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Abstract: The interest in the study of record statistics has been increasing in recent years in the
context of predicting stock markets and addressing global warming and climate change problems
such as cyclones and floods. However, because record values are mostly rare observed, its probability
distribution may be skewed or asymmetric. In this case, the Bayesian approach with a reasonable
choice of the prior distribution can be a good alternative. This paper presents an objective Bayesian
method for predicting future record values when observed record values have a two-parameter
exponentiated Gumbel distribution with the scale and shape parameters. For objective Bayesian
analysis, objective priors such as the Jeffreys and reference priors are first derived from the Fisher
information matrix for the scale and shape parameters, and an analysis of the resulting posterior
distribution is then performed to examine its properness and validity. In addition, under the derived
objective prior distributions, a simple algorithm using a pivotal quantity is proposed to predict
future record values. To validate the proposed approach, it was applied to a real dataset. For a
closer examination and demonstration of the superiority of the proposed predictive method, it was
compared to time-series models such as the autoregressive integrated moving average and dynamic
linear model in an analysis of real data that can be observed from an infinite time series comprising
independent sample values.

Keywords: exponentiated gumbel distribution; objective Bayesian analysis; record value; time series

1. Introduction

The occurrence of extreme events such as extreme temperatures, excess flood peaks, and rapid
increases in pollutant concentrations has steadily increased over the past decade. However, the volume
of data generated by such events is relatively small compared to big data generated by normal events
occurring daily. In this case, providing accurate predictions for extreme events might be a challenging
task due to the insufficient number of past records. Bayesian methods may be more suitable for
modeling data to small sample sizes with skewness or lack of symmetry as in the case of record values,
provided that the Bayesian method involves a reasonable choice for the prior distribution because the
Bayesian methods do not rely on asymptotic theory in the same way that frequentist methods do.

The concept of record values was introduced by Chandler [1] and it can be described as
follows. Let {X1, X2, . . .} be a sequence of independent and identically distributed random variables.
Then, for every i < j, Xj is called the upper (lower) record value if Xj > (<)Xi, which indicates that Xj
is higher (lower) than all previous observations. That is, the upper (lower) record values include the
members of a series that are larger (smaller) than all preceding members. The indices for which upper
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record values occur are informed by the record times {U(k), k ≥ 1}, where U(k) = min{j|j > U(k− 1),
Xj > XU(k−1)}, k > 1, with U(1) = 1. The record times for the lower record values are {L(k), k ≥ 1},
where L(k) = min{j|j > L(k − 1), Xj < XL(k−1)}, k > 1, with L(1) = 1. Therefore, the sequences
of the upper and lower record values are denoted as {XU(k), k = 1, 2, . . .} and {XL(k), k = 1, 2, . . .},
respectively, from the original sequence {X1, X2, . . .}.

Since such record values arise in many real-world situations related to climate, economics, sports,
and life test, relevant studies have been conducted in various fields. Coles and Tawn [2] analyzed a
daily rainfall series for modeling the extremes of the rainfall process in the context of record values.
Madi and Raqab [3] analyzed average temperatures in Neuenburg, Switzerland, using a Bayesian
predictive method for record values from the Pareto distribution. Wergen et al. [4] analyzed both
the probability of occurrence and PDF of record-breaking values for temperatures in Europe and
the United States. Seo and Kim [5] proposed an objective Bayesian inference method for record
values from the Gumbel distribution, which was applied to the concentration analysis of sulfur
dioxide. Seo and Kang [6] proposed a estimation method using record values from an exponentiated
half-logistic distribution in Bayesian and non-Bayesian perspectives. The authors demonstrated
the efficiency of their method by comparing it to the existing estimation methods through rainfall
data analysis.

This paper proposes a predictive method based on an objective Bayesian approach that can
save the effort of finding an exact prior distribution when there is no sufficient information in the
context of record statistics values from the exponentiated Gumbel distribution (EGD) with cumulative
distribution function (CDF)

F(x) =
(

e−e−x/σ
)λ

, −∞ < x < ∞, λ, σ > 0, (1)

where σ and λ denote the scale and shape parameters, respectively. The EGD is a generalized version
of the GD, which is the most widely applied statistical distribution in the extreme value analysis
of extreme events such as global warming, floods, heavy rainfall, and high wind speeds. The EGD
can be considered as being simply the λth power of the CDF of the GD with the scale parameter σ.
Therefore, the EGD can lead to an improved performance and applicability of models built over a
variety of complex datasets compared to the GD. Note that it is possible to apply time-series techniques
if no data are lost during acquiring record values since the lower record time L(k) is the serial number
of record values in an infinite time series. For comparison with the proposed objective Bayesian
predictive method, two types of time-series models are considered in this study: the autoregressive
integrated moving average (ARIMA) model introduced by Box et al. [7] and the dynamic linear model
(DLM) developed by West and Harrison [8].

The rest of the paper is organized as follows. Section 2 presents objective priors for unknown
parameters of the EGD in the context of record statistics values, along with the corresponding posterior
analysis and predictive method. Section 3 provides a brief description of the ARIMA and DLM
that are employed in this study as benchmarks to validate the proposed objective Bayesian method.
Section 4 presents the results of applying both the time-series and objective Bayesian models to real
data. Section 5 concludes this paper.

2. Bayesian Prediction

The aim of this study is to predict future lower record values based on an objective Bayesian
approach. To accomplish this, an objective Bayesian approach that does not require determining
hyperparameters is presented first. The following subsection introduces objective priors based on the
Fisher information (FI) matrix for unknown parameters of the EGD with the CDF (1).
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2.1. Objective Prior

Let XL(1), . . . , XL(k) be the lower record values from the CDF (1). Then, the corresponding
likelihood function and its natural logarithm can be expressed as

L(λ, σ) = f (xL(k))
k−1

∏
i=1

f (xL(i))

F(xL(i))

=

(
λ

σ

)k
e−λe

−xL(k)/σ

e−∑k
i=1 xL(i)/σ

and

log L(λ, σ) = k log λ− k log σ− λe−xL(k)/σ − 1
σ

k

∑
i=1

xL(i), (2)

respectively. For computational convenience, let θ = 1/σ. Then, based on the log-likelihood (2), the FI
matrix for (λ, θ) can be defined as follows.

Proposition 1. The FI matrix for (λ, θ) is of the form

I(λ, θ) =

(
k/λ2 kQ1(λ)/ (λθ)

kQ1(λ)/ (λθ) kQ2(λ)/θ2

)
, (3)

where

Q1(λ) = log λ− ψ(k + 1),

Q2(λ) = [Q1(λ)]
2 + ψ1(k + 1) + 1,

and ψ(·) and ψ1(·) are the digamma and trigamma functions, respectively.

Proof. In the FI matrix

I(λ, θ) =

(
I11 I12

I21 I22

)
,

the element I11 can be easily computed, while the other elements can be expressed as

I12 = E
(
− ∂2

∂λ∂θ
log L(λ, θ)

)
= E

(
XL(k)e

−θXL(k)
)

= I21

and

I22 = E
(
− ∂2

∂θ2 log L(λ, θ)

)
=

k
θ2 + λE

(
X2

L(k)e
−θXL(k)

)
.

Then, the proof is completed given the marginal density function of XL(i) defined in Ahsanullah [9] as

fXL(i)
(x) =

1
Γ(k)

[− log F(x)]i−1 f (x)
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and assuming Y = λe−θXL(k) .

The objective priors such as the Jeffreys and reference priors based on the FI matrix (3) are defined
according to the following theorem.

Theorem 1. The Jeffreys prior for (λ, θ) is

πJ(λ, θ) ∝
1

λθ
.

Proof. According to the definition of the Jeffreys prior (Jeffreys [10]), it follows that

πJ(λ, θ) ∝
√
|I|

=
k

λθ
[ψ1(k + 1) + 1] ,

where |I| denotes the determinant of the FI matrix (3). This completes the proof.

In the following, the reference priors for each parameter of interest are derived from the algorithm
provided in Berger and Bernardo [11].

Theorem 2. If λ is the parameter of interest, the reference prior for (λ, θ) is

πR1(λ, θ) ∝
1

θλ
√

Q2(λ)
,

and, if θ is the parameter of interest, the reference prior for (θ, λ) is

πR2(θ, λ) ∝
1

λθ
.

Proof. When λ is the parameter of interest, the conditional prior distribution of θ given λ can be
defined based on the FI matrix (3) as

π (θ|λ) =
√

I22

=
1
θ

√
kQ2 (λ).

Then, by choosing a sequence of compact sets Ωi = (d1i, d2i)× (d3i, d4i) for (λ, θ) such that d1i,
d3i → 0, d2i, d4i → ∞ as i→ ∞, it follows that

k−1
1i (λ) =

∫ d3i

d4i

π (θ|λ)d θ

=
√

kQ2 (λ) [log(d4i)− log(d3i)] ,

and

pi (θ|λ) = k1i (λ)π (θ|λ)

=
1

θ [log(d4i)− log(d3i)]
. (4)

In addition, the marginal reference prior for λ can be defined based on the FI matrix (3) and (4) as
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πi (λ) = exp
[

1
2

∫ d4i

d3i

pi (θ|λ) log
(
|I|
I22

)
d θ

]
=

1
λ
√

Q2(λ)
,

which leads to the following reference prior:

πR1(λ, θ) = lim
i→∞

[
k1i (λ)πi (λ)

k1i (λ0)πi (λ0)

]
π (θ|λ)

∝
1

θλ
√

Q2(λ)

for any fixed point λ0. When θ is the parameter of interest, the same argument is applied.
Let

π(λ|θ) =
√

I11

=

√
k

λ
.

Then,

k−1
2i (θ) =

∫ d2i

d1i

π(λ|θ)dλ

=
√

k [log(d2i)− log(d1i)]

and

pi(λ|θ) = k2i(θ)π(λ|θ)

=
1

λ [log(d2i)− log(d1i)]
.

In addition, the marginal reference prior for θ can be expressed as

πi(θ) = exp
[

1
2

∫ d2i

d1i

pi(λ|θ) log
(
|I|
I11

)
dλ

]
∝

1
θ

,

from which the reference prior can be expressed as

πR2(θ, λ) = lim
i→∞

[
k2i(θ)πi(θ)

k2i(θ0)πi(θ0)

]
π(λ|θ)

∝
1

λθ

for any fixed point θ0. This completes the proof.

Note that, since all the derived objective priors are improper, the corresponding posterior
distribution should be proved to be proper. Since the Jeffreys prior πJ(λ, θ) and reference prior
πR2(θ, λ) have the same form, the notation πJR(λ, θ) is used from now on.
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2.2. Posterior Analysis

Let xL = {xL(1), . . . , xL(k)} be the observed lower record values. Then, the objective prior πJR(λ, θ)

results in the following marginal posterior density functions of λ and θ:

πJR(λ|xL) =

∫
θ L(λ, θ)πJR(λ, θ)dθ∫

θ

∫
λ L(λ, θ)πJR(λ, θ)dθdλ

=
∞

∑
j=0

1(
∑k

i=1 xL(i) + jxL(k)

)k λk−1 (−λ)j

j!

(
∑k

i=1 xL(i) − kxL(k)

)k

Γ(k)
(5)

and

πJR(θ|xL) =

∫
λ L(λ, θ)πJR(λ, θ)dλ∫

θ

∫
λ L(λ, θ)πJR(λ, θ)dθdλ

=

(
∑k

i=1 xL(i) − kxL(k)

)k

Γ(k)
θk−1e−θ(∑k

i=1 xL(i)−kxL(k)), (6)

respectively. Note that the marginal posterior distribution of θ has a gamma distribution with the
parameters k and ∑k

i=1 xL(i) − kxL(k). Then, the Bayes estimators under the squared error loss function
from the marginal posterior density functions (5) and (6) can be expressed as

λ̂JR =
∫

λ
λπJR(λ|xL)dλ

= k

(
1−

xL(k)

∑k
i=1 xi − kxk

)−k

and

θ̂JR =
k

∑k
i=1 xL(i) − kxL(k)

,

respectively.
In terms of σ, the corresponding marginal posterior density function can be expressed as

πJR(σ|xL) =

(
∑k

i=1 xL(i) − kxL(k)

)k

Γ(k)
σ−k−1e−

1
σ (∑k

i=1 xL(i)−kxL(k)).

Since it is the PDF of an inverse gamma distribution with the parameters k and ∑k
i=1 xL(i) − kxL(k),

the Bayes estimator of σ under the squared error loss function can be expressed as

σ̂JR =
∑k

i=1 xL(i) − kxL(k)

k− 1
, k > 1.

Theorem 3. From the Frequentist perspective, the estimator σ̂JR is an unbiased estimator of σ.

Proof. According to Lemma 2 provided in Wang and Ye [12], independent and identically distributed
random variables from the uniform distribution on (0, 1) are defined as
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Uj =

(
Tj

Tj+1

)j

= ej(XL(j+1)−XL(j))/σ, j = 1, . . . , k− 1,

where

Tj = 2
j

∑
i=1

[
log F(xL(i−1))− log F(xL(i))

]
= 2λe−XL(j)/σ, j = 1, . . . , k

(
log F(xL(0)) ≡ 0

)
are independent random variables having χ2 distributions with 2j(j = 1, . . . , k) degrees of freedom.
Then, the estimator σ̂JR has a gamma distribution with the parameters k− 1 and (k− 1)/σ for any
k > 1 because

W(σ) = −
k−1

∑
j=1

log Uj

=

(
∑k

i=1 XL(i) − kXL(k)

)
σ

has a gamma distribution with the parameters k− 1 and 1. This completes the proof.

The highest posterior density (HPD) credible intervals (CrIs) for λ and σ can be constructed by
generating the MCMC samples from the marginal posterior density functions (5) and (6), respectively.
However, since the marginal posterior density function (5) is not a well-known probability distribution,
sampling from it is a difficult task. Instead, sampling can be indirectly performed from the relationship
πJR(λ, θ|xL) = πJR(λ|θ, xL)πJR(θ|xL) because the conditional posterior distribution πJR(λ|θ, xL) ∝

λk−1e−λe
−θxL(k) has a gamma distribution with the parameters k and e−θxL(k) . To achieve this, θ should

be generated from its marginal posterior distribution first, and then λ should be generated from its
conditional posterior distribution given the generated value of θ. Finally, σ = 1/θ can be computed.
Then, the 100(1− α)% equal-tails (ETs) and HPD CrIs can be constructed for 0 < α < 1 using the
method proposed in Chen and Shao [13].

Under the prior πR1(λ, θ), the resulting posterior πR1(λ, θ|xL) is proper because Q2(λ) > 1.
However, since it is not possible to express it in a closed form as we know it, MCMC samples for λ

and θ can be generated using the Metropolis–Hastings algorithm. For efficient mixing, the proposal
variance-covariance structure is updated adaptively. For the corresponding Bayes estimators under
the squared error loss function, the notations λ̂R1 and σ̂R1 are used.

2.3. Prediction

Let XL(s)(s = k + 1, k + 2, . . .) be the future lower record values. Since the sequence
{XL(i), i = 1, 2, . . .} is a Markov chain, the conditional density function of XL(s) given XL = xL is
the same as that of XL(s) given XL(k) = xL(k). That is, it follows that

fXL(s) |xL
(y) = fXL(s) |xL(k)

(y)

=

[
log F(xL(k))− log F(y)

]s−k−1
f (y)

Γ(s− k)F(xL(k))
, y < xL(k) (7)

by Ahsanullah [9]. Then, for the EGD with the CDF (1), (7) becomes
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fXL(s) |xL
(y) =

λθ
[
λ
(

e−θy − e−θxL(k)
)]s−k−1

Γ(s− k)
e−θy−λ

(
e−θy−e

−θxL(k)
)

, −∞ < y < xL(k) < ∞ (8)

and the corresponding Bayesian predictive density function can be expressed as

f ∗XL(s) |xL
(y) =

∫
θ

∫
λ

fXL(s) |xL
(y; λ, θ)π(λ, θ|xL) dλdθ, −∞ < y < xL(k) < ∞,

where π(λ, θ|xL) is a general joint posterior distribution for (λ, θ).
Note that it requires very complex and tedious computations. In fact, there is no guarantee that it

can be expressed in a closed form. Instead, a much simpler approach is to use the pivotal quantity that
can be obtained by the transformation of a random variable.

Let H = λ
(

e−θy − e−θxL(k)
)

in the conditional density function (8). Then, it has a gamma
distribution with the parameters s− k and 1 with a PDF of

fH(h) =
1

Γ(s− k)
hs−k−1e−h, h > 0

because y < xL(k) maps onto h > 0 and the Jacobian of the transformation is

J =
∂

∂h
y

= −
[

λθ

(
h
λ
+ e−θxL(k)

)]−1
,

which leads to the following algorithm for generating the MCMC samples yi(i = 1, . . . , N).

Step 1a. Generate hi from the gamma distribution with the parameters (s− k) and 1.
Step 1b. Generate λi and θi from the joint posterior distribution π(λ, θ|x).

Step 2. Compute

yi = −
1
θi

log
(

hi
λi

+ e−θixL(k)

)
.

Step 3. Repeat steps 1 and 2, N times.

Then, the corresponding 100(1− α)% predictive interval (PI) for 0 < α < 1 can be constructed
using the method proposed in [13] as in the case of λ and θ. For the purpose of clarity,
X JR

L(s) | xL(k) and XR1
L(s) | xL(k) are used to denote future lower record values under the priors πJR(λ, θ)

and πR1(λ, θ), respectively.

3. Time Series Approach

Providing that record values are observed from time series of uncorrelated random variables
sampled from continuous probability distributions, the proposed Bayesian method presented in the
previous section is compared to the ARIMA and DLM time-series techniques as described below.

The ARIMA model is the most widely used approach to time-series forecasting. Conventionally, it is
defined using three components (p, d, q), where

• p denotes the order of the autoregressive (AR) term
• d denotes the number of differencing required to make the time series stationary
• q denotes the order of the moving average (MA) term.

Here, the autoregressive (AR) process assumes that the current value of the series yt can be
expressed as a function of p past values yt−1, yt−2, . . . , yt−p in a form of
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Yt = β0 +
p

∑
j=1

φjYt−j + εt

for t ≥ 1, where β0 =
(

1−∑
p
i=1 φi

)
µ, µ is the mean of this process, φ1, φ2, . . . , φp are constants

(φp 6= 0), and εt is a weak white noise series with a mean of zero and a variance of σ2
ε . The MA process

uses past forecast errors expressed as

Yt = µ +
q

∑
j=1

ϕjεt−j + εt,

that is, a weighted average of the past values of the white noise process εt. Then, the time series Yt is an
ARIMA(p, d, q) process if ∆dYt is ARMA(p, q) obtained by combing the AR and MA terms, where ∆d

is the dth-order differencing operator. For non-stationary data, one usually fits an ARMA model after
taking differences for the data until stationarity is achieved.

The second time-series approach considered in this study for comparison with the proposed
method is the DLM. Let Yt be an m-dimensional vector observed at time t, while δt be a generally
unobservable p-dimensional state vector of the system at time t. Then, the DLM can be defined as{

Yt = Ftδt + vt, vt ∼ Nm(0, Vt)

δt = Gtδt−1 + wt, wt ∼ Np(0, Wt)

for each time t ≥ 1 together with a prior distribution for the p-dimensional state vector at time t = 0,
δ0 ∼ Np(m0, C0), where Ft and Gt are known matrices of m× p and p× p, respectively, and Vt and Wt

are variance matrices. Furthermore, it is assumed that the error sequences vt and wt are independent,
and independent of δ0.

Note that the lower record value from a univariate time series has a strong trend of decreasing
through time. Therefore, a DLM with

Vt = V, Ft = F =
[
1 0

]
, δt =

[
µt

βt

]
, Gt = G =

[
1 1
0 1

]
, Wt = W =

[
σ2

µ 0
0 σ2

β

]

is considered, namely, the linear growth model (LGM)
Yt = µt + vt, vt ∼ N (0, V)

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N (0, σ2
µ)

βt = βt−1 + wt,2, wt,2 ∼ N (0, σ2
β),

(9)

where µt and βt denote the local level and local growth rate at time t, respectively, and vt, wt,1, and wt,2
denote uncorrelated errors.

4. Sulfur Dioxide Data

This section demonstrates the superiority of the proposed Bayesian method by comparing it to
the ARIMA and DLM methods.

The three methods are applied to the time-series data representing sulfur dioxide emissions in the
United States (U.S.) from 1970 to 2017 (in 1000 tons) measured by the U.S. Environmental Protection
Agency. Due to the implementation of the Acid Rain Program created under Title IV of the 1990 Clean
Air Act, sulfur dioxide emissions have decreased significantly over the last decades through a cap and
trade program for fossil-fuel powered plants. The observed volume of sulfur dioxide emissions and its
descriptive statistics are presented in Figure 1 and Table 1, respectively. Note that each data point was
divided by 1000 for computational convenience; given that the data continued to decrease during the
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observation period as shown in Figure 1, they were all used without losing data during acquiring the
lower record values.
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Figure 1. Observed sulfur dioxide lower record values.

Table 1. Descriptive statistics for the observed sulfur dioxide lower record values.

Minimum Maximum Mean Median Standard Deviation Skewness Kurtosis

2815 31,218 13.181 11.011 9.065 0.544 −1.147

To conduct the goodness-of-fit test for the observed sulfur dioxide data, the replicated data are
first considered. If the estimated model is adequate, then it should look similar to the observed data.
The replicated data are generated from the Bayesian predictive function

f ∗XL(i)
(x) =

∫
λ

∫
σ

fXL(i)
(x; λ, θ)π(λ, θ|xL)dλdθ

and denoted as Xrep
L(i) for i = 1, . . . , k. Under each prior distribution, the correlation coefficient of the

mean E
(

Xrep
L(i)

)
and observed lower record values r can then be computed. For further examination,

the weighted mean squared error (WMSE)

WMSE =
1
k

k

∑
i=1

(
xL(i) − E

(
XL(i)|λ, σ

))2

Var
(

XL(i)|λ, σ
)

is also computed. These results are reported in Figure 2.
It can be noticed from Figure 2 that the estimated models fit the observed sulfur dioxide lower

record values very well, and the estimated models under the priors πJR(λ, θ|xL) and πR1(λ, θ|xL)

provide almost the same results for the considered statistical criteria.
Table 2 reports the estimation results for the derived priors for comparison and corresponding

maximum likelihood counterparts. For the maximum likelihood procedure, the maximum likelihood
estimators (MLEs) λ̂ and σ̂ are obtained by maximizing the log-likelihood function (2), while the
approximate 100(1− α)% confidence intervals (CIs) are calculated based on the MLEs as

λ̂± Zα/2

√
V̂ar

(
λ̂
)

and σ̂± Zα/2

√
V̂ar

(
θ̂
)

θ4 ,
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where Zα denotes the upper α percentile point of the standard normal distribution, and V̂ar
(
λ̂
)

and
V̂ar

(
θ̂
)

are the diagonal elements of the asymptotic variance-covariance matrix of the MLE obtained
by inverting the Fisher information matrix (3). For the shape parameter λ, the Bayes estimate λ̂R1

has a slightly lower value than the other estimates λ̂ and λ̂JR that have almost the same values.
However, the 95% HPD CrI under the prior πR1(λ, θ) has the shortest length. For the scale parameter
σ, all estimates vary slightly, while the approximate 95% CI based on the σ̂ has a shorter length than
the other CrIs have.
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Figure 2. 95% regions for Xrep
L(i) and scatter plots between E

(
Xrep

L(i)

)
and the observed lower record values.

Table 2. Results for the observed sulfur dioxide lower record values.

λ̂ λ̂JR λ̂R1 σ̂ σ̂JR σ̂R1

Estimate 26.240 26.289 24.409 10.366 10.911 11.611
95% ETs (14.411, 38.070) (15.785, 39.653) (14.874, 36.755) (5.930, 14.801) (6.991, 16.989) (7.450, 18.242)

95% HPD - (15.082, 38.560) (13.784, 35.388) - (6.493, 15.992) (6.859, 17.039)

For prediction, the last lower record value is assumed to be known. As mentioned earlier, since no
data are lost during acquiring the observed lower record values, the time-series analysis outlined in
Section 3 can be conducted at the same time. Table 3 reports the prediction results for the next lower
record value XL(20) | xL(19). The R package dlm (Petris [14]) was used to estimate the parameters and
state vector in the LGM (9) with

δ0 ∼ N2

([
33.361
−2.471

]
,

[
0.593 0

0 0.190

])
.
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Table 3. Prediction results for the next lower record value.

Mean Median 95% PI 80% PI

ETs HPD ETs HPD

X JR
L(20) | xL(19) 2.359 2.560 (0.634, 2.945) (1.115, 2.960) (1.566, 2.899) (2.009, 2.960)

XR1
L(20) | xL(19) 2.275 2.507 (0.339, 2.945) (0.905, 2.960) (1.384, 2.894) (1.870, 2.960)
XARIMA

L(20) 2.139 - (0.082, 4.195) - (0.794, 3.483) -
XDLM

L(20) 2.357 - (0.535, 4.179) - (1.165, 3.548) -

In addition, for the ARIMA model, ARIMA(0, 2, 1) was chosen as the best model in terms of the
corrected Akaike Information Criterion (AICc), indicating that it has the smallest AICc value when
q = 1 with ϕ = −0.705 after differencing the data twice. The forecast accuracy are evaluated in
terms of the mean absolute deviation (MAD), the mean square error (MSE), and the mean absolute
percentage error (MAPE), defined respectively as

MAD =
1
n

n

∑
t=1
|et|,

MSE =
1
n

n

∑
t=1

e2
t ,

MAPE =
1
n

n

∑
t=1

|et|
xt

,

where et = xt − x̂t and x̂t is a point forcast of xt. In this example, n = k and xt = xL(t). These results
are reported in Table 4, which indicates that there is little difference in the predictive performance of
the two models. Table 3 shows that the proposed Bayesian PI has a shorter length than those obtained
for the considered time-series ARIMA model and DLM, especially under the prior πJR(λ, θ). That is,
the predictive result under the prior πJR(λ, θ) shows the best performance in terms of uncertainty.
Using the best performing Bayesian predictive model in terms of uncertainty, the Bayesian predictive
density functions for the three future record values are estimated as the kernel density functions based
on their MCMC samples. The results are plotted in Figure 3, which shows that both estimated Bayesian
predictive models under the priors πJR(λ, θ) and πR1(λ, θ) have a greater variance as the future record
time L(s) increases.

Table 4. Forecast accuracy for the ARIMA model and DLM.

MAD MSE MAPE

ARIMA(0,2,1) 0.649 0.927 0.062
DLM 0.664 0.817 0.062

πJR πR1

0 1 2 3 0 1 2 3

0.0

0.5

1.0

1.5

xL(s)

s=20 s=21 s=22

Figure 3. Estimated kernel density for XL(s) | xL(19) under the priors πJR(λ, θ) and πR1(λ, θ).
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5. Conclusions

This paper defined the Jeffreys and reference priors for unknown parameters of the EGD based
on record values and proposed a Bayesian method for predicting future record values. The method
makes it very easy to generate MCMC samples for prediction. To validate the proposed method, it was
compared to two time-series approaches, namely, the ARIMA model and DLM, using a sulfur dioxide
emissions dataset. The results of the comparison demonstrated that the proposed method outperforms
the time-series approaches in terms of uncertainty.

While there was no clear difference in the results of the goodness-of-fit tests among the proposed
objective prior distributions when analyzing the observed data, the results of forecasting under the
prior distribution πJR(λ, θ) were better than those under the prior distribution πR1(λ, θ); both derived
prior distributions were proved to be valid.
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