   γ ˜    ( S )  ≤   τ ˜   1   γ ˜    (  f  − 1    ( S )  )   ,     τ ˜   2   η ˜    ( S )  ≥   τ ˜   1   η ˜    (  f  − 1    ( S )  )   , and     τ ˜   2   μ ˜    ( S )  ≥   τ ˜   1   μ ˜    (  f  − 1    ( S )  )    for all   S ∈  ζ  Y ˜    .






3. Connectedness in Single-Valued Neutrosophic Topological Spaces


The aim of this section is to introduce the r-single-valued neutrosophic separated (briefly, r- SVNSEP ), r-single-valued neutrosophic connected (briefly, r- SVNCON ), and r-single-valued neutrosophic component (briefly, r- SVNCOM ).



Definition 11.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . For every   S , E , R ∈  ζ  X ˜    ,  S  and  E  are called r-single-valued neutrosophic separated (briefly, r- SVNSEP ) if for   r ∈  ζ 0   ,


       C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ∩ E =  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( E , r )  ∩ S =  0 ˜       








A  SVNS ,  R  is called r-single-valued neutrosophic connected (briefly, r- SVNCON ) if r- SVNSEP   S , E ∈  ζ  X ˜   −  {  0 ˜  }    such that   R = S ∪ E   does not exist. A  SVNS  R  is said to be  SVNCON  if it is r- SVNCON  for any   r ∈  ζ 0   . A quadruple   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is said to be r- SVNCON  if   1 ˜   is r- SVNCON .





Remark 1.

Let  S  and  E  be r- SVNSEP . Then for every   R ∈  ζ  X ˜     and    r 1  ≤ r  . We have    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( R ,  r 1  )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( R , r )   , and  S  and  E  are said to be   r 1  - SVNSEP . Conversely, from this fact, if  R  is   r 1  - SVNCON  and   r ≥  r 1   , then  R  is called r- SVNCON .





Example 1.

Let    X ˜  =  { a , b , c }    be a set. Define    E 1  ,  E 2  ∈  ζ  X ˜     as follows:


       E 1  =  〈  ( 1 , 1 , 0 )  ,  ( 1 , 1 , 0 )  ,  ( 1 , 1 , 0 )  〉  ;   E 2  =  〈  ( 0 , 0 , 1 )  ,  ( 0 , 0 , 1 )  ,  ( 0 , 0 , 1 )  〉  .      








We define an  SVNT   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   on   X ˜   as follows: for each   S ∈  ζ  X ˜    ,


        τ ˜   γ ˜    ( S )  =      1 ,  i f  S =  0 ˜   ,       1 ,  i f  S =  1 ˜   ,        1 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,       0 ,       o t h e r w i s e  ,              τ ˜   η ˜    ( S )  =      0 ,  i f  S =  0 ˜   ,       0 ,  i f  S =  1 ˜   ,        2 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,       1 ,       o t h e r w i s e  ,           










          τ ˜   μ ˜    ( S )  =      0 ,  i f  S =  0 ˜   ,       0 ,  i f  S =  0 ˜   ,        2 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,       1 ,       o t h e r w i s e  .           








We thus obtain


       C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  =       0 ˜  ,    i f  S =  0 ˜  ,  r ∈  ζ 0   ,        E 2 c  ,  i f  S ≤  E 1   , r ≤  1 2  , 1 − r ≥  1 2  ,        E 1 c  ,  i f  S ≤  E 2   , r ≤  1 3  , 1 − r ≥  2 3  ,        0 ˜  ,        o t h e r w i s e  .           








If   r ≤  1 3    and   1 − r ≥  2 3   , then    E 2 c  =  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  E 1  , r )  ∩  E 2  =  0 ˜    and    E 1 c  =  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  E 2  , r )  ∩  E 1  =  0 ˜   . Thus,    E 1  ∪  E 2  =  1 ˜    is not r- SVNCON  for   r ≤  1 3    and   1 − r ≥  2 3   . If   r >  1 3    and   1 − r <  2 3   ,   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is r- SVNCON .





Before we proceed further, we need to recall the following theorem given in [17] and prove its second part.



Theorem 2

([17]). Suppose that   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is an  SVNTS . For every   r ∈  ζ 0    and   S ∈  ζ  X ˜    . Define an operator    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜     :  ζ  X ˜   x  ζ 0  → ζ   as follows:


      C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  = ⋂  { E ∈  ζ  X ˜   : E ≤ S ,     τ ˜   γ ˜    (  E c  )  ≥ r ,    τ ˜   η ˜    (  E c  )  ≤ 1 − r ,    τ ˜   μ ˜    (  E c  )  ≤ 1 − r }  .     








Then,




	(1) 

	
  (  X ˜  ,  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜     )   is an  SVNCS ,




	(2) 

	
    τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      γ ˜   =   τ ˜   γ ˜    ,     τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      η ˜   =   τ ˜   η ˜     and     τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      μ ˜   =   τ ˜   μ ˜    











Proof. 

(1) It has been proven in [17].



(2) Suppose that     τ ˜   γ ˜    ( E )  = r  ,     τ ˜   η ˜    ( E )  = 1 − r   and     τ ˜   μ ˜    ( R )  = 1 − r  . Then,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  E c  , r )  =  E c   . Therefore,     τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      γ ˜   ≥   τ ˜   γ ˜    ,     τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      η ˜   ≤   τ ˜   η ˜     and     τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      μ ˜   ≤   τ ˜   μ ˜    . Suppose that


    τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      γ ˜   ≰   τ ˜   γ ˜   ,        τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      η ˜   ≱   τ ˜   η ˜   ,        τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      μ ˜   ≱   τ ˜   μ ˜   .  








Then, there exists  E  with    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  E c  , r )  =  E c    such that


    τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      γ ˜    ( E )  ≥ r >   τ ˜   γ ˜    ( E )  ,        τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      η ˜    ( E )  ≤ 1 − r <   τ ˜   η ˜    ( E )  ,        τ ˜   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      μ ˜    ( E )  ≤ 1 − r <   τ ˜   μ ˜    ( E )  .  



(1)




By the definition of   C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜     , we have     τ ˜   γ ˜    ( E )  ≥ r  ,     τ ˜   η ˜    ( E )  ≤ 1 − r   and     τ ˜   μ ˜    ( E )  ≤ 1 − r  . It is a contradiction for Equation (1). □





Example 2.

Let    X ˜  =  { a , b }    be a set. Define    E 1  ,  E 2  ∈  ζ  X ˜    .


       E 1  =  〈  ( 0.2 , 0.2 )  ,  ( 0.3 , 0.3 )  ,  ( 0.3 , 0.3 )  〉  ;  E 2  =  〈  ( 0.5 , 0.5 )  ,  ( 0.1 , 0.1 )  ,  ( 0.1 , 0.1 )  〉  .      








We define the mapping   C :  ζ  X ˜   ×  ζ 0  →  ζ  X ˜     as follows:


       C  ( S , r )  =       0 ˜  ,      i f  S =  0 ˜  ,  r ∈  I 0  ,         E 1  ∩  E 2  ,     i f  0 ≠ S ≤  E 1  ∩  E 2  ,   0 < r <  1 2  ,         E 1  ,     i f  S ≤  E 1  , S ≰  E 2  ,  0 < r <  1 2  ,              o r 0 ≠ S ≤  E 1     1 2  < r <  2 3  ,        E 2  ,     i f  S ≤  E 2  , S ≰  E 1  ,   0 < r <  1 2  ,         E 1  ∪  E 2  ,     i f  0 ≠ S ≤  E 1  ∪  E 2  ,  0 < r <  1 2  ,         1 ¯  ,      o t h e r w i s e  .           








Then, C is a single-valued neutrosophic closure operator.



From Theorem 1, we have a single-valued neutrosophic topology   (  τ  C   γ ˜   ,  τ  C   η ˜   ,  τ  C   μ ˜   )   on   X ˜   as follows:


       τ  C   γ ˜    ( S )  =      1 ,    i f  S =  1 ˜   o r   0 ˜  ,         2 3  ,    i f  S =  E  1  c  ,         1 2  ,    i f  S =  E  2  c  ,         1 2  ,    i f  S =  E  1  c  ∪  H c  ,         1 2  ,    i f  S =  E  1  c  ∩  E  2  c  ,        0 ,    o t h e r w i s e .            










       τ  C   η ˜    ( S )  =      0 ,    i f  S =  1 ˜   o r   0 ˜  ,         1 3  ,    i f  S =  E  1  c  ,         1 2  ,    i f  S =  E  2  c  ,         1 2  ,    i f  S =  E  1  c  ∪  E  2  c  ,         1 2  ,    i f  S =  E  1  c  ∩  E  2  c  ,        1 ,    o t h e r w i s e .            










       τ  C   μ ˜    ( S )  =      0 ,    i f  S =  1 ˜   o r   0 ˜  ,         1 3  ,    i f  S =  E  1  c  ,         1 2  ,    i f  S =  E  2  c  ,         1 2  ,    i f  S =  E  1  c  ∪  E  2  c  ,         1 2  ,    i f  S =  E  1  c  ∩  E  2  c  ,        1 ,    o t h e r w i s e .            








Thus, the   (  τ  C   γ ˜   ,  τ  C   η ˜   ,  τ  C   μ ˜   )   is a single-valued neutrosophic topology on   X ˜  .





Theorem 3.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . Then, the following are equivalent.




	(1) 

	
  (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is r- SVNCON .




	(2) 

	
if   S ∪ E =  1 ˜    and   S ∩ E =  0 ˜    for   (   τ ˜   γ ˜    ( E )  ≥ r  ,     τ ˜   η ˜    ( E )  ≤ 1 − r ,   τ ˜   μ ˜     ( E )  ≤ 1 − r )    and   (   τ ˜   γ ˜    ( S )  ≥ r  ,     τ ˜   η ˜    ( S )  ≤ 1 − r ,   τ ˜   μ ˜     ( S )  ≤ 1 − r )   , then   E =  0 ˜    or   S =  0 ˜   ,




	(3) 

	
if   S ∪ E =  1 ˜   ,    E 1  ∩  E 2  =  0 ˜    for   (   τ ˜   γ ˜    (  E c  )  ≥ r  ,     τ ˜   η ˜    (  E c  )  ≤ 1 − r ,   τ ˜   μ ˜    (  E c  )   ≤ 1 − r )    and   (   τ ˜   γ ˜    (  S c  )  ≥ r  ,     τ ˜   η ˜    (  S c  )  ≤ 1 − r ,   τ ˜   μ ˜    (  S c  )   ≤ 1 − r )   , then   E =  0 ˜    or   S =  0 ˜   .











Proof. 

(1)⇒(2): Let there exist   S , E ∈  ζ  X ˜   −  {  0 ˜  }    such that for every   (   τ ˜   γ ˜    ( E )  ≥ r  ,     τ ˜   η ˜    ( E )  ≤ 1 − r ,   τ ˜   μ ˜     ( E )  ≤ 1 − r )    and   (   τ ˜   γ ˜    ( S )  ≥ r  ,     τ ˜   η ˜    ( S )  ≤ 1 − r ,   τ ˜   μ ˜     ( S )  ≤ 1 − r )   ,   S ∪ E =  1 ˜   ,   S ∩ E =  0 ˜   . It implies


      S c  ∩  E c  =  0 ˜  ,     S c  ∪  E c  =  1 ˜  .     








Since    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  S c  , r )  =  S c    and    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  E c  , r )  =  E c    from Theorem 2,   S c   and   E c   are r- SVNSEP . Suppose   S =  1 ˜   . Then,   E = S ∩ E =  0 ˜   . It is a contradiction. Hence,    S c  ∈  ζ  X ˜   −  {  0 ˜  }   . Similarly,    E c  ∈  ζ  X ˜   −  {  0 ˜  }   . Furthermore,    S c  ∪  E c  =  1 ˜   . Thus,   1 ˜   is not r- SVNCON .



(2)⇒(3): It is trivial.



(3)⇒(1): Suppose that   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is not r- SVNCON . Then, there exist r- SVNSEP    S , E ∈  ζ  X ˜   −  {  0 ˜  }    such that   S ∪ E =  1 ˜   . Since   S ∩ E ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ∩ E =  0 ˜   , we have   S ∩ E =  0 ˜   . Thus,    S c  ∩  E c  =  0 ˜    implies    E c  ≤ S  . Hence,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ∩ E =  0 ˜    implies,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ≤  E c   . Thus,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ≤ S  . By Definition 9  (  C 2  )  , we have    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  = S  . By Theorem 2, we obtain   (   τ ˜   γ ˜    (  S c  )  ≥ r  ,     τ ˜   η ˜    (  S c  )  ≤ 1 − r  ,     τ ˜   μ ˜    (  S c  )   ≤ 1 − r )   . Similarly, we have   (   τ ˜   γ ˜    (  E c  )  ≥ r  ,     τ ˜   η ˜    (  E c  )  ≤ 1 − r  ,     τ ˜   μ ˜    (  E c  )   ≤ 1 − r )   . It is a contradiction. □





Lemma 1.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS  and   S , E , R ∈  ζ  X ˜    . If  E  and  R  are r- SVNSEP , then   S ∩ E   and   S ∩ R   are r- SVNSEP .





Proof. 

Let  E  and  R  be r- SVNSEP . Thus,


      C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S ∩ E , r )  ∩  ( S ∩ R )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( E , r )  ∩ R =  0 ˜      








Similarly,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S ∩ R , r )  ∩  ( S ∩ E )  =  0 ˜   . Thus,   S ∩ E   and   S ∩ R   are r- SVNSEP . □





Theorem 4.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS  and   S ∈  ζ  X ˜    . Then, the following are equivalent.




	(1) 

	
 S  is r- SVNCON ,




	(2) 

	
If  E  and  R  are r- SVNSEP  such that   S ≤ E ∪ R  , then   S ∩ E =  0 ˜    or   S ∩ R =  0 ˜   ,




	(3) 

	
If  E  and  R  are r- SVNSEP  such that   S ≤ E ∪ R  , then   S ≤ E   or   S ≤ R  .











Proof. 

  ( 1 ) ⇒ ( 2 )  : Let   E , R ∈  ζ  X ˜     be r- SVNSEP  such that   S ≤ E ∪ R  . By Lemma 1,   S ∩ E   and   S ∩ R   are r- SVNSEP . Since  S  is r- SVNCON  and   S = S ∩ ( E ∪ R ) = ( S ∩ E ) ∪ ( S ∩ R )  , then   S ∩ E =  0 ˜    or   S ∩ R =  0 ˜   .



  ( 2 ) ⇒ ( 3 )  : It is easily proved.



  ( 3 ) ⇒ ( 1 )  : Let  E  and  R  be r- SVNSEP  such that   S = E ∪ R  . By (3),   S ≤ E   or   S ≤ R  . If   S ≤ E   and   E , R   are r- SVNSEP , then


     R = R ∩ S ≤ R ∩ E ≤ R ∩  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( E , r )  =  0 ˜  .     








Hence,   R =  0 ˜   . If   S ≤ R  , similarly   E =  0 ˜   . □





Theorem 5.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS  and   S , E ∈  ζ  X ˜    .




	(1) 

	
If  S  is r- SVNCON ,   S ≤ E ≤  C   τ ˜    γ ˜   η ˜   μ ˜      ( S , r )   , then  E  is r- SVNCON .




	(2) 

	
If  S  and  E  are r- SVNCON  single-valued neutrosophic sets which are not r- SVNSEP , then   S ∪ E   is r- SVNCON .











Proof. 

(1) Let   R , D ∈  ζ  X ˜     be r- SVNSEP  such that   E = R ∪ D  . Put,    R 1  = S ∩ R   and    D 1  = S ∩ D  , then   R 1   and   D 1   are r- SVNSEP  such that   S =  R 1  ∪  D 1   . Since  S  is r- SVNCON ,    R 1  =  0 ˜    or    D 1  =  0 ˜   . If    R 1  =  0 ˜   , then   S =  D 1  = S ∩ D  ⇒  S ≤ D  . It implies


     E ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( D , r )  .     








Hence,   R = R ∩ E ≤ R ∩  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( D , r )  =  0 ˜   .



If    D 1  =  0 ˜   , similarly   D =  0 ˜   . Therefore,  E  is r- SVNCON .



(2) Let  R  and  D  be r- SVNSEP  such that   S ∪ E = R ∪ D  . Since  S  is r- SVNCON , by Theorem 4 (3),   S ≤ R   or   S ≤ D  . Say,   S ≤ R  . Suppose that   E ≤ D  . Since   ( S ∪ E ) ∩ R = S   and   ( S ∪ E ) ∩ D = E  , by Lemma 1,  S  and  E  are r- SVNSEP . It is a contradiction. Thus,   E ≤ R   Hence,   S ∪ E ≤ R  , by Theorem 4 (3),   S ∪ E   is r- SVNCON . □





Theorem 6.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . Let   B = {  S j  ∈  ζ  X ˜   ∣  S j   i s  r − SVNCON  s e t s  , j ∈ Γ }   be a family in   X ˜   such that no two members of  B  are r- SVNSEP , then    ⋃  j ∈ Γ    S j    is r- SVNCON .





Proof. 

Put   S =  ⋃  j ∈ Γ    S j   . Let   E , R ∈  ζ  X ˜     be r- SVNSEP  such that   S = E ∪ R  . Since any two members    S j  ,  S i  ∈ B   are not r- SVNSEP , by Theorem 5 (2),    S j  ∪  S i    is r- SVNCON . From Theorem 4 (3),    S j  ∪  S i  ≤ E   or    S j  ∪  S i  ≤ R  . Say,    S j  ∪  S i  ≤ E  . It implies that   S ≤ E  . Thus,  S  is r- SVNCON . □





Corollary 1.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . Let   B = {  S j  ∈  ζ  X ˜   ∣  S j   i s  r − SVNCON  s e t s  , j ∈ Γ }   be a family in   X ˜  . If    ⋂  j ∈ Γ    S j  ≠  0 ˜   , then    ⋃  j ∈ Γ    S j    is r- SVNCON .





Lemma 2.

Let   f :  (  X ˜  ,   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )  →  (  Y ˜  ,   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )    be a mapping from an  SVNTS   (  X ˜  ,   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )   to another  SVNTS   (  Y ˜  ,   τ ˜   2   γ ˜   .   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )  . Then, the following are equivalent, ∀  S ∈  ζ  X ˜    ,   E ∈  ζ  Y ˜     and   r ∈  ζ 0   




	(1) 

	
f is   SVN − c o n t i n u o u s  .




	(2) 

	
  f  (  C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      ( S , r )  )  ≤  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( f  ( S )  , r )   .




	(3) 

	
   C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E )  , r )  ≤  f  − 1    (  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )  )   .











Proof. 

(1)⇒(2): Suppose that f is   SVN − c o n t i n u o u s  . Then,     τ ˜   1   γ ˜    (   (  f  − 1    ( S )  )  c  )  ≥   τ ˜   2   γ ˜    (  S c  )   ,     τ ˜   1   η ˜    (   (  f  − 1    ( S )  )  c  )  ≤   τ ˜   2   η ˜    (  S c  )    and     τ ˜   1   μ ˜    (   (  f  − 1    ( S )  )  c  )  ≤   τ ˜   2   μ ˜    (  S c  )   . Hence,


      C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( f  ( S )  , r )      = ⋂ { E ∈  ζ  Y ˜   ∣ f  ( S )  ≤ E ,     τ ˜   2   γ ˜    (  E c  )  ≥ r ,    τ ˜   2   η ˜    (  E c  )  ≤ 1 − r ,    τ ˜   2   μ ˜    (  E c  )  ≤ 1 − r }        ≥ ⋂ { E ∈  ζ  Y ˜   ∣ S ≤  f  − 1    ( E )  ,     τ ˜   1   γ ˜    (   (  f  − 1    ( E )  )  c  )  ≥ r ,    τ ˜   1   η ˜    (   (  f  − 1    ( E )  )  c  )  ≤ 1 − r ,          τ ˜   1   μ ˜    (   (  f  − 1    ( E )  )  c  )   ≤ 1 − r }         ≥ ⋂ { f  (  f  − 1    ( E )  )  ∈  ζ  Y ˜   ∣ S ≤  f  − 1    ( E )  ,     τ ˜   1   γ ˜    (   (  f  − 1    ( E )  )  c  )  ≥ r ,    τ ˜   1   η ˜    (   (  f  − 1    ( E )  )  c  )  ≤ 1 − r ,          τ ˜   1   μ ˜    (   (  f  − 1    ( E )  )  c  )   ≤ 1 − r }         ≥ f [ ⋂  {  f  − 1    ( E )  )  ∈  ζ  Y ˜   ∣ S ≤  f  − 1    ( E )  ,     τ ˜   1   γ ˜    (   (  f  − 1    ( E )  )  c  )  ≥ r ,    τ ˜   1   η ˜    (   (  f  − 1    ( E )  )  c  )  ≤ 1 − r ,          τ ˜   1   μ ˜    (   (  f  − 1    ( E )  )  c  )  ≤ 1 − r  } ]         ≥ f (  C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      ( f  ( S )  , r )  ) .     











(2)⇒(3). For all   E ∈  ζ  Y ˜    . By (2),


  f  (  C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      ( S , r )  )  ≤  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( f  ( S )  , r )  .  








Putting   S =  f  − 1    ( E )   , we obtain


  f  (  C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E )  , r )  )  ≤  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( f  (  f  − 1    ( E )  )  , r )  ≤  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )   








Hence,    C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E )  , r )  ≤  f  − 1    (  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )  )   .



(3)⇒(1). It follows that    C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      ( E , r )  = E   implies    C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E )  , r )  =  f  − 1    ( E )   . □





Theorem 7.

Let   (  X ˜  ,   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )  ,   (  Y ˜  ,   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )   be two    SVNTS ′  s   and   f :  X ˜  →  Y ˜    is  SVN -continuous mapping. If  S  is r- SVNCON , then   f ( S )   is r- SVNCON .





Proof. 

Let   E , R ∈  ζ  Y ˜     be two r-   SVNSEP ′  s   such that   f ( S ) = E ∪ R  . We obtain


     S ≤ f  (  f  − 1   )   ( S )  =  f  − 1    ( E ∪ R )  =  f  − 1    ( E )  ∪  f  − 1    ( R )  .     








Since f is  SVN -continuous, by Lemma 2,


      C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E , r )  )  ≤  f  − 1    (  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )  )  .     








Thus,


       C    τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜      (  f  − 1    ( E , r )  ∩  f  − 1    ( R )  )      ≤  f  − 1    (  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )  )  ∩  f  − 1    ( R )          =  f  − 1    (  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( E , r )  ∩ R )          =  f  − 1    (  0 ˜  )  =  0 ˜  .     








Likewise, we obtain    f  − 1    ( E )  ∩  C    τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜      ( R , r )  =  0 ˜   . It implies that    f  − 1    ( E )  ,  f  − 1    ( R )  ∈  ζ  X ˜     are r-   SVNSEP ′  s  . Since  S  is r- SVNCON , then we have by Theorem 4 (3),   S ≤  f  − 1    ( E )    or   S ≤  f  − 1    ( R )   , so   S ≤  f  − 1    ( E )   . Thus,   f  ( S )  ≤ f (  f  − 1    ( E )  ) ≤ E  . Hence,   f ( S )   is r- SVNCON . □





Example 3.

Let    X ˜  =  Y ˜  =  { a , b }    be a set. Define    E 1  ,  E 2  ,  E 3  ,  B 1  ,  B 2  ,  B 3  ∈  ζ  X ˜    :


       E 1  =  〈  ( 0.5 , 0.4 )  ,  ( 0.5 , 0.5 )  ,  ( 0.9 , 0.6 )  〉  ,   E 2  =  〈  ( 0.4 , 0.4 )  ,  ( 0.1 , 0.1 )  ,  ( 0.1 , 0.1 )  〉  ,      










       E 3   = 〈  ( 0.3 , 0.1 )  ,  ( 0.1 , 0.1 )  ,  ( 0.1 , 0.1 )  ,    B 1  =  〈  ( 0.4 , 0.5 )  ,  ( 0.5 , 0.5 )  ,  ( 0.6 , 0.9 )  〉  ,      










       B 2   = 〈  ( 0.2 , 0.2 )  ,  ( 0.2 , 0.2 )  ,  ( 0.1 , 0.1 )  ,    B 3  =  〈  ( 0.1 , 0.1 )  ,  ( 0.1 , 0.1 )  ,  ( 0.1 , 0.1 )  〉  .      








Define     τ ˜    γ ˜   η ˜   μ ˜    ,   σ ˜    γ ˜   η ˜   μ ˜    :  ζ  X ˜   →  ζ  X ˜     as follows:


        τ ˜   γ ˜    ( S )  =      1 ,    i f  S =  0 ˜   ,       1 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  E 1   ,       0 ,    o t h e r w i s e .           σ ˜   γ ˜    ( S )  =      1 ,    i f  S =  0 ˜   〉   ,       1 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  B 1   ,       0 ,    o t h e r w i s e .            










        τ ˜   η ˜    ( S )  =      0 ,    i f  S =  0 ˜   ,       0 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  E 2   ,       1 ,    o t h e r w i s e .           σ ˜   η ˜    ( S )  =      0 ,    i f  S =  0 ˜   ,       0 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  B 2   ,       1 ,    o t h e r w i s e .            










        τ ˜   μ ˜    ( S )  =      0 ,    i f  S =  0 ˜   ,       0 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  E 3   ,       1 ,    o t h e r w i s e .           σ ˜   μ ˜    ( S )  =      0 ,    i f  S =  0 ˜   ,       0 ,    i f  S =  1 ˜   ,        1 2  ,    i f  S =  B 3   ,       1 ,    o t h e r w i s e .            








Define   f :  (  X ˜  ,   τ ˜    γ ˜   η ˜   μ ˜    )   ) →   (  Y ˜  ,   σ ˜    γ ˜   η ˜   μ ˜    )    be a map as follows   f ( a ) = b   and   f ( b ) = a  . If     J ˜   γ ˜    (  B 1  )  ≥  1 2   ,     J ˜   η ˜    (  B 1  )  ≤ 1 −  1 2    and     J ˜   μ ˜    (  B 1  )  ≤ 1 −  1 2   . Then,    f  − 1    (  B 1  )  =  〈  ( 0.5 , 0.4 )  ,  ( 0.5 , 0.5 )  ,  ( 0.9 , 0.6 )  〉    is   1 2  -single-valued neutrosophic open set in   X ˜  . Thus, f is  SVN -continuous. However, by Theorem 7, for every   S ∈  ζ  X ˜     is r- SVNCON , then   f ( S )   is r- SVNCON  in   Y ˜  .





Definition 12.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . A  SVNs  S  is called r-single-valued neutrosophic component (r- SVNCOM , for short) in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   if  S  is a maximal r- SVNCON  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , i.e., if   E ≥ S   and  E  is r- SVNCON , then   E = S  .





Corollary 2.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS .




	(1) 

	
If  S  is a r- SVNCOM ,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  = S  .




	(2) 

	
If    S 1  ,  S 2  ∈  ζ  X ˜     are r- SVNCOM  in   X ˜   such that    S 1  ∩  S 2  =  0 ˜   , then    S 1  ,  S 2  ∈  ζ  X ˜     are r- SVNSEP .




	(3) 

	
Each single-valued neutrosophic point   x  t , s , k    is  SVNCON .




	(4) 

	
Every r- SVNCOM  is a crisp set.











Proof. 

Straightforward. □






4. Stratification of Single-Valued Neutrosophic Topological Spaces


In this section, we obtain crucial results in the stratification of the single-valued neutrosophic topology as follows.



Definition 13.

The stratification of the single-valued neutrosophic topology   ( SVNT )   on   X ˜   is a mapping from   ζ  X ˜    to ζ such that




	(SVNT1) 

	
    τ ˜   γ ˜    (  α ˜  )  = 1   and     τ ˜   η ˜    (  α ˜  )  =   τ ˜   μ ˜    (  α ˜  )  = 0  , ∀  α ∈ ζ  ,




	(SVNT2) 

	
    τ ˜   γ ˜    ( S ∩ E )  ≥   τ ˜   γ ˜    ( S )  ∩   τ ˜   γ ˜    ( E )   ,        τ ˜   η ˜    ( S ∩ E )  ≤  τ  η ˜    ( S )  ∪   τ ˜   η ˜    ( E )   ,



    τ ˜   μ ˜    ( S ∩ E )  ≤   τ ˜   μ ˜    ( S )  ∪   τ ˜   μ ˜    ( E )   , for all   S , E ∈  ζ  X ˜    ,




	(SVNT3) 

	
    τ ˜   γ ˜    (  ∪  j ∈ Γ    S j  )  ≥  ∩  j ∈ Γ     τ ˜   γ ˜    (  S j  )   ,        τ ˜   η ˜    (  ∪  i ∈ Γ    S j  )  ≤  ∪  j ∈ Γ     τ ˜   η ˜    (  S j  )   ,



    τ ˜   μ ˜    (  ∪  j ∈ Γ    S j  )  ≤  ∪  j ∈ Γ     τ ˜   μ ˜    (  S j  )   , for all    {  S j  , j ∈ Γ }  ∈  ζ  X ˜    .











The ordered pair  SVNTS   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is called stratified. Let   (   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )   and   (   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )   be    SVNGO ′  s   on   X ˜  . We say that   (   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )   is finer then   (   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )   [  (   τ ˜   2   γ ˜   ,   τ ˜   2   η ˜   ,   τ ˜   2   μ ˜   )   is coarser then   (   τ ˜   1   γ ˜   ,   τ ˜   1   η ˜   ,   τ ˜   1   μ ˜   )  ] if     τ ˜   1   γ ˜    ( S )  ≤   τ ˜   2   γ ˜    ( S )   ,     τ ˜   1   η ˜    ( S )  ≥   τ ˜   2   η ˜    ( S )    and     τ ˜   1   μ ˜    ( S )  ≥   τ ˜   2   μ ˜    ( S )    for all   S ∈  ζ  X ˜    .



Theorem 8.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   be an  SVNTS . Define the mappings     τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   :  ζ  X ˜   → ζ   as follows: for all   S ∈  ζ  X ˜    ,


        τ ˜   s t   γ ˜    ( S )  = ⋃  {   ⋂  j ∈ Γ      τ ˜   γ ˜    (  S j  )  ∣ S =   ⋃  j ∈ Γ     (  S j  ∩   α ˜  j  )  }       










        τ ˜   s t   η ˜    ( S )  = ⋂  {   ⋃  j ∈ Γ      τ ˜   η ˜    (  S j  )  ∣ S =   ⋃  j ∈ Γ     (  S j  ∩   α ˜  j  )  }       










        τ ˜   s t   μ ˜    ( S )  = ⋂  {   ⋃  j ∈ Γ      τ ˜   μ ˜    (  S j  )  ∣ S =   ⋃  j ∈ Γ     (  S j  ∩   α ˜  j  )  }  .      








Then,   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   is the coarsest stratified  SVNT  on   X ˜   which is finer than   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  .





Proof. 

Firstly, we will show that   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   is a stratified  SVNT  on   X ˜  .



(SVNT1) For every   α ∈ ζ  , there exists a collection   {  1 ˜  }   with    α ˜  =  α ˜  ∩  1 ˜   , we obtain     τ ˜   s t   γ ˜    (  α ˜  )  ≥   τ ˜   γ ˜    (  1 ˜  )  = 1  ,     τ ˜   s t   η ˜    (  α ˜  )  ≤   τ ˜   η ˜    (  1 ˜  )  = 0   and     τ ˜   s t   μ ˜    (  α ˜  )  ≤   τ ˜   μ ˜    (  1 ˜  )  = 0  . Thus,     τ ˜   s t   γ ˜    (  α ˜  )  = 1   and     τ ˜   s t   η ˜    (  α ˜  )  =   τ ˜   s t   μ ˜    (  α ˜  )  = 0  .



(SVNT2) Suppose there exists   E , R ∈  ζ  X ˜     and   r ∈  ζ 0    with


         τ ˜   s t   γ ˜    ( E ∩ R )  < r <   τ ˜   s t   γ ˜    ( E )  ∩   τ ˜   s t   γ ˜    ( R )  ,     










       τ ˜   s t   η ˜    ( E ∩ R )  > 1 − r >   τ ˜   s t   η ˜    ( E )  ∪   τ ˜   s t   η ˜    ( R )  ,     










       τ ˜   s t   μ ˜    ( E ∩ R )  > 1 − r >   τ ˜   s t   μ ˜    ( E )  ∪   τ ˜   s t   μ ˜    ( R )  .     








Since   [   τ ˜   s t   γ ˜    ( E )  > r  ,     τ ˜   s t   γ ˜     ( R )  > r ]   ,   [   τ ˜   s t   η ˜    ( E )  < 1 − r  ,     τ ˜   s t   η ˜     ( R )  < 1 − r ]    and   [   τ ˜   s t   γ ˜    ( E )  < 1 − r  ,     τ ˜   s t   γ ˜     ( R )  < 1 − r ]   , by the definition of   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , there exist   {  E j  ∣ j ∈ Γ }   with   E =  ⋃  j ∈ Γ    (  E j  ∩   α ˜  j  )    and   {  R k  ∣ k ∈ K }   with   R =  ⋃  k ∈ K    (  R k  ∩   α ˜  k  )    such that


            τ ˜   s t   γ ˜    ( E )  ≥   ⋂  j ∈ Γ      τ ˜   γ ˜    (  E j  )  > r ,    τ ˜   s t   η ˜    ( E )  ≤   ⋃  j ∈ Γ      τ ˜   η ˜    (  E j  )  < 1 − r   a n d     τ ˜   s t   μ ˜    ( E )  ≤   ⋃  j ∈ Γ      τ ˜   μ ˜    (  E j  )  < 1 − r ,     










           τ ˜   s t   γ ˜    ( R )  ≥   ⋂  k ∈ K      τ ˜   γ ˜    (  R k  )  > r ,    τ ˜   s t   μ ˜    ( R )  ≤   ⋃  k ∈ K      τ ˜   μ ˜    (  R k  )  < 1 − r   a n d     τ ˜   s t   μ ˜    ( R )  ≤   ⋃  k ∈ K      τ ˜   s t   μ ˜    (  R k  )  < 1 − r .     








Since  ζ  is completely distributive lattice, we have


      E ∩ R     =  [   ⋃  j ∈ Γ     (  E j  ∩   α ˜  j  )  ]  ∩  [   ⋃  k ∈ K     (  R k  ∩   α ˜  k  )  ]  =   ⋃  j ∈ Γ     (  E j  ∩  R k  )  ∩  (   α ˜  j  ∩   α ˜  k  )          =   ⋃  j ∈ Γ     (  E j  ∩  R k  )  ∩   α ˜   j k   .     (   α ˜   j k   =   α ˜  j  ∩   α ˜  k  )  .     








Moreover, since     τ ˜   γ ˜    (  E j  ∩  R k  )  ≥   τ ˜   γ ˜    (  E j  )  ∩   τ ˜   γ ˜    (  R k  )   ,     τ ˜   η ˜    (  E j  ∩  R k  )  ≤  τ  η ˜    (  E j  )  ∪   τ ˜   η ˜    (  R k  )    and     τ ˜   μ ˜    (  E j  ∩  R k  )  ≤   τ ˜   μ ˜    (  E j  )  ∪   τ ˜   μ ˜    (  R k  )   , we obtain


       τ ˜   s t   γ ˜    ( E ∩ R )  ≥   ⋂  j , k      τ ˜   γ ˜    (  E j  ∩  R k  )  ≥   ⋂  j , k     (   τ ˜   γ ˜    (  E j  )  ∩   τ ˜   γ ˜    (  R k  )  )   = [    ⋂  j ∈ Γ     (   τ ˜   γ ˜    (  E j  )  ]  ∩  [   ⋂  k ∈ K      τ ˜   γ ˜    (  R k  )  ]  > r ,     










       τ ˜   s t   η ˜    ( E ∩ R )  ≤   ⋃  j , k      τ ˜   η ˜    (  E j  ∩  R k  )  ≤   ⋃  j , k     (   τ ˜   η ˜    (  E j  )  ∪   τ ˜   η ˜    (  R k  )  )   = [    ⋃  j ∈ Γ     (   τ ˜   η ˜    (  E j  )  ]  ∪  [   ⋃  k ∈ K      τ ˜   η ˜    (  R k  )  ]  < 1 − r ,     










       τ ˜   s t   γ ˜    ( E ∩ R )  ≤   ⋃  j , k      τ ˜   γ ˜    (  E j  ∩  R k  )  ≤   ⋃  j , k     (   τ ˜   μ ˜    (  E j  )  ∪   τ ˜   s t   μ ˜    (  R k  )  )   = [    ⋃  j ∈ Γ     (   τ ˜   μ ˜    (  E j  )  ]  ∪  [   ⋃  k ∈ K      τ ˜   s t   μ ˜    (  R k  )  ]  < 1 − r     








It is a contradiction. Hence, for each   E , R ∈  ζ  X ˜    ,


         τ ˜   s t   γ ˜    ( E ∩ R )  ≥   τ ˜   s t   γ ˜    ( E )  ∩   τ ˜   s t   γ ˜    ( R )  ,    τ ˜   s t   η ˜    ( E ∩ R )  ≤  τ  s t   η ˜    ( E )  ∪   τ ˜   s t   η ˜    ( R )  ,    τ ˜   s t   μ ˜    ( E ∩ R )  ≤   τ ˜   s t   μ ˜    ( E )  ∪   τ ˜   s t   μ ˜    ( R )  .     











(SVNT3) Suppose there exists a family   {  E j  ∈  ζ  X ˜   ∣ j ∈ Γ }   and   r ∈  ζ 0    with


       τ ˜   s t   γ ˜    (   ⋃  j ∈ Γ     E j  )  < r <   ⋂  j ∈ Γ      τ ˜   s t   γ ˜    (  E j  )  ,     










       τ ˜   s t   η ˜    (   ⋃  i ∈ Γ     E j  )  > 1 − r >   ⋃  j ∈ Γ      τ ˜   s t   η ˜    (  E j  )  ,     










       τ ˜   s t   μ ˜    (   ⋃  j ∈ Γ     E j  )  > 1 − r >   ⋃  j ∈ Γ      τ ˜   s t   μ ˜    (  E j  )      








Since   [   τ ˜   s t   γ ˜    (  E j  )  ≥ r  ,     τ ˜   s t   η ˜    (  E j  )  ≤ 1 − r   and     τ ˜   s t   μ ˜    (  E j  )   ≤ 1 − r ]    for all   j ∈ Γ  , there exists a family   {  E  j k   ∣ k ∈  K j  }   with    E j  =  ⋃  k ∈  K j     E  j k   ∩   α ˜  k    such that


       τ ˜   s t   γ ˜    (  E j  )  ≥   ⋂  k ∈  K j       τ ˜   s t   γ ˜    (  E  j k   )  > r ,     










       τ ˜   s t   η ˜    (  E j  )  ≤   ⋃  k ∈  K j       τ ˜   s t   η ˜    (  E  j k   )  < 1 − r ,     










       τ ˜   s t   μ ˜    (  E j  )  ≤   ⋃  k ∈  K j       τ ˜   s t   μ ˜    (  E  j k   )  < 1 − r .     








Since    ⋃  j ∈ Γ    E j  =  ⋃  j ∈ Γ    (  ⋃  k ∈  K j     (  E  j k   ∩   α ˜  k  )  )  =  ⋃  j , k    (  E  j k   ∩   α ˜  k  )   , we obtain


       τ ˜   s t   γ ˜    (   ⋃  j ∈ Γ     E j  )  ≥   ⋂  j , k      τ ˜   γ ˜    (  E  j k   )  =   ⋂  j ∈ Γ     (    ⋂  k ∈  K j       τ ˜   γ ˜    (  E  j k   )  ≥ r ,     










       τ ˜   s t   η ˜    (   ⋃  j ∈ Γ     E j  )  ≤   ⋃  j , k      τ ˜   η ˜    (  E  j k   )  =   ⋃  j ∈ Γ     (    ⋃  k ∈  K j       τ ˜   η ˜    (  E  j k   )  ≤ 1 − r ,     










       τ ˜   s t   μ ˜    (   ⋃  j ∈ Γ     E j  )  ≤   ⋃  j , k      τ ˜   μ ˜    (  E  j k   )  =   ⋃  j ∈ Γ     (    ⋃  k ∈  K j       τ ˜   μ ˜    (  E  j k   )  ≤ 1 − r     








It is a contradiction. Hence, for each     {  E j  }   j ∈ Γ   ∈  ζ  X ˜    


       τ ˜   s t   γ ˜    (   ⋃  j ∈ Γ     E j  )  ≥   ⋂  j ∈ Γ      τ ˜   s t   γ ˜    (  E j  )  ,    τ ˜   s t   η ˜    (   ⋃  i ∈ Γ     S j  )  ≤   ⋃  j ∈ Γ      τ ˜   s t   η ˜    (  E j  )  ,    τ ˜   s t   μ ˜    (   ⋃  i ∈ Γ     S j  )  ≤   ⋃  j ∈ Γ      τ ˜   s t   μ ˜    (  E j  )  .     











Secondly, for each   S ∈  ζ  X ˜    , there exists a family   {  1 ˜  }   with   S = S ∩  1 ˜   , such that   [   τ ˜   s t   γ ˜    ( S )  ≥   τ ˜   γ ˜    ( S )   ,     τ ˜   s t   η ˜    ( S )  ≤   τ ˜   η ˜    ( S )    and     τ ˜   s t   μ ˜    ( S )  ≤   τ ˜   μ ˜     ( S )  ]   . Hence,   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   is finer than   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . Finally, if a stratified  SVNT   (   U ˜   γ ˜   ,   U ˜   η ˜   ,   U ˜   μ ˜   )   is finer than   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , we show that   [   τ ˜   s t   γ ˜    ( S )  ≤   U ˜   γ ˜    ( S )   ,     τ ˜   s t   η ˜    ( S )  ≥   U ˜   η ˜    ( S )    and     τ ˜   s t   μ ˜    ( S )  ≥   U ˜   μ ˜     ( E )  ]    for each   S ∈  ζ  X ˜    .



Suppose that there exist   E ∈  ζ  X ˜     and   r ∈  ζ 0    such that


       τ ˜   s t   γ ˜    ( E )  > r >   U ˜   γ ˜    ( E )  ,    τ ˜   s t   η ˜    ( E )  < 1 − r <   U ˜   η ˜    ( E )  ,    τ ˜   s t   μ ˜    ( E )  < 1 − r <   U ˜   μ ˜    ( E )  .     








Since   [   τ ˜   s t   γ ˜    ( E )  > r ,   τ ˜   s t   η ˜    ( E )  < 1 − r   and     τ ˜   s t   μ ˜     ( E )  < 1 − r ]   , there exists   {  E j  ∣ j ∈ Γ }   with    E j  =  ⋃  j ∈ Γ    (  E j  ∩   α ˜  j  )    such that


           τ ˜   s t   γ ˜    ( E )  ≥   ⋂  j ∈ Γ      τ ˜   γ ˜    (  E j  )  > r ,    τ ˜   s t   η ˜    ( E )  ≤   ⋃  j ∈ Γ      τ ˜   η ˜    (  E j  )  < 1 − r ,    τ ˜   s t   μ ˜    ( E )  ≤   ⋃  j ∈ Γ      τ ˜   μ ˜    (  E j  )  < 1 − r .     








On the other hand, since   [   U ˜   γ ˜    (  E j  )  ≥   τ ˜   γ ˜    (  E j  )   ,     U ˜   η ˜    (  E j  )  ≤   τ ˜   η ˜    (  E j  )    and     U ˜   μ ˜    (  E j  )  ≤   τ ˜   μ ˜    (  E j  )   ]    for all   j ∈ Γ  , we have


       U ˜   γ ˜    ( E )  =   U ˜   γ ˜    (   ⋃  j ∈ Γ     (  E j  ∩   α ˜  j  )  )  ≥   ⋂  j ∈ Γ      U ˜   γ ˜    (  E j  ∩   α ˜  j  )  ≥   ⋂  j ∈ Γ     [   U ˜   γ ˜    (  E j  )  ∩   U ˜   γ ˜    (   α ˜  j  )  ]  =   ⋂  j ∈ Γ      U ˜   γ ˜    (  E j  )  ≥   ⋂  j ∈ Γ      τ ˜   γ ˜    (  E j  )  > r ,     










       U ˜   η ˜    ( E )  =   U ˜   η ˜    (   ⋃  j ∈ Γ     (  E j  ∩   α ˜  j  )  )  ≤   ⋃  j ∈ Γ      U ˜   η ˜    (  E j  ∩   α ˜  j  )  ≤   ⋃  j ∈ Γ     [   U ˜   η ˜    (  E j  )  ∪   U ˜   η ˜    (   α ˜  j  )  ]  =   ⋃  j ∈ Γ      U ˜   η ˜    (  E j  )  ≤   ⋃  j ∈ Γ      τ ˜   η ˜    (  E j  )  < 1 − r     










       U ˜   μ ˜    ( E )  =   U ˜   η ˜    (   ⋃  j ∈ Γ     (  E j  ∩   α ˜  j  )  )  ≤   ⋃  j ∈ Γ      U ˜   μ ˜    (  E j  ∩   α ˜  j  )  ≤   ⋃  j ∈ Γ     [   U ˜   μ ˜    (  E j  )  ∪   U ˜   μ ˜    (   α ˜  j  )  ]  =   ⋃  j ∈ Γ      U ˜   μ ˜    (  E j  )  ≤   ⋃  j ∈ Γ      τ ˜   μ ˜    (  E j  )  < 1 − r     








It is a contradiction. □





Remark 2.

From Defintion 13 and Theorem 8, we have   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   as a stratification for  SVNT   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   on   X ˜  .





Example 4.

Let    X ˜  =  { a , b , c }    be a set. Define    E 1  ,  E 2  ∈  ζ  X ˜     as follows:


       E 1  =  〈  ( 0.5 , 0.5 , 0.5 )  ,  ( 0.5 , 0.5 , 0.5 )  ,  ( 0.5 , 0.5 , 0.5 )  〉  ;  E 2  =  〈  ( 0.4 , 0.4 , 0.4 )  ,  ( 0.4 , 0.4 , 0.4 )  ,  ( 0.6 , 0.6 , 0.6 )  〉  .      








We define     τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   :  ζ  X ˜   x  ζ 0  → ζ   as follows: for every   S ∈  ζ  X ˜    ,


        τ ˜   γ ˜    ( S )  =      1 ,  i f  S =  0 ˜   ,       1 ,  i f  S =  1 ˜   ,        1 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,        3 4  ,  i f  S =  E 1  ∪  E 2   ,        2 3  ,  i f  S =  E 1  ∩  E 2   ,       0 ,       o t h e r w i s e  ,              τ ˜   η ˜    ( S )  =      0 ,  i f  S =  0 ˜   ,       0 ,  i f  S =  1 ˜   ,        2 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,        1 4  ,  i f  S =  E 1  ∪  E 2   ,        1 3  ,  i f  S =  E 1  ∩  E 2   ,       1 ,       o t h e r w i s e  ,           










          τ ˜   μ ˜    ( S )  =      0 ,  i f  S =  0 ˜   ,       0 ,  i f  S =  1 ˜   ,        2 3  ,  i f  S =  E 1   ,        1 2  ,  i f  S =  E 2   ,        1 2  ,  i f  S =  E 1  ∪  E 2   ,        1 3  ,  i f  S =  E 1  ∩  E 2   ,       1 ,       o t h e r w i s e  ,           








If     γ ˜  S   ( ω )  = α   for any   0.5 < α < 0.6  ,     η ˜  S   ( ω )  = α   for every   0.5 < α < 0.6   and     γ ˜  S   ( ω )  = 0.6   for all   β ≥ 0.6  , since


      S =  (  α ˜  ∩  1 ˜  )  ∪  (  β ˜  ∩  (  E 1  ∪  E 2  )  )  =  (  α ˜  ∩  1 ˜  )  ∪  (  β ˜  ∩  E 2  )  .      








Then,


        τ ˜   s t   γ ˜    ( S )  =  [   τ ˜   γ ˜    (  1 ˜  )  ∩   τ ˜   γ ˜    (  E 1  ∪  E 2  )  ]  ∪  [   τ ˜   γ ˜    (  1 ˜  )  ∩   τ ˜   γ ˜    (  E 2  )  ]  =  3 4  ,      










        τ ˜   s t   η ˜    ( S )  =  [   τ ˜   η ˜    (  1 ˜  )  ∪   τ ˜   η ˜    (  E 1  ∪  E 2  )  ]  ∩  [   τ ˜   η ˜    (  1 ˜  )  ∪   τ ˜   η ˜    (  E 2  )  ]  =  1 4  ,      










        τ ˜   s t   μ ˜    ( S )  =  [   τ ˜   μ ˜    (  1 ˜  )  ∪   τ ˜   μ ˜    (  E 1  ∪  E 2  )  ]  ∩  [   τ ˜   μ ˜    (  1 ˜  )  ∪   τ ˜   μ ˜    (  E 2  )  ]  =  1 2  .      








If     γ ˜  S   ( ω )  = α  ∀  0.5 < α < 0.6  ,     η ˜  S   ( ω )  = α  ∀  0.5 < α < 0.6   and     γ ˜  S   ( ω )  = β  ∀  0.5 < α  ,   β ≥ 0.6  , we have     τ ˜   s t   γ ˜    ( S )  =  3 4   ,     τ ˜   s t   η ˜    ( S )  =  1 4   ,     τ ˜   s t   μ ˜    ( S )  =  1 2   .



If     γ ˜  S   ( ω )  = 0.5  ,     η ˜  S   ( ω )  = 0.5   and     γ ˜  S   ( ω )  = 0.6  , since ∀  β ≥ 0.6  ,   α ≥ 0.5  ,


      S =  (  β ˜  ∩  (  E 1  ∪  E 2  )  )  =  (  α ˜  ∩  E 1  )  ∪  (  β ˜  ∩  E 2  )  ,      








we obtain     τ ˜   s t   γ ˜    ( S )  =  3 4   ,     τ ˜   s t   η ˜    ( S )  =  1 4   ,     τ ˜   s t   μ ˜    ( S )  =  1 2   .



If     γ ˜  S   ( ω )  = 0.5  ,     η ˜  S   ( ω )  = 0.5  , and     γ ˜  S   ( ω )  = β  , ∀  0.5 < β < 0.6  , since


      S =  (  β ˜  ∩  (  E 1  ∪  E 2  )  )  =  (  β ˜  ∩  E 1  )  ∪  (  β ˜  ∩  E 2  )  ,      








we obtain     τ ˜   s t   γ ˜    ( S )  =  3 4   ,     τ ˜   s t   η ˜    ( S )  =  1 4   ,     τ ˜   s t   μ ˜    ( S )  =  1 2   .



If     γ ˜  S   ( ω )  = α  ,     η ˜  S   ( ω )  = α  , and     γ ˜  S   ( ω )  = β  , ∀  0.4 < α    β < 0.5   and   α < β  , since for every    S 1  =  {  1 ˜  ,  E 1  ,  E 1  ∪  E 2  }    and    S 2  =  {  E 2  ,  E 1  ∩  E 2  }   


      S =  (  α ˜  ∩  E 1  )  ∪  (  β ˜  ∩  E 2  )  ,      








we have     τ ˜   s t   γ ˜    ( S )  =  2 3   ,     τ ˜   s t   η ˜    ( S )  =  1 3   ,     τ ˜   s t   μ ˜    ( S )  =  1 3   . We can obtain the following:


        τ ˜   s t   γ ˜    ( S )  =      1 ,      i f  S =  α ˜   ,        3 4  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.5 ≤ α , β ≤ 0.6  ,  α < β  ,        1 2  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  f o r  0.4 ≤ α < 0.5  a n d    μ ˜  S   ( ω )  = β ,  f o r  0.5 < β ≤ 0.6  ,        2 3  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.4 ≤ α , β ≤ 0.5 , α < β  ,       0 ,           o t h e r w i s e  ,           










        τ ˜   s t   η ˜    ( S )  =      0 ,     0 ,  i f  S =  α ˜   ,        1 4  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.5 ≤ α , β ≤ 0.6 , α < β  ,       1 2  ,     i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  f o r  0.4 ≤ α < 0.5  a n d    μ ˜  S   ( ω )  = β ,  f o r  0.5 < β ≤ 0.6  ,       1 3  ,     i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.4 ≤ α , β ≤ 0.5 ,  α < β  ,      1 ,          o t h e r w i s e  ,           










        τ ˜   s t   μ ˜    ( S )  =      0 ,     0 ,  i f  S =  α ˜   ,        1 4  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.5 ≤ α , β ≤ 0.6 , α < β  ,        1 2  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  f o r  0.4 ≤ α < 0.5  a n d    μ ˜  S   ( ω )  = β ,  f o r  0.5 < β ≤ 0.6  ,        1 3  ,      i f    γ ˜  S   ( ω )  = α ,   η ˜  S   ( ω )  = α  a n d    μ ˜  S   ( ω )  = β  f o r  0.4 ≤ α , β ≤ 0.5 ,  α < β  ,       1 ,           o t h e r w i s e  .           













Theorem 9.

Let   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  ,   (  Y ˜  ,   U ˜   γ ˜   ,   U ˜   η ˜   ,   U ˜   μ ˜   )   be two    SVNTS ′  s   and let   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   and   (   U ˜   s t   γ ˜   ,   U ˜   s t   η ˜   ,   U ˜   s t   μ ˜   )   be stratification for   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   and   (   U ˜   γ ˜   ,   U ˜   η ˜   ,   U ˜   μ ˜   )  , respectively. If   f :  (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  →  (  Y ˜  ,   U ˜   γ ˜   ,   U ˜   η ˜   ,   U ˜   μ ˜   )    is r- SVN -continuous, then   f :  (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  →  (  Y ˜  ,   U ˜   s t   γ ˜   ,   U ˜   s t   η ˜   ,   U ˜   s t   μ ˜   )    is r- SVN -continuous.





Proof. 

Suppose there exist   r ∈  ζ 0   ,   R ∈  ζ  X ˜    , such that


       U ˜   s t   γ ˜    ( R )  > r >   τ ˜   s t   γ ˜    (  f  − 1    ( R )  )  ,     










        U ˜   s t   η ˜    ( R )  < 1 − r <   τ ˜   s t   η ˜    (  f  − 1    ( R )  )      










       U ˜   s t   μ ˜    ( R )  < 1 − r <   τ ˜   s t   μ ˜    (  f  − 1    ( R )  )      








Since     U ˜   s t   γ ˜    ( R )  > r  ,     U ˜   s t   η ˜    ( R )  < 1 − r   and     U ˜   s t   μ ˜    ( R )  < 1 − r  , by the definition of   (   U ˜   s t   γ ˜   ,   U ˜   s t   η ˜   ,   U ˜   s t   μ ˜   )  , there exists a family    {  R j  }   j ∈ Γ    with   R =  ⋃  j ∈ Γ    (  R j  ∩   α ˜  j  )    such that


       U ˜   s t   γ ˜    ( R )  ≥   ⋂  j ∈ Γ      U ˜   γ ˜    (  R j  )  > r ,     U ˜   s t   η ˜    ( R )  ≤   ⋃  j ∈ Γ      U ˜   η ˜    (  R j  )  < 1 − r ,     










       U ˜   s t   μ ˜    ( R )  ≤   ⋃  j ∈ Γ      U ˜   μ ˜    (  R j  )  < 1 − r .     








Since


      f  − 1    ( R )  =  f  − 1    (   ⋃  j ∈ Γ     (  R j  ∩   α ˜  j  )  )  =   ⋃  j ∈ Γ     f  − 1    ( R )  ∩   α ˜  j  ,     








and by Remark 2 and Theorem 8, we obtain


       τ ˜   s t   γ ˜    (  f  − 1    ( R )  )  ≥   ⋂  j ∈ Γ      τ ˜   γ ˜    (  f  − 1    (  R j  )  )  ,     










       τ ˜   s t   η ˜    (  f  − 1    ( R )  )  ≤   ⋃  j ∈ Γ      τ ˜   η ˜    (  f  − 1    (  R j  )  )  ,     










       τ ˜   s t   μ ˜    (  f  − 1    ( R )  )  ≤   ⋃  j ∈ Γ      τ ˜   μ ˜    (  f  − 1    (  R j  )  )  .     








Since   f :  (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  →  (  Y ˜  ,   U ˜   γ ˜   ,   U ˜   η ˜   ,   U ˜   μ ˜   )    is r- SVN -continuous, that is,     τ ˜   γ ˜    (  f  − 1    (  R j  )  )  ≥   U ˜   γ ˜    (  R j  )   ,     τ ˜   η ˜    (  f  − 1    (  R j  )  )  ≤   U ˜   η ˜    (  R j  )   ,     τ ˜   μ ˜    (  f  − 1    (  R j  )  )  ≤   U ˜   μ ˜    (  R j  )    for every   j ∈ Γ  ,


       τ ˜   s t   γ ˜    (  f  − 1    ( R )  )  ≥   ⋂  j ∈ Γ      τ ˜   γ ˜    (  f  − 1    (  R j  )  )  ≥   ⋂  j ∈ Γ      U ˜   γ ˜    (  R j  )  > r ,     










       τ ˜   s t   η ˜    (  f  − 1    ( R )  )  ≤   ⋃  j ∈ Γ      τ ˜   η ˜    (  f  − 1    (  R j  )  )  ≤   ⋃  j ∈ Γ      U ˜   η ˜    (  R j  )  < 1 − r ,     










       τ ˜   s t   μ ˜    (  f  − 1    ( R )  )  ≤   ⋃  j ∈ Γ      τ ˜   μ ˜    (  f  − 1    (  R j  )  )  ≤   ⋃  j ∈ Γ      U ˜   μ ˜    (  R j  )  < 1 − r .     








It is contradiction. Hence,   f :  (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  →  (  Y ˜  ,   U ˜   s t   γ ˜   ,   U ˜   s t   η ˜   ,   U ˜   s t   μ ˜   )    is r- SVN -continuous. □





The converse of the previous theorem is not true in general as it will be shown by the following example.



Example 5.

Let   X ˜   be a nonempty set. Define    SVNT ′  s    (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   and   (   U ˜   γ ˜   ,   τ ˜   U ˜   ,   U ˜   μ ˜   )  , for each   S ∈  ζ  X ˜     and define   R ∈  ζ  X ˜     as follows:   R = 〈 ( 0.5 , 0.5 , 0.5 ) , ( 0.5 , 0.5 , 0.5 ) , ( 0.5 , 0.5 , 0.5 ) 〉  ,


        τ ˜   γ ˜    ( S )  =      1 ,  i f  S =  0 ˜  ,  1 ˜   ,       0 ,       o t h e r w i s e  ,           τ ˜   η ˜    ( S )  =      0 ,  i f  S =  0 ˜  ,  1 ˜   ,       1 ,       o t h e r w i s e  ,           τ ˜   μ ˜    ( S )  =      0 ,  i f  S =  0 ˜  ,  1 ˜   ,       1 ,       o t h e r w i s e  .           










        U ˜   γ ˜    ( S )  =      1 ,  i f  S =  0 ˜  ,  1 ˜   ,        1 3  ,  i f  S = R  ,       0 ,       o t h e r w i s e  ,           U ˜   η ˜    ( S )  =      0 ,  i f  S =  0 ˜  ,  1 ˜   ,        2 3  ,  i f  S = R  ,       1 ,       o t h e r w i s e  ,           U ˜   μ ˜    ( S )  =      0 ,  i f  S =  0 ˜  ,  1 ˜   ,        2 3  ,  i f  S = R  ,       1 ,       o t h e r w i s e  .           













Since   0 =   τ ˜   s t   γ ˜    ( R )  <   U ˜   γ ˜    ( R )  =  1 3   ,   0 =   τ ˜   s t   η ˜    ( R )  >   U ˜   η ˜    ( R )  =  2 3    and   0 =   τ ˜   s t   μ ˜    ( R )  >   U ˜   μ ˜    ( R )  =  2 3   , then the identity mapping   i  d x  :  (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  →  (  X ˜  ,   U ˜   γ ˜   ,   U ˜   U ˜   ,   U ˜   μ ˜   )    is not r- SVN -continuous. Since for every a family   {  1 ˜  }   and   R = R ∩  1 ˜   , we have     U ˜   s t   γ ˜    ( R )  ≥   U ˜   γ ˜    (  1 ˜  )  = 1  ,     U ˜   s t   η ˜    ( R )  ≤   U ˜   η ˜    (  1 ˜  )  = 0   and     U ˜   s t   μ ˜    ( R )  ≤   U ˜   μ ˜    (  1 ˜  )  = 0  . Thus,     U ˜   s t   γ ˜    ( R )  = 1  ,     U ˜   s t   η ˜    ( R )  = 0   and     U ˜   s t   μ ˜    ( R )  = 0  . Hence,


       τ ˜   s t   γ ˜    ( S )  =   U ˜   s t   γ ˜    ( S )  =      1 ,  i f  S =  α ˜  , ∀ α ∈  ζ 0   ,       0 ,       o t h e r w i s e  ,           τ ˜   s t   η ˜    ( S )  =   U ˜   s t   η ˜    ( S )  =      0 ,  i f  S =  α ˜  , ∀ α ∈  ζ 0         1 ,       o t h e r w i s e  ,          










       τ ˜   s t   μ ˜    ( S )  =   U ˜   s t   μ ˜    ( S )  =      0 ,  i f  S =  α ˜  , ∀ α ∈  ζ 0         1 ,       o t h e r w i s e  .          








Therefore,   i  d x  :  (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  →  (  X ˜  ,   U ˜   s t   γ ˜   ,   U ˜   s t   η ˜   ,   U ˜   s t   μ ˜   )    is r- SVN -continuous.



In the following, we will show that every r- SVNCOM  in the single-valued neutrosophic is r- SVNCOM  in the stratification of it.



Theorem 10.

Let   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   be a stratification of an  SVNTS    (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . A  SVNS  S  is a r- SVNCOM  in   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   iff  S  is a r- SVNCOM  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  





Proof. 

(1) Let  S  be r- SVNCOM  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . Suppose that  S  is not r- SVNCON  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . Then,   E ≠  0 ˜    and   R ≠  0 ˜    are r- SVNSEP  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   such that   S = E ∪ D  . Since     τ ˜   γ ˜   ≤   τ ˜   s t   γ ˜    ,     τ ˜   η ˜   ≥   τ ˜   s t   η ˜     and     τ ˜   μ ˜   ≥   τ ˜   s t   μ ˜    , then, from Theorem 8, we get


      C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( E , r )  ,   C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( R , r )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( R , r )  .     








Hence,   E , R   are r- SVNSEP  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . Thus,  S  is not r- SVNCOM  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . We reach a contradiction.



(2) Now, we show that, if  S  is r- SVNCOM  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , then  S  is r- SVNCON  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . Let  S  be a r- SVNCOM  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . Then, by Corollary 2 (1), we have    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  = S  .



Supposing that  S  is not r- SVNCON  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  , then   E ≠  0 ˜  , R ≠  0 ˜    are r- SVNSEP  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   such that   S = E ∪ R  . Since     τ ˜   γ ˜   ≤   τ ˜   s t   γ ˜    ,     τ ˜   η ˜   ≥   τ ˜   s t   η ˜    ,     τ ˜   μ ˜   ≥   τ ˜   s t   μ ˜    , then    C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( S , r )  ≤  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( S , r )  = S  . Thus,    C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( S , r )  = S  . Since   E ≤ S  , we have    C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  ≤ S  . It implies that   S =  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  ∪ R  . Put    C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  = D  . If   x ∈   supp  ( E )  , then   x ∈ s u p p ( S )  . Since  S  is a r- SVNCOM  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  , by Corollary 2 (4),    x 1  ∈ S = D ∪ R  , that is,   D ( x ) ∪ R ( x ) = 1  . Since   D ∩ R =  0 ˜   , thus,   R ( x ) = 0  . It implies that   D ( x ) = 1  . Therefore,  D  is a crisp set. Since     τ ˜   s t   γ ˜    (  1 ˜  − D )  ≥ r  ,     τ ˜   s t   η ˜    (  1 ˜  − D )  ≤ 1 − r  , and     τ ˜   s t   μ ˜    (  1 ˜  − D )  ≤ 1 − r  . By Theorems (1) and (2), for each family,   {   α ˜  j  ∩  C j  :  1 ˜  − D =  ⋃  j ∈ Γ     α ˜  j  ∩  C j  }  ,


       τ ˜   s t   γ ˜    (  1 ˜  − D )  = ⋃  {   ⋂  j ∈ Γ      τ ˜   γ ˜    (  C j  )  }  ≥ r ,     τ ˜   s t   η ˜    (  1 ˜  − D )  = ⋂  {   ⋃  j ∈ Γ      τ ˜   η ˜    (  C j  )  }  ≤ 1 − r ,     










       τ ˜   s t   μ ˜    (  1 ˜  − D )  = ⋂  {   ⋃  j ∈ Γ      τ ˜   μ ˜    (  C j  )  }  ≤ 1 − r .     








Let     α ˜  j  =  0 ˜   . Since   D ( x ) = 1   for any   x ∈   supp  ( D )  , we have


      (  1 ˜  − D )   ( x )  =   ⋃  j ∈ Γ     (   α ˜  j  ∩  C j  )   ( x )  ⇒ 1 = D  ( x )  =   ⋂  j ∈ Γ     (  1 ˜  −   α ˜  j  )   ( x )  ∪  (  1 ˜  −  C j  )   ( x )  .     








Hence,    (  1 ˜  − D )   ( x )  =  ⋃  j ∈ Γ    (  C j  )   ( x )    for   x ∈ s u p p ( E )  . If   y ∉   supp  ( D )  , then


     1 =  (  1 ˜  − D )   ( y )  =  (   α ˜  j  ∩  C j  )   ( y )  ≤   ⋃  j ∈ Γ     C j   ( y )  .     








Thus, for any family   {   α ˜  j  ∩  C j  :  1 ˜  − D =  ⋃  j ∈ Γ     α ˜  j  ∩  C j  }  , we have    1 ˜  − D =  ⋃  j ∈ Γ    C j   . It implies


       τ ˜   s t   γ ˜    (  1 ˜  − D )  =   τ ˜   γ ˜    (  1 ˜  − D )  =   ⋂  j ∈ Γ      τ ˜   γ ˜    (  C j  )  ≥ r ,     










       τ ˜   s t   η ˜    (  1 ˜  − D )  =   τ ˜   η ˜    (  1 ˜  − D )  =   ⋂  j ∈ Γ      τ ˜   η ˜    (  C j  )  ≤ 1 − r ,     










       τ ˜   s t   μ ˜    (  1 ˜  − D )  =   τ ˜   μ ˜    (  1 ˜  − D )  =   ⋂  j ∈ Γ      τ ˜   μ ˜    (  C j  )  ≤ 1 − r .     








Thus,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( D , r )  = D  . It implies


      C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  , r )  =  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  .     








Similarly,    C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( R , r )  , r )  =  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( R , r )   . Thus,  E  and  R  are r- SVNSEP  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   from


      C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( R , r )  ∩ E ≤  (  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( R , r )  , r )  ∩ E )  =  (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( R , r )  , r )   ∩ E ) =   0 ˜  ,     










      C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      ( E , r )  ∩ R ≤  (  C    τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜      (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( D , r )  , r )  ∩ R )  =  (  C    τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜      ( E , r )  , r )   ∩ R ) =   0 ˜  .     








Thus,  S  is not r- SVNCOM  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . It is a contradiction.



(3) Let  S  be a r- SVNCOM  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . From (1),  S  is r- SVNCON  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . There exists a r- SVNCOM  R  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   containing  S . From (2),  R  is r- SVNCON  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . Thus,   S = R  .



Let  R  be a r- SVNCOM  in   (  X ˜  ,   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )  . Similarly,  R  is a r- SVNCOM  in   (  X ˜  ,   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  . □





Example 6.

In Example 4, we proved that   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )   is a stratification for  SVNT   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   on   X ˜  . By Theorem 10, we can clearly see that each r- SVNCOM  in   (   τ ˜   γ ˜   ,   τ ˜   η ˜   ,   τ ˜   μ ˜   )   is r- SVNCOM  in   (   τ ˜   s t   γ ˜   ,   τ ˜   s t   η ˜   ,   τ ˜   s t   μ ˜   )  , The opposite is also true.





For the purpose of Symmetry, we can apply the idea in the following definition into Definition 3 and get the desired symmetry’s consequences.



Note A SVNS  R  in    X ˜  ×  X ˜    is called a single valued neutrosophic relation ( SVNR , for short) in   X ˜  , denoted by   R = {  〈  ( x ,  x 1  )    γ ˜  R   ( x ,  x 1  )  ,   η ˜  R   ( x ,  x 1  )  ,   μ ˜  R   ( x ,  x 1  )  〉  :  ( x ,  x 1  )  ∈  X ˜  ×  X ˜  }  , where     γ ˜  R  :  X ˜  ×  X ˜  →  [ 0 , 1 ]   ,     η ˜  R  :  X ˜  ×  X ˜  →  [ 0 , 1 ]   ,     μ ˜  R  :  X ˜  ×  X ˜  →  [ 0 , 1 ]    denote the truth-membership function, indeterminacy membership function and falsity-membership function of  R , respectively.



Definition 14

([17]). Let   S , E ∈  ζ  X ˜    . If  S  is a single-valued neutrosophic relation on a set   X ˜  , then  S  is called a single-valued neutrosophic relation on  E  if, for every   x ,  x 1  ∈  X ˜   ,     γ ˜  S   ( x ,  x 1  )  ≤ min  (   γ ˜  E   ( x )  ,   γ ˜  E   (  x 1  )  )   ,     η ˜  S   ( x ,  x 1  )  ≥ max  (   η ˜  E   ( x )  ,   η ˜  E   (  x 1  )  )    and     μ ˜  S   ( x ,  x 1  )  ≥ max  (   μ ˜  E   ( x )  ,   μ ˜  E   (  x 1  )  )   .



Moreover, a single-valued neutrosophic relation  S  on   X ˜   is called symmetric if, for any   k ,  k 1  ∈  X ˜   ,



    γ ˜  S   ( k ,  k 1  )  =   γ ˜  S   (  k 1  , k )   ,     η ˜  S   ( k ,  k 1  )  =   η ˜  S   (  k 1  , k )   ,     μ ˜  S   ( k ,  k 1  )  =   μ ˜  S   (  k 1  , k )   ; and     γ ˜  E   ( k ,  k 1  )  =   γ ˜  E   (  k 1  , k )       η ˜  E   ( k ,  κ 1  )  =   η ˜  E   (  k 1  , k )   ,     μ ˜  E   ( k ,  k 1  )  =   μ ˜  E   (  k 1  , k )   .





Example 7.

Let    X ˜  =  {  x 1  ,  x 2  ,  x 3  ,  x 4  ,  x 5  }   . A a single valued neutrosophic relation  S  on   X ˜   is given in the following table.



	  S  
	   x 1   
	   x 2   
	   x 3   
	   x 4   
	   x 5   



	   x 1   
	(0.2, 0.6, 0.4)
	(0, 0.3, 0.7)
	(0.9, 0.2, 0.4)
	(0.3, 0.9, 1)
	(0.3, 0.9, 1)



	   x 2   
	(0.4, 0.5, 0.1)
	(0.1, 0.7, 0)
	(1, 1, 1)
	(1, 0.3, 0)
	(0.5, 0.6, 1)



	   x 3   
	(0, 1, 1)
	(1, 0.5, 0)
	(0, 0, 0)
	(0.2, 0.8, 0.1)
	(1, 0.8, 1)



	   x 4   
	(1, 0, 0)
	(0, 0, 1)
	(0.5, 0.7, 0.1)
	(0.1, 0.4, 1)
	(1, 0.8, 0.8)



	   x 5   
	(0, 1, 0)
	(0.9, 0, 0)
	(0, 0.1, 0.7)
	(0.8, 0.9, 1)
	(0.6, 1, 0)











5. Conclusions


In this paper, authors have made a study of the connectedness, the idea of component, and the stratification of single-valued neutrosophic topological spaces which are different from the study taken so far and obtained some of their basic properties. Next, the concepts of an r- SVNSEP  and r- SVNCOM  were introduced and studied. It has been proven that every r- SVNCOM  in an single-valued neutrosophic topological spaces is r- SVNCOM  in the stratification of it. We will now go into detail on some of the conclusions of the research. Firstly, a single-valued neutrosophic connected (r- SVNCON ) has the same properties in a single-valued neutrosophic topological spaces (see Theorem 3). Secondly, a single-valued neutrosophic separated (r- SVNSEP ) has the same properties in a single-valued neutrosophic topological spaces (see Theorems 4 and 5). Finally, it has been proven that every single-valued neutrosophic component (r- SVNCOM ) in single-valued neutrosophic topological spaces is r- SVNCOM  in the stratification of it.



Discussion for Further Works



It is known that the notion of boundedness in topological spaces (see [26]) plays a significant role in topological aspects. It is also well known that the collection of bounded sets is an ideal. This concept is generalized to the concept of bornology (which is essentially an interesting ideal). There is also the corresponding generalized notion in fuzzy topics (the concept of fuzzy bornology (see [27]).



Therefore, the following ideas could be applied to the notion of single-valued neutrosophic topological spaces.



	(a)

	
The collection of bounded single-valued sets;




	(b)

	
The concept of fuzzy bornology;




	(c)

	
The notion of boundedness in topological spaces.
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