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Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution
which allows us to model proportions and rates with zero/one inflation as an alternative to the
inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for
explaining the zero/one excess and a censored skew-normal distribution for the continuous variable.
The maximum likelihood method is used for parameter estimation. Observed and expected
Fisher information matrices are derived to conduct likelihood-based inference in this new type
skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real
data scenarios, the good performance of our proposal.

Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods;
Monte Carlo simulations; proportions; R software; rates; zero/one inflated data

1. Introduction

The recent statistical literature has experienced an intense research activity on skew distributions.
It is due to the fact that many data sets are not fitted well with the normal distribution because
of asymmetry and/or kurtosis excess [1]. A natural extension of the normal distribution is the
skew-normal (SN) distribution, which has been studied in [2–8], among other works. Note that the
Fisher information matrix of the SN distribution is singular [1].

In order to model random variables that take values with bounded support, the beta distribution
has been frequently used [9–17]. This type of variables have interesting applications when the bounded
support is between zero and one. Additionaly, versions with support between zero and one of other
distributions, such as the Birnbaum–Saunders and Weibull distributions [18–20], have been proposed.
Variables with support between zero and one are studied particularly when modeling proportions
and rates (for example, in the study of the proportion of deaths caused by a certain virus in a country,
the rate of income spent on taxes, and the proportion of family income spent on food).

Note that some random variables cannot be observed below a certain value (lower detection
limit (LDL)) and/or above a certain value (upper detection limit (UDL)), with LDL and UDL
being often fixed values. When LDL and/or UDL are present, we say that the random variable
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is single/doubly-censored distributed [21,22]. Data associated with this type of variables can be
described by censored normal distributions [23–26].

If LDL = 0 and UDL = 1, extensions of the beta distribution may be considered to model excess
of zeros and/or ones. These extensions used to describe variables into the intervals [0,1], [0,1) or (0,1]
have been reported in [27–29], which are named zero/one inflated beta (ZOIB) distributions.
In order to model inflation at zero and/or one, mixtures distributions have been derived [30,31].
Bernoulli-beta mixture distributions for modeling inflated data at zero/one have been studied in [28].
However, in many situations, the distribution of random variables that take values between zero and
one present positive or negative asymmetry and/or kurtosis degrees different from the normal or
beta distributions. Subsequently, other distributions than the beta and Bernoulli-beta mixture models
are needed.

In order to solve the problem of asymmetry in the data, a transformation can be considered.
Nevertheless, such a transformation brings with it problems in the interpretability of the distribution
parameters and loss of power in the inference. As an alternative to not transform the data in the
case of random variables with positive support, asymmetry to the right, and presence of LDL/UDL,
the Birnbaum-Saunders, log-normal (LN), and log-SN (LSN) distributions can be used [30,32–36].
However, these distributions only cover positive asymmetry. Then, the doubly-censored SN (DCSN)
distribution may be proposed as an extension of the doubly-censored normal distribution covering
negative and positive asymmetry. To the best of our knowledge, no extensions of the SN distribution
to describe variables that take values with bounded support and high censoring, as in the case of the
intervals [0,1], [0,1) or (0,1], have been reported to date.

The objective of this paper is to propose an alternative approach to deal with data sets in the
[0,1] interval. Our approach is a mixture distribution between the Bernoulli and DCSN distributions,
which we name the BDCSN distribution in short. Given that the information matrix of the DCSN
distribution is singular, such as in the case of the SN distribution, to circumvent this singularity,
we define a centered DCSN (CDCSN) distribution [37]. Therefore, our proposal solves the mentioned
problems of the existing distributions and its maximum likelihood estimators are well behaved,
with regularity conditions being satisfied, since the Fisher information matrix is non-singular in the
vicinity of symmetry.

The paper is organized as follows. In Section 2, we present the DCSN distribution and the main
results on inference for this distribution. Given that the information matrix of the DCSN distribution
is singular, to solve this problem, in Section 3, we define the CDCSN distribution. In this section,
the doubly censored log-SN (DCLSN) is also introduced. In Section 4, the DCSN and DCLSN
distributions are considered for modeling zero and/or one inflation by using the BDCSN distribution.
Parameter estimation is dealt with the maximum likelihood method. The corresponding observed and
expected Fisher information matrices are derived and shown to be non-singular. Section 5 evaluates the
performance of the maximum likelihood estimators with simulations based on the Monte Carlo method
and introduces an algorithm to generate random numbers from the BDCSN distribution. Two real data
analyses are considered on Sections 6 and 7 from where we conclude that the distributions presented
in this paper are a good alternative to the ZOIB distributions. The conclusions of this research are
provided in Section 8. Mathematical derivations of this work are detailed in the Appendix A. All the
numerical calculations were performed by using the R software [38].

2. Doubly-Censored SN Distribution

In this section, we define the DCSN distribution and estimate its parameter with the maximum
likelihood method.

A general structure for a skew-symmetric probability density function (PDF) was proposed in [1],
which can be written as

g(z; α) = 2 f (z)F(αz), z ∈ R, α ∈ R, (1)
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where f is a symmetric PDF around zero, F is an absolutely continuous cumulative distribution
function (CDF) which is symmetric around zero, and α is a shape parameter controlling the asymmetry
of the distribution. In (1), if f = φ and F = Φ, that is, the PDF and CDF of the standard normal
distribution, respectively, the so called SN distribution is obtained with PDF given by

φSN(z; α) = 2φ(z)Φ(αz), z ∈ R, (2)

in which case the notation Z ∼ SN(α) is used. Observe that the hazard and inverse-hazard functions
of the SN distribution are, respectively, stated as

hSN(z; α) =
φSN(z; α)

1−ΦSN(z; α)
, rSN(z; α) =

φSN(z; α)

ΦSN(z)
, z ∈ R, (3)

where ΦSN(z; α) = Φ(z) − 2T(z, α) is the SN CDF, with T being the Owen function defined as
T(z, α) = (1/(2π))

∫ α
0 exp(−z2(1 + u2)/2)/(1 + u2)du, and φSN(z; α) is established in (2).

Let Z ∼ SN(α). Then, a location-scale extension of Z is obtained considering the transformation
X = ξ + ηZ, where ξ ∈ R is a location parameter and η ∈ R+ is a scale parameter. Therefore, from (2),
the PDF of X is expressed as

φSN(x; θ1) =
2
η

φ

(
x− ξ

η

)
Φ
(

α(x− ξ)

η

)
, x ∈ R, (4)

where θ1 = (ξ, η, α)>. We denote this extension by X ∼ SN(ξ, η, α). Next, based on the extension
defined in (4), we introduce the DCSN distribution.

Definition 1. Let (X∗1 , . . . , X∗n) be a random sample of size n, where X∗i ∼ SN(ξ, η, α) and that only values of
X∗ between the constants c0 and c2 are observed, with c0 and c2 being LDL and UDL, respectively. For values
of X∗ ≤ c0, only the value c0 is reported, while for values of X∗ ≥ c2 only the value c2 is considered.
Then, the observed data set x = (x1, . . . , xn) can be written as

xi =


c0, if x∗i ≤ c0,

x∗i , if c0 < x∗i < c2,

c2, if x∗i ≥ c2,

(5)

for i = 1, . . . , n. The resulting sample from (5) is said to be drawn from a DCSN population. For c0 and c2,
we have that

P(Xi = c0) = P(X∗i ≤ c0) = ΦSN(z0; θ1)

and
P(Xi = c2) = P(X∗i ≥ c2) = 1−ΦSN(z2; θ1),

where
z0 =

c0 − ξ

η
, z2 =

c2 − ξ

η
. (6)

For the continuous part of c0 < X∗i < c2, we consider that Xi ∼ SN(ξ, η, α). In this case, we use the notation
X ∼ DCSN(ξ, η, α; c0, c2), with c0 and c2 being fixed. Note that, for α = 0, the DCSN distribution reduces
to the doubly censored normal distribution [23]. Figure 1 provides graphs of PDFs of the DCSN distribution,
denoted by fDCSN in this figure.
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From Figure 1 (left), note that, as the shape parameter α increases, keeping the other parameters
fixed, different shapes of the PDF are obtained. From Figure 1 (right), by keeping α fixed, it is evident
that the parameter ξ modifies the location and η modifies the scale of the distribution.
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Figure 1. PDF plots of the DCSN distribution for (left) different values of the parameters ξ and η;
and (right) different values of the parameter α; with c0 = 0 and c2 = 1.

Parameter estimation of the DCSN distribution can be performed using the maximum
likelihood method. Thus, denoting by ∑0, ∑1 and ∑2 the sums corresponding to x∗i ≤ c0, c0 < x∗i < c2,
and x∗i ≥ c2, respectively, the log-likelihood function of θ1 = (ξ, η, α)> for the sample x = (x1, . . . , xn)

is given by

`DCSN(θ1; x) = ∑
0

log (ΦSN(z0; θ1)) + ∑
1
(log(2)− log(η) + log (φ (z1i)) + log (Φ (αz1i)))

+∑
2

log (1−ΦSN (z2; θ1)), (7)

where z0, z2 are defined in (6) and z1i = (xi − ξ)/η. Hence, the score vector defined as the derivative of
the log-likelihood function stated in (7) with respect to the distribution parameters has elements
Uξ , Uη , and Uα, which are detailed in the Appendix A. The first order conditions or estimating
equations for the maximum likelihood method are obtained equating to zero the elements Uξ , Uη ,
and Uα of the score vector. The solution of these equations leads to the maximum likelihood estimates of
(ξ, η, α). Notice that these estimating equations must be solved numerically by a nonlinear optimization
method, as for example, a quasi-Newton algorithm of Broyden–Fletcher–Goldfarb–Shanno (BFGS)
type [39], which is available by the optim function of the R software.

The elements of the observed Fisher information matrix corresponding to the DCSN distribution
depend on the second derivatives of the likelihood function with respect to the distribution parameters.
These elements are provided in the Appendix A. The expected Fisher information matrix corresponding
to the DCSN distribution follows then by taking expectations of the elements of the observed
information matrix and multiplying by n−1. Subsequently, after intensive algebraic manipulations,
the elements of the expected information matrix are obtained and also given in the Appendix A, with

ajk = E

(
Zj
(

φ(αz)
Φ(αz)

)k
)

, j = 1, 2, k = 0, 1, 2, (8)

where ajk is defined here due to this is used in Section 4. As mentioned, the Fisher information matrix
of the SN distribution is singular [1]. It occurs when α = 0, since the score of the parameter ξ is η

√
2/π

times the score of the parameter α, producing linear dependence between the corresponding columns
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of this matrix. Such a singularity is inherited by the Fisher information matrix corresponding to the
DCSN distribution, when α = 0. For this case of α = 0, a convergence problem exists in the asymptotic
inference and the unicity of the corresponding maximum likelihood estimators is not guaranteed.

3. Doubly-Censored Log-SN and Centered SN Distributions

As mentioned, the censored LSN distribution arises as an alternative to not transform the data
in the case of random variables with positive support and asymmetry to the right. In this section,
we define the DCLSN and centered SN distributions estimating their parameters with the maximum
likelihood method.

Recalling that θ1 = (ξ, η, α)>, the PDF of a random variable X with LSN distribution is given by

φLSN(x; θ1) =
2

ηx
φ

(
log(x)− ξ

η

)
Φ
(

α(log(x)− ξ)

η

)
, x ∈ R+, (9)

where ξ ∈ R is a location parameter and η ∈ R+ is a scale parameter. Notice that if α = 0, then the LN
distribution is obtained. We denote this extension of the LN distribution as X ∼ LSN(ξ, η, α). The LSN
distribution is required to model data with asymmetry different from that of Y = log(X) ∼ N(ξ, η),
or equivalently, of X = exp(Y) ∼ LN(ξ, η). Hence, extending the definition of the DCSN distribution
to the LSN case, we obtain the DCLSN distribution with parameters ξ, η and α, which is denoted by
DCLSN(ξ, η, α; c0, c2), with c0 = LDL = 0 and c2 = UDL = 1, and replacing x by x + 1 in the DCSN
PDF to avoid that the DCLSN PDF is not defined at zero. In this particular case, from the PDF given
in (9), the log-likelihood function of θ1 is stated as

`DCLSN(θ1; x) = −∑
1

log(x + 1) + `DCSN(θ1; log(x + 1)), (10)

where `DCSN is the log-likelihood function defined in (7) for the DCSN distribution, with z0 being
replaced by z′0 = −ξ/η, z1i by z′1i = (log(xi + 1)− ξ)/η, and z2 by z′2 = (log(2)− ξ)/η. The score
vector and Fisher information matrix associated with the log-likelihood function defined in (10) can
be obtained using the score vector and information matrix of the DCSN distribution replacing in
the expressions of the Appendix A: (i) hSN(z2; θ1) by hLSN(z2; θ1) = hSN(z′2)/2, and (ii) rSN(z0; θ1)

by rLSN(z0; θ1) = rSN(z′0), where hSN and rSN are the hazard and inverse hazard functions of the SN
distribution, respectively, defined in (3). As mentioned, the Fisher information matrix of the DCSN
distribution is singular, inherited from the singularity of the SN distribution. Note that this singularity
is also presented in the case of the DCLSN distribution. As also mentioned, a centered parametrization
is considered to circumvent such a singularity. Observe that the SN PDF with centered parametrization
(CSN in short) is given by

φSN(x; µ, σ, γ1) =
2

σ
√

1 + c2γ2/3
1

φ

 1√
1 + c2γ2/3

1

((
x− µ

σ

)
+ cγ1/3

1

) (11)

×Φ

 cγ1/3
1√

b2 + c2(b2 − 1)γ2/3
1

√
1 + c2γ2/3

1

((
x− µ

σ

)
+ cγ1/3

1

) , x ∈ R,

where µ ∈ R, σ ∈ R+, −0.9953 < γ1 < 0.9953, b =
√

2/π, and c = (2/(4− π))1/3. The centrality
parameters µ, σ and γ1 =

√
β1 represent, as usual, the mean, standard deviation (SD) and coefficient

of skewness of X, respectively. In this case, we use the notation X ∼ CSN(µ, σ, γ1).



Symmetry 2020, 12, 1439 6 of 21

Note that the distribution regarding the PDF defined in (11) can be a location-scale distribution
denoted by X ∼ SN(ξ, η, α) considering

ξ = µ− cσγ1/3
1 , η = σ

√
1 + c2γ2/3

1 , α = cγ1/3
1 /

√
b2 + c2(b2 − 1)γ2/3

1 . (12)

By using the relations stated in (12), we parametrize the DCSN distribution to obtain the
CDCSN distribution, denoted by X ∼ CDCSN(µ, σ, γ1; 0, 1).

Based on the relations established in (12), the observed and expected Fisher information
matrices may be obtained for the parameter vector β = (µ, σ, γ1)

> of the CDCSN distribution using
J (β) = D>J (θ1)D, where D is a matrix containing the derivatives of the vector of parameters θ1 with
respect to β, and J (θ1) is the observed Fisher information matrix of the non-centered location-scale
SN distribution. Upon regularity conditions [40], β̂ is a consistent estimator of β. In addition, as n→ ∞,

√
n(β̂− β)

d→ N3(0, I−1(β)), (13)

where I(β) = limn→∞(1/n)J (β), with J (β) being the expected Fisher information matrix, and d→
denotes convergence in distribution to. In summary, β̂ is consistent and, from (13), it is asymptotically
normal distributed with asymptotic covariance matrix expressed as I−1(β). Note that Ĵ −1(β) is a
consistent estimator of the asymptotic variance-covariance matrix of β̂.

Figure 2 shows some graphical plots of the PDF of the CDCSN distribution with different values
for its parameters. The PDF of the CDCSN distribution is denoted by fCDCSN in this figure. In Figure 2
(left), it is evident that the parameter γ1 modifies the symmetry of the PDFs, while in Figure 2 (right)
the parameters µ and σ modifies the mean and dispersion of the PDFs, respectively.
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Figure 2. PDF plots of the CDCSN distribution for (left) different values of the parameters µ and γ1;
and (right) different values of the parameters µ and σ; with c0 = 0 and c2 = 1.

4. The Bernoulli/Doubly-Censored SN Mixture Distribution

As mentioned, when the data set presents detection limits, mixture distributions are often used.
In this section, we construct the BDCSN distribution considering the Bernoulli distribution for the
discrete mixture variable and the DCSN distribution for the continuous mixture variable.
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For the case of proportions, that is, with c0 = 0 and c2 = 1, we can construct the mixture of
Bernoulli and SN (BSN) distributions. On the one hand, we consider that the zero/one observations are
well explained by a Bernoulli distributed variable with parameter ς, which we denote by X ∼ Ber(ς).
On the other hand, the remaining observations can be modeled by an SN distribution (or LSN for
positive data) with parameters ξ, η and α. The BSN PDF for θ2 = (p, ς, θ>1 )

> = (p, ς, ξ, η, α)> is
given by

fBSN(xi; p, θ2) =


p(1− ς), if xi = 0;

(1− p)
φSN(xi; θ1)

ΦSN(z2; θ1)−ΦSN(z0; θ1)
, if 0 < xi < 1;

pς, if xi = 1;

(14)

where z0, z2 are defined in (6), 0 < p < 1, 0 < ς < 1, η > 0, α > 0 and ξ ∈ R, with φSN denoting the
SN PDF and ΦSN being the respective CDF. Observe that P(X = 0) = p(1− γ) and P(X = 1) = pς.
In this case, we use the notation X ∼ BSN(p, ς, ξ, η, α). After some algebraic manipulations, the CDF
of Xi is stated as

FBSN(xi; θ2) =



0, if xi < 0,

p(1− ς), if xi = 0,

p(1− ς) + (1− p)
(ΦSN(z1i)−ΦSN(z0; θ1))

(ΦSN(z2; θ1)−ΦSN(z0; θ1))
, if 0 < xi < 1,

1, if xi ≥ 1,

(15)

where z1i = (xi − ξ)/η, for i = 1, . . . , n, is defined as in (7).
Let X1, . . . , Xn be a random sample of size n from X ∼ BSN(p, ς, ξ, η, α), with n0 = ∑n

i=1 I0(x),
n1 = ∑n

i=1 I1(x) and n01 = ∑n
i=1 I(0,1)(x), where IA(x) is an indicator function of x ∈ A. Then, from (14)

and (15), the log-likelihood function for θ2 = (p, ς, ξ, η, α)> based on the data set x = (x1, . . . , xn)> is
established as

`BSN(θ2; x) = n01 log(p) + (n− n01) log(1− p) + n1 log(ς) + n0 log(1− ς)

+∑1 (log(2)− log(η) + log (φ (z1i)) + log (Φ (αz1i))− log (ΦSN(z2; θ1)−ΦSN(z0; θ1))) .
(16)

The elements of the score vector obtained from (16) are detailed in the Appendix A. Maximum
likelihood estimates of the parameters p, ς, ξ, η and α are the solution to the system which follows
by equating the scores to zero. From the first two equations, we obtain an unbiased estimator for p,
namely p̂ = n01/n, while an estimator for ς is given by ς̂ = n1/n01, corresponding to the proportion
of zeros and ones in the sample, as well as the proportions of ones in the subsample of zeros and ones,
respectively. The solution to the remaining three parameters can obtained from the last three equations
using iterative methods.

The expected Fisher information matrix corresponding to the BSN distribution is derived next.
Considering the quantities akj defined similarly as in (8), with x ∈ (0, 1), for k = 0, 1, 2 and j = 1, 2,
with θ1 = p, θ2 = ς, θ3 = ξ, θ4 = η and θ5 = α, we have that the elements of the expected Fisher
information matrix, denoted by kθrθp = n−1E(−∂2`(θ2; x)/∂θr∂θs), for r, s = 1, 2, 3, 4, 5, are defined
as kpp, kςς, kξ p, kξξ , kηξ , kηη , kαξ , kαη , kαα, and detailed in the Appendix A. Thus, the expected Fisher
information matrix for θ2 = (p, ς, ξ, η, α)> is given by

K(θ2) = (1− p)



1
p(1−p)2 0 0 0 0

0 p
ς(1−ς)(1−p) 0 0 0

0 0 kξξ kξη kξα

0 0 kξη kηη kηα

0 0 kξα kηα kαα

 . (17)
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Notice from (17) that the set of parameters for the discrete components (p, ς)> and the continuous
components (ξ, η, α)> are mutually orthogonal. Therefore, the expected Fisher information matrix
can be written as K(θ) = diag(Kp,ς, Kξ,η,α), where Kp,ς = diag(1/(p(1− p)), p/(ς(1− ς))), that is,
we have block orthogonality. One of the advantages of this orthogonality is that the corresponding
parameters may be estimated separately. Estimation methods were discussed in [36] when there is
orthogonality in relation to a partition of interest. Moreover, maximum likelihood estimators are
independent asymptotically.

Note that the parameterization δ1 = pς and δ0 = p(1− ς) = p− δ1 in the BSN distribution leads
to the BDCSN distribution, for θ3 = (δ0, δ1, θ>1 )

> = (δ0, δ1, ξ, η, α)>, with PDF being defined as

fBDCSN(xi; θ3) =


δ0, if xi = 0,

(1− δ0 − δ1)
φSN(xi; θ1)

ΦSN(z2; θ1)−ΦSN(z0; θ1)
, if 0 < xi < 1,

δ1, if xi = 1,

(18)

where 0 < δ0 = P(Xi = 0), δ1 = P(Xi = 1) < 1 and 0 < δ0 + δ1 < 1. This is denoted by
X ∼ BDCSN(δ0, δ1, ξ, η, α).

Figure 3 shows graphical plots of the PDF of the BDCSN distribution with different values for
its parameters. In Figure 3 (left), we note that, as the shape parameter α increases, keeping the other
parameters fixed, the shapes of the PDF change. In Figure 3 (right), by keeping α fixed, observe that the
parameter ξ modifies the location and η modifies the scale of the BDCSN distribution. Subsequently,
observe that in both figures different values for δ0 and δ1 are used.
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Figure 3. PDF plots of the BDCSN distribution for (left) different values of parameters δ0, δ1 and α;
and (right) different values of the parameters δ0, δ1, ξ and η.

From the PDF given in (18), the log-likelihood function of θ3 = (δ0, δ1, ξ, η, α)> based on the data
set x can be written as

`BDCSN(θ3; x) = n0 log(δ0) + n1 log(δ1) + (n− n01) log(1− δ0 − δ1)

+∑1 (log(2)− log(η) + log (φ (z1i)) + log (Φ (αz1i))− log(ΦSN(z2; θ2)−ΦSN(z0; θ2))) .
(19)
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Therefore, from (19), the elements of the score vector for δ0 and δ1 are
Uδ0 = n0/δ0 − (n− n01)/(1− δ0 − δ1) and Uδ1 = n1/δ1 − (n− n01)/(1− δ0 − δ1). For ξ, η and α

given by the non-reparametrized distribution, the solution follows using the BFGS algorithm [39].
In addition, δ̂0 = n0/n is the proportion of zeros in the sample, and δ̂1 = n1/n is the proportion
of ones in the sample. For this distribution, its Fisher information matrix can be written as
K(θ2) = diag(Kδ0,δ1 , Kξ,η,α), where the elements of Kδ0,δ1 are given by kδ0δ0 = (1− δ1)(δ0(1− δ0 − δ1)),
kδ1δ0 = 1/(1− δ0 − δ1), and kδ1δ1 = (1− δ0)/(δ1(1− δ0 − δ1)). Furthermore, the elements of Kξ,η,α
are the corresponding elements of X ∼ BSN(p, ς, ξ, η, α). Given the orthogonality for the two sets
of parameters, their estimates are computed separately.

Next, we present the inflated zero, inflated one and zero/one inflated cases of the BDCSN
distribution. For the case of zero inflation (δ1 = 0) with θ4 = (δ0, ξ, η, α)>, its PDF is given by

fBDCSN(xi; δ1 = 0, θ4) =


δ0, if xi = 0,

(1− δ0)
φSN(xi; θ1)

ΦSN(z2; θ1)−ΦSN(z0; θ1)
, if 0 < xi ≤ 1,

(20)

where 0 < δ0 = P(Xi = 0) < 1. Then, from the PDF stated in (20), the log-likelihood function of
θ4 = (δ0, ξ, η, α)> based on the data set x can be written as

`BDCSN(θ4; x) = n0 log(δ0) + (n− n0) log(1− δ0))

+∑1 (log(2)− log(η) + log (φ (z1i)) + log (Φ (αz1i))− log(ΦSN(z2; θ1)−ΦSN(z0; θ1))) .
(21)

Hence, from (21), the score for δ0 is defined as Uδ0 = n0/δ0 − n− n0/1− δ0. By equating it to
zero, we obtain the estimate δ̂0 = n0/n, that is, the proportion of zeros in the sample. The remaining
parameters are estimated similarly as above.

For the case of one inflation (δ0 = 0) with θ5 = (δ1, ξ, η, α)>, its PDF is stated as

fBDCSN(xi; δ0 = 0, θ5) =

(1− δ1)
φSN(xi; θ1)

ΦSN(z2; θ1)−ΦSN(z0; θ1)
, if 0 ≤ xi < 1,

δ1, if xi = 1,
(22)

where 0 < δ1 = P(Xi = 1) < 1. Thus, from the PDF expressed in (22), the log-likelihood function of
θ5 = (δ1, ξ, η, α)> considering the data x is established as

`(θ5; x) = n1 log(δ1) + (n− n1) log(1− δ1)

+∑1 (log(2)− log(η) + log (φ (z1i)) + log (Φ (αz1i))− log(ΦSN(z2; θ1)−ΦSN(z0; θ1))) .
(23)

From (23), we reach the score for δ1 as Uδ1 = n1/δ1 − (n− n1)/(1− δ1). By equating it to zero,
we obtain the estimate δ̂1 = n1/n, that is, the proportion of ones in the sample. The remaining
parameters are estimated as in the previous case.

Now, by considering the PDF given in (18), the BDCSN distribution is obtained, which can be
used for fitting positive data with high kurtosis and asymmetry. Then, from the PDF expressed in (18),
the log-likelihood function of θ3 = (δ0, δ1, θ>1 )

> = (δ0, δ1, ξ, η, α)> considering the data x is given by

`BDCSN(θ3; x) = −∑
1

log(xi) + `BSN(θ3; log(x)), (24)

where log(x) = (log(x1), . . . , log(xn))> and `BSN is the log-likelihood function defined in (16) for the
BSN distribution, with
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p =
δ1

1− δ0/δ1
(25)

and
ς = 1− δ0

δ1
. (26)

The score vector and information matrices are easily obtained from (24)–(26), and the
previous results.

We denote the mixture between the Bernoulli and CDCSN distributions by X ∼
BCDCSN(δ0, δ1, µ, σ, γ1). Note that the Fisher information matrix for the continuous part of the
BCDCSN distribution is obtained similarly as for the CDCSN distribution, that is, J (β) = D>J (θ1)D,
and I(β) = D>Kθ1 D.

5. Monte Carlo Simulation Study

In this section, we evaluate the performance of the maximum likelihood estimators with
simulations based on the Monte Carlo method. For this simulation study, we consider the
BDCSN distribution.

In this Monte Carlo simulation, the true values assumed for the parameters are ξ = 0.2, η = 0.2
and α = 0.3, whereas that δ0 ∈ {0.1, 0.2, 0.3} and δ1 ∈ {0.1, 0.2}. The sample sizes considered are
n ∈ {25, 50, 100, 500} and the number of Monte Carlo replicates is 5000. In each of these replications,
we generate random numbers according to Algorithm 1.

Algorithm 1 Generation of random numbers from the BDCSN distribution.
1: Fix values for δ0, δ1, ξ, η, and α.
2: Generate values for u from U ∼ Uniform(δ0, 1− δ1).
3: Compute values for x from

x = Φ−1
SN

(
q0 +

u− δ0
1− δ0 − δ1

(q1 − q0), ξ, η, α

)
,

where q0 = Φ(0, ξ, η, α), q1 = Φ(1, ξ, η, α) and Φ−1
SN is the quantile function of the SN distribution.

4: Repeat steps 2–3 until the required numbers of data (n) is completed.

For each parameter and sample size, we report the empirical mean, variance, bias and root of
the mean squared error (RMSE) of the maximum likelihood estimators in Table 1. From this table,
in general, note that, as the sample size increases, both the bias and RMSE decrease, as expected.
These results empirically shows the good performance of the maximum likelihood estimators for the
BDCSN distribution parameters.
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Table 1. Empirical mean, variance, bias and RMSE for the indicated estimator and n with simulated data.

n = 30 n = 50 n = 100 n = 500

δ0 δ1 True Value Mean Variance Bias RMSE Mean Variance Bias RMSE Mean Variance Bias RMSE Mean Variance Bias RMSE

0.1 0.1 ξ = 0.2 0.21148 0.00110 0.01148 0.03513 0.20632 0.00137 0.00632 0.03755 0.20642 0.00124 0.00642 0.03578 0.20976 0.00035 0.00976 0.02109
0.1 0.1 η = 0.2 0.18965 0.00057 0.01034 0.02597 0.19227 0.00054 0.00773 0.02459 0.19269 0.00053 0.00730 0.02419 0.19235 0.00018 0.00765 0.01554
0.1 0.1 α = 0.3 0.31774 0.01593 0.01774 0.12746 0.35869 0.06063 0.05869 0.25314 0.35355 0.05694 0.05355 0.24457 0.31103 0.00205 0.01103 0.04661
0.1 0.2 ξ = 0.2 0.21323 0.00123 0.01323 0.03752 0.20943 0.00126 0.00943 0.03669 0.20649 0.00142 0.00649 0.03830 0.21034 0.00044 0.01033 0.02345
0.1 0.2 η = 0.2 0.18861 0.00065 0.01138 0.02796 0.19103 0.00052 0.00896 0.02458 0.19247 0.00056 0.00752 0.02489 0.19218 0.00021 0.00781 0.01654
0.1 0.2 α = 0.3 0.30536 0.01117 0.00536 0.10581 0.33359 0.04294 0.03359 0.20994 0.36002 0.06839 0.06002 0.26833 0.30800 0.00443 0.00800 0.06709
0.2 0.1 ξ = 0.2 0.21216 0.00120 0.01216 0.03678 0.20810 0.00126 0.00810 0.03650 0.20556 0.00137 0.00556 0.03754 0.21035 0.00044 0.01035 0.02345
0.2 0.1 η = 0.2 0.18884 0.00066 0.01115 0.02812 0.19139 0.00053 0.00860 0.02460 0.19262 0.00055 0.00737 0.02474 0.19217 0.00021 0.00782 0.01653
0.2 0.1 α = 0.3 0.31271 0.01290 0.01271 0.11430 0.34589 0.05113 0.04589 0.23075 0.36530 0.06428 0.06530 0.26181 0.30776 0.00416 0.00776 0.06501
0.2 0.2 ξ = 0.2 0.21338 0.00143 0.01338 0.04013 0.21185 0.00118 0.01185 0.03633 0.20870 0.00132 0.00870 0.03749 0.21051 0.00049 0.01051 0.02453
0.2 0.2 η = 0.2 0.18768 0.00076 0.01231 0.03026 0.18964 0.00056 0.01035 0.02601 0.19139 0.00052 0.00860 0.02448 0.19200 0.00024 0.00799 0.01732
0.2 0.2 α = 0.3 0.30392 0.00752 0.00392 0.08681 0.31181 0.01922 0.01181 0.13914 0.34616 0.06196 0.04616 0.25316 0.30677 0.00369 0.00677 0.06119
0.3 0.1 ξ = 0.2 0.21337 0.00143 0.01337 0.04018 0.21184 0.00116 0.01184 0.03608 0.20867 0.00134 0.00867 0.03767 0.21049 0.00049 0.01049 0.02467
0.3 0.1 η = 0.2 0.18769 0.00076 0.01230 0.03026 0.18963 0.00056 0.01036 0.02602 0.19141 0.00052 0.00859 0.02447 0.19201 0.00024 0.00798 0.01734
0.3 0.1 α = 0.3 0.30449 0.00951 0.00449 0.09766 0.31186 0.01993 0.01186 0.14167 0.34602 0.05773 0.04602 0.24464 0.30712 0.00439 0.00712 0.06670
0.3 0.2 ξ = 0.2 0.21357 0.00172 0.01357 0.04367 0.21245 0.00135 0.01245 0.03886 0.21158 0.00115 0.01158 0.03577 0.21117 0.00057 0.01117 0.02648
0.3 0.2 η = 0.2 0.18669 0.00090 0.01330 0.03296 0.18889 0.00069 0.01110 0.02851 0.18981 0.00055 0.01019 0.02555 0.19163 0.00029 0.00836 0.01902
0.3 0.2 α = 0.3 0.30823 0.00996 0.00824 0.10013 0.30489 0.00961 0.00489 0.09818 0.31686 0.02287 0.01687 0.15217 0.30325 0.00537 0.00325 0.07338
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6. Real Data Application 1

In this section, we illustrate the usefulness of the CDCSN and BDCSN distributions considering
a first application to a real data set. We name this data set as “death”, which corresponds to the
proportions of unexplained infant deaths in 5561 Brazilian counties. The data set is available for
downloading at https://datasus.saude.gov.br and contains 3367 zeros (explained deaths) and 174 ones
(unexplained deaths).

Table 2 provides descriptive statistics for the death data (uncensored), including central
tendency statistics, SD, coefficients of variation (CV), skewness (CS) and kurtosis (CK). From this table,
note the presence of skewness and kurtosis in the distribution of the data; see also Figure 4 (left),
which depicts the histogram with boxplot revealing the distributional behavior.

Table 2. Descriptive statistics of the death data.

Minimum Median Mean SD CV CS CK Maximum

0.003 0.250 0.292 0.216 73.892 0.811 −0.206 0.941

In order to compare our distributions with a standard competitor, the ZOIB distribution [28]
is considered and denoted by ZOIB(δ0, δ1, µ, σ). To estimate the ZOIB distribution parameters,
the GAMLSS package of the R software is used. Then, we fit the CDCSN, BDCSN and ZOIB distributions
by using the maximum likelihood method to estimate their parameters based on the sn package [41]
and its selm and dp2cp functions. The optim function of the R software and the BFGS algorithm are
used for this estimation. As starting values to initiate the algorithm, we use the moment estimates
proposed in [5]. Table 3 provides the maximum likelihood estimates for the considered distributions.
In addition, for the CDCSN distribution, using the corresponding estimated CDF, the estimated
proportions of censored observations are 0.6039 (zeros) and 0.0272 (ones), respectively, whereas the
corresponding empirical percentages are 0.6055 and 0.0313, revealing the model fits the data well.
Figure 4 shows the estimated CDF of the ZOIB, CDCSN and BDCSN distributions indicating their
good fit to the data.

We can numerically compare the distributions studied in this application while using the Akaike
information criterion (AIC), the Schwarz Bayesian information criterion (BIC), and corrected Akaike
information criterion (CAIC) [42]. The AIC, BIC, and CAIC are given, respectively, by

AIC = −2`(θ̂) + 2d, BIC = −2`(θ̂) + d log(n), CAIC = −2`(θ̂) + 2d +
2d2 + 2d
n− d− 1

, (27)

where `(θ̂) is the log-likelihood function for θ, associated with the underlying distribution, evaluated
at θ = θ̂, d is the dimension of the parameter space, and n is the size of the data set. All of these
criteria are based on the log-likelihood function and penalize the distribution with more parameters.
A distribution whose information criterion has a smaller value is better [43]. The log-likelihood, AIC,
BIC and CAIC values computed according to expressions given in (27), for the distributions studied
in this application, are presented in Table 3. From this table, observe that the BDCSN distribution
has a better agreement with the death data. Additionally, in order to compare the CDCSN and
BDCSN distributions against the ZOIB distribution, we use the Voung test [44], with its statistic
being a distance between two distributions measured in terms of the Kullback–Liebler criterion [45].
Then, when comparing the BDCSN and ZOIB distributions, the p-value of the Voung value is <0.001,
providing a highly significant evidence in favor that the BDCSN distribution fits the death data better
than the ZOIB distribution. Similarly, the Voung p-value is <0.001 when comparing the BDCSN and
DCSN distributions in favor of the BDCSN distribution, but the ZOIB distribution fits the data better
than the CDCSN distribution. These results demonstrate the fact that the BDCSN distribution is a
viable option to the ZOIB distribution to model the death data.

https://datasus.saude.gov.br
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Table 3. Maximum likelihood estimates for ZOIB, CDCSN and BDCSN parameters (with approximate
standard errors in parentheses) and information criteria and log-likelihood values, with death data.

Estimate ZOIB CDCSN BDCSN

µ̂ 0.2974 (0.0043) −0.0691 (0.0217) 0.1965 (0.0039)
σ̂ 0.4562 (0.0050) 0.4448 (0.0248) 0.1818 (0.0040)
γ̂1 – 0.6374 (0.1900) 0.9905 (0.0023)
δ̂0 0.6055 (0.0066) – 0.6055 (0.0066)
δ̂1 0.0313 (0.0023) – 0.0313 (0.0023)

AIC 7464.2 7615.6 7455.7
BIC 7498.7 7635.5 7488.8
CAIC 7466.2 7617.6 7457.7
`(θ̂) −3728.1 −3804.8 −3722.9
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Figure 4. (left) Histogram of the proportion of deaths and (right) empirical CDF (solid line in stairs),
and estimated CDF of the CDCSN (dashed and doted line), BDCSN (dashed line), and ZOIB (doted
line) distributions, with death data.

7. Real Data Application 2

In this section, in order to provide evidence that the distributions proposed in this paper
fit different types of data, we analyze a second data set corresponding to the cable TV
penetration in USA. These data were collected by the Federal Communications Commission (FCC)
by means of questionnaires applied to cable community units, which are individual franchise areas.
These questionnaires supplied data on prices, costs and cable operator background; see details of
the questionnaire in Appendix E of [46]. We name this data set as “FCC” and corresponds to 282
individual areas franchising cable TV; see [12] for an analysis of these data. For FCC data, we study
the proportion of subscribers going for additional canals.

The FCC data set contains 62 zeros, with the clump-at-zero in the histogram representing 21.98%
of the data; see bold line in the histogram of Figure 5 (left). Therefore, we note that this variable
has excess of zeros. Table 4 provides descriptive statistics for the data set in study (uncensored),
including median, mean, SD, CV, CS and CK. From this table, note the presence of skewness and
kurtosis in the distribution of the data; see also Figure 5 (left), which depicts the histogram with
boxplot revealing the behavior of the data.

Table 4. Descriptive statistics of the FCC data.

Minimum Median Mean SD CV CS CK Maximum

0.007 0.269 0.305 0.18 59.034 0.918 0.969 0.927
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We adjust four distributions to the FCC data: (i) the CSN distribution censored at X = 0, (ii) the
BDCSN distribution, (iii) the ZOIB distribution (with no ones), and (iv) the normal distribution
censored at X = 0. The maximum likelihood estimates for the parameters of these four distributions,
with approximate standard errors in parentheses, are reported in Table 5. The log-likelihood, AIC,
BIC and CAIC values computed according to expressions given in (27), for the distributions studied
in this second application, are also presented in Table 5. From this table, observe that the BDCSN
distribution has a better agreement with the FCC data. Additionally, when comparing the BDCSN and
ZOIB distributions with the Vuong test, the corresponding p-value is 0.2124 indicating a statistically
non-significant difference and demonstrating that both distributions are good alternatives to model
these data. When comparing the BDCSN and censored normal distributions, the Voung p-value
is <0.001 favoring the BDCSN distribution, which also occurs if we compare the CSN and BDCSN
distributions. In summary, the BDCSN distribution seems to be a good alternative of modeling for the
FCC data, which can be visually corroborated by Figure 5 (right), where the empirical quantile versus
theoretical quantile (QQ) plot for the BDCSN distribution is depicted.

Table 5. Maximum likelihood estimates for ZOIB, censored normal, CSN and BDCSN distributions
(with approximate standard errors in parentheses) and information criteria and log-likelihood values,
with FCC data.

Estimate ZOIB Normal CSN BDCSN

µ̂ 0.3080 (0.0140) 0.2069 (0.0153) 0.2110 (0.0153) 0.2952 (0.0156)
σ̂ 5.3239 (0.0004) 0.2487 (0.0125) 0.2455 (0.0129) 0.1873 (0.0121)
ς̂ – – 0.4046 (0.1937) 0.5750 (0.1644)
δ̂0 0.2198 (0.0006) – – 0.2198 (0.0006)

AIC 144.748 142.258 150.278 135.197
BIC 155.674 149.542 161.205 149.765
CAIC 146.893 144.344 152.423 137.415
`(θ̂) −69.374 −69.127 −72.139 −63.599
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Figure 5. (left) Histogram for the proportion of subscribers and (right) QQ plot for the BDCSN
distribution with FCC data.

8. Conclusions and Future Research

This paper reported the following findings:

(i) By using skew-normal distributions, we have proposed a new family of distributions which are
an alternative to the beta distribution when an excess zeros and/or one inflation is present.

(ii) The parameters of the distributions were estimated by the maximum likelihood method.
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(iii) The expected and observed Fisher information matrices associated with the new family of
distributions were derived, and an parameterization was proposed to circumvent a singularity
problem in these matrices, which is inherited from the classical skew-normal distribution.

(iv) The Fisher information matrix related to the new mixture distribution obtained in this study
resulted to be block ortogonal, facilitating the estimation of parameters and doing it separately
in two groups with respect to the discrete and continuous parts of this mixture, respectively.

(v) An algorithm to generate random numbers from the new family of distributions derived in this
study was proposed and implemented.

(vi) Monte Carlo simulations based on the new family of distributions proposed in this research
were provided to detect performance of the maximum likelihood estimators of their parameters.

(vii) Examples with two real data sets were performed to illustrate the potential applications with
the new family of distributions based on the skew-normal distribution proposed in the paper.
In addition, we compare the new distributions to their natural competitors, corresponding to
the beta and normal distributions, showing their convenience.

In summary, we have proposed new distributions based on the skew-normal distribution,
which allows us to model proportions and rates with zero/one inflation as an alternative to the
inflated beta distributions. We used the maximum likelihood method for parameter estimation and the
observed and expected Fisher information matrices were derived to conduct likelihood-based inference.
Numerical studies with simulated and real data were performed to show the good empirical
behavior of the estimators and to illustrate potential applications. Therefore, this investigation may
be a knowledge addition to the tool-kit of diverse practitioners, including biometrists, engineers,
statisticians, and data scientists.

Some open problems that arose from the present investigation are the following:

(i) Parameter estimates of censored distributions are more efficient than when censorship is
not considered. Indeed, if censored cases are present and a non-censored distribution is
used, evidently it is not possible to estimate the variance of the censored part. However,
if censored distributions are utilized in this case, such a variance may be estimated from the
data. For more details, see page 199 in [47]. Subsequently, the study of asymptotic efficiency
bounds in the new family of distributions proposed in the present investigation is an issue of
interest; see details in [48]. In addition, asymptotic behavior and performance of maximum
likelihood estimators in more complex statistical models can be studied in [49,50].

(ii) The use of covariates when modeling a doubly-censored response with support in [0, 1]
following the new family of distributions is of interest. In this case, type Tobit models can
be considered as benchmark to compare the new regression models. Specifically, when studying
a doubly-censored response in [0, 1] through a linear predictor which includes covariates,
the number of observations below c0 and/or above c2 can be modeled by a Bernoulli distribution
with a logit link function and polychotomous response. Given the possible orthogonality in
the information matrix, the parameters of this model of two parts can be estimated separately.
Refs. [30,36] discussed estimation methods for the regression parameters in a similar context
under a mixture structure.

(iii) An extension of the present study to the multivariate case is also of practical relevance [50–52].
(iv) Incorporation of temporal, spatial, functional, and quantile regression structures in the modeling,

as well as errors-in-variables, and PLS regression, are also of interest [53–61] .
(v) The derivation of diagnostic techniques to detect potential influential cases are needed, which

are an important tool to be used in all statistical modeling [7,58,62].
(vi) Robust estimation methods when outliers are present into the data set can be used [63].
(vii) Applications of the new methodology derived here can be of interest in diverse areas [64].

Therefore, the proposed results in this study promote new challenges and offer an open door to
explore other theoretical and numerical issues. Research on these and other issues are in progress and
their findings will be reported in future articles.
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Appendix A

Appendix A.1. Doubly-Censored SN Distribution

The elements of the score vector for the DCSN distribution are expressed as

Uξ = − 1
η ∑

0
rSN(z0) +

1
η ∑

1
(z1i − αr1i) +

1
η ∑

2
hSN(z2),

Uη = − 1
η ∑

0
z0rSN(z0) +

1
η ∑

1

(
z2

1i − αz1ir1i − 1
)
+

1
η ∑

2
z2hSN(z2),

Uα = −
√

2
π

1
(1 + α2)

(
∑
0

φ(
√

1 + α2)

ΦSN (z0)
−∑

2

φ(
√

1 + α2z2)

(1−ΦSN (z2))

)
+ ∑

1
z1i

φ(αz1i)

Φ(αz1i)
,

with z0, z2, z1i being defined in (7), hSN, rSN being stated in (3), and r1i = φ(z1i)/Φ(z1i).
The elements of the observed information matrix corresponding to the DCSN distribution can be

written as

jξξ =
1
η2 ∑

0
rSN(z0)

(
z0 + rSN(z0)−

√
2
π

αφ(
√

1 + α2z0)

φSN(z0)

)
+

1
η2 ∑

1
(1 + α3z1ir1i + α2r2

1i)

+
1
η2 ∑

2
hSN(z2)

(
hSN(z2)− z2 +

√
2
π

αφ(
√

1 + α2z2)

φSN(z2)

)
,

jηξ =
1
η2 ∑

0
rSN(z0)

(
z2

0 − 1 + z0rSN(z0)−
√

2
π

αz0
φ(
√

1 + α2z0)

φSN(z0)
− 1

)

+
1
η2 ∑

1
(2z1i − αr1i + α3z2

1ir1i + α2z1ir2
1i)

+
1
η2 ∑

2
hSN(z2)

(
1− z2

2 + z2hSN(z2) +

√
2
π

αz2
φ(
√

1 + α2z2)

φSN(z2)

)
,

jηη =
1
η2 ∑

0
z0rSN(z0)

(
z2

0 −
√

2
π

αz0
φ(
√

1 + α2z0)

φSN(z0)
+ z0rSN(z0)− 2

)

+
1
η2 ∑

2
z2hSN(z2)

(
2− z2

2 +

√
2
π

αz2
φ(
√

1 + α2z2)

φSN(z2)
+ z2rSN(z2)

)

+
1
η2 ∑

1

(
3z2

1i − 1− 2αz1ir1i + α3z3
1ir1i + α2z2

1ir
2
1i

)
,
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jαξ =

√
2
π

φ(
√

1 + α2z0)

ηΦSN(z0)
∑
0

(
z0 +

rSN(z0)

(1 + α2)

)
−
√

2
π

φ(
√

1 + α2z2)

η(1−ΦSN(z2))
∑
2

(
z2 −

hSN(z2)

(1 + α2)

)
+

1
η ∑

1
r1i(1− α2z2

1i − αz1ir1i),

jαη =

√
2
π

z0φ(
√

1 + α2z0)

ηΦSN(z0)
∑
0

(
z0 +

rSN(z0)

(1 + α2)

)
−
√

2
π

z2φ(
√

1 + α2z2)

η(1−ΦSN(z2))
∑
2

(
z2 −

hSN(z2)

(1 + α2)

)
+

1
η ∑

1
z1ir1i(1− α2z2

1i − αz1ir1i),

jαα =

√
2
π

1
(1 + α2)

φ(
√

1 + α2z0)

ΦSN(z0)
∑
0

(
− 2α

(1 + α2)
− αz2

0 +

√
2
π

1
(1 + α2)

φ(
√

1 + α2z0)

ΦSN(z0)

)

−
√

2
π

1
(1 + α2)

φ(
√

1 + α2z2)

1−ΦSN(z2)
∑
2

(
− 2α

(1 + α2)
− αz2

2 −
√

2
π

1
(1 + α2)

φ(
√

1 + α2z2)

1−ΦSN(z2)

)
+∑

1
z2

1ir1i(αz1i + r1i).

The expected Fisher information matrix corresponding to the DCSN distribution has elements

iξξ = 1
η2 φSN(z0)

(
z0 + rSN(z0)−

√
2
π

αφ(
√

1+α2z0)
φSN(z0)

)
+ 1

η2 φSN(z2)

(
hSN(z2)− z2 +

√
2
π

αφ(
√

1+α2z2)
φSN(z2)

)
+ 1

η2

(
(ΦSN(z2)−ΦSN(z0))−

√
2
π αδ2

(
φ(
√

1 + α2z2)− φ(
√

1 + α2z0)
)
+ α2a02

)
,

iηξ =
√

2
π

δ
η2

(
Φ(
√

1 + α2z2)−Φ(
√

1 + α2z0)
)
+ 1

η2 φSN(z0)

(
z2

0 + z0rSN(z0)−
√

2
π αz0

φ(
√

1+α2z0)
φSN(z0)

− 1
)

+ 1
η2 φSN(z2)

(
1− z2

2 + z2hSN(z2) +
√

2
π αz2

φ(
√

1+α2z2)
φSN(z2)

)
+
√

2
π

δ
η2

(
2
(

Φ(
√

1 + α2z2)−Φ(
√

1 + α2z0)− (φSN(z2)− φSN(z0))
))

+ α2

η2 a12

+
√

2
π

δ2

η2

(
δ
(

Φ(
√

1 + α2z2)−Φ(
√

1 + α2z0)
)
+ α

(
z2φ(
√

1 + α2z2)− z0φ(
√

1 + α2z0)
))

,

iηη = − 1
η2 (ΦSN(z2)−ΦSN(z0)) +

1
η2 z0φSN(z0)

(
z2

0 −
√

2
π αz0

φ(
√

1+α2z0)
φSN(z0)

+ z0rSN(z0)− 2
)

− 1
η2 z2φSN(z2)

(
z2

2 −
√

2
π αz2

φ(
√

1+α2z2)
φSN(z2)

− z2rSN(z2)− 2
)

+ α−1δ4

η2

√
2
π

(
−((1 + α2)z2

2 + 2)(φ(
√

1 + α2z2) + (1 + α2)z0 + 2](φ(
√

1 + α2z0)
)

+
√

2
π

2α−1δ2

η2

(
φ(
√

1 + α2z0)− φ(
√

1 + α2z2)
)
+ 6

η2 (m(z2)−m(z0)) +
α2

η2 a22,

iαξ =
√

2
π

φ(
√

1+α2z0)
η

(
z0 +

rSN(z0)
(1+α2)

)
−
√

2
π

φ(
√

1+α2z2)
η

(
z2 − hSN(z2)

(1+α2)

)
− α

η a12

+ δ
η

√
2
π

(
α−1

(
Φ(
√

1 + α2z2)−Φ(
√

1 + α2z0)
)
(1− δ2) + δ(z2φ(

√
1 + α2z2)− z0φ(

√
1 + α2z0))

)
,

iαη =
√

2
π

z0φ(
√

1+α2z0)
η

(
z0 +

rSN(z0)
(1+α2)

)
−
√

2
π

z2φ(
√

1+α2z2)
η

(
z2 − hSN(z2)

(1+α2)

)
− α

η a22

+ α−2δ2

η

√
2
π

((
(α2z2

2 + 2δ2 − 1)φ(
√

1 + α2z2)− (α2z2
0 + 2δ2 − 1)φ(

√
1 + α2z0)

))
,

iαα =
√

2
π α−2δ2φ(

√
1 + α2z0)

(
−2α−1δ2 − αz2

0 +
√

2
π α−2δ2 φ(

√
1+α2z0)

ΦSN(z0)

)
−
√

2
π α−2δ2φ(

√
1 + α2z2)

(
−2α−1δ2 − αz2

2 −
√

2
π α−2δ2 φ(

√
1+α2z2)

1−ΦSN(z2)

)
+
√

2
π α−3δ4

(
(α2δ−2z2

0 + 2)φ(
√

1 + α2z0)− (α2δ−2z2
2 + 2)φ(

√
1 + α2z2)

)
+ a22, δ = α/

√
1 + α2.
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Appendix A.2. The Bernoulli/Doubly-Censored SN Mixture Distribution

The elements of the score vector are given by

Up =
n01

p
− (n− n01)

1− p
, Uς =

n1

ς
− n0

1− ς
, Uξ =

n− n01

η

(
z− αr +

φSN(z2)− φSN(z0)

ΦSN(z2)−ΦSN(z0)

)
,

Uη = − (n− n01)

η

(
1− z2 + αz r− z2φSN(z2)− z0φSN(z0)

ΦSN(z2)−ΦSN(z0)

)
,

Uα = (n− n01)

(
z r +

√
2
π

1
(1 + α2)

φSN(
√

1 + α2z2)− φSN(
√

1 + α2z0)

ΦSN(z2)−ΦSN(z0)

)
,

where ri = φ(αz1i)/Φ(αz1i), with z1i = (xi − ξ)/η, r = ∑n
i=1 ri/n, and z = ∑n

i=1 z1i/n.
The elements of the Fisher information matrix are stated as

kpp = 1
p(1−p) , kςς = p

ς(1−ς)
, kξ p = kηp = kαp = kξς = kης = kας = kςp = 0,

kξξ = 1−p
η2

(
(z0φSN(z0)−z2φSN(z2))+

√
2
π α(φ(

√
1+α2z2)−φ(

√
1+α2z0))

ΦSN(z2)−ΦSN(z0)
+ α2a02

)

+ 1−p
η2

(
−
(

φSN(z2)−φSN(z0)
ΦSN(z2)−ΦSN(z0)

)2
−
√

2
π αδ2(φ(

√
1+α2z2)−φ(

√
1+α2z0))

ΦSN(z2)−ΦSN(z0)
+ 1

)
,

kηξ = 1−p
η2

(
(z2

0φSN(z0)−z2
2φSN(z2))+

√
2
π α(z2φ(

√
1+α2z2)−z0φ(

√
1+α2z0))

ΦSN(z2)−ΦSN(z0)

)
+ 1−p

η2

(
(z2φSN(z2)−z0φSN(z0))(φSN(z0)−φSN(z2))

(ΦSN(z2)−ΦSN(z0))
2 + α2a12

)
+
√

2
π

δ(1−p)
η2

Φ(
√

1+α2z2)−Φ(
√

1+α2z0)
ΦSN(z2)−ΦSN(z0)

+
√

2
π

δ(1−p)
η2

2(Φ(
√

1+α2z2)−Φ(
√

1+α2z0)−(φSN(z2)−φSN(z0)))
ΦSN(z2)−ΦSN(z0)

+
√

2
π

δ2(1−p)
η2

δ(Φ(
√

1+α2z2)−Φ(
√

1+α2z0))+α(z2φ(
√

1+α2z2)−z0φ(
√

1+α2z0))
ΦSN(z2)−ΦSN(z0)

,

kηη = 1−p
η2

z0(2−z2
0)φSN(z0)−z2(2−z2

2)φSN(z2)−
√

2
π α(z2

2φ(
√

1+α2z2−z2
0φ(
√

1+α2z0)

ΦSN(z2)−ΦSN(z0)

+ 1−p
η2

(
−(ΦSN(z2)−ΦSN(z0))+α2a22

ΦSN(z2)−ΦSN(z0)
−
(

z2φSN(z2)−z0φSN(z0)
ΦSN(z2)−ΦSN(z0)

)2
)

+
√

2
π

α−1δ4(1−p)
η2

−((1+α2)z2
2+2)(φ(

√
1+α2z2)+(1+α2)z0+2](φ(

√
1+α2z0)

ΦSN(z2)−ΦSN(z0)

+
√

2
π

2α−1δ2(1−p)
η2

φ(
√

1+α2z0)−φ(
√

1+α2z2)
ΦSN(z2)−ΦSN(z0)

+ 6(1−p)
η2

m(z2)−m(z0)
ΦSN(z2)−ΦSN(z0)

,

kαξ = − (1−p)
η

√
2
π (z2φ(

√
1+α2z2)−z0φ(

√
1+α2z0))+αa12

ΦSN(z2)−ΦSN(z0)

−
√

2
π

1−p
η

α−2δ2(φSN(z2)−φSN(z0))(φ(
√

1+α2z2)−φ(
√

1+α2z0))
ΦSN(z2)−ΦSN(z0)

+
√

2
π

δ(1−p)
η

α−1(Φ(
√

1+α2z2)−Φ(
√

1+α2z0))(1−δ2)+δ(z2φ(
√

1+α2z2)−z0φ(
√

1+α2z0))

ΦSN(z2)−ΦSN(z0)
,

kαη = − 1−p
η

√
2
π (z2

2φ(
√

1+α2z2)−z2
0φ(
√

1+α2z0))+αa22

ΦSN(z2)−ΦSN(z0)

−
√

2
π

1−p
η

α−2δ2(z2φSN(z2)−z0φSN(z0))(φ(
√

1+α2z2)−φ(
√

1+α2z0))
ΦSN(z2)−ΦSN(z0)

+
√

2
π

α−2δ2(1−p)
η

((α2z2
2+2δ2−1)φ(

√
1+α2z2)−(α2z2

0+2δ2−1)φ(
√

1+α2z0))
ΦSN(z2)−ΦSN(z0)

,

kαα =
√

2
π (1− p)α−1δ2 (2α−2δ2+z2

0)φ(
√

1+α2z0)−(2α−2δ2+z2
2)φ(
√

1+α2z2)
ΦSN(z2)−ΦSN(z0)

+ 2
π α−4δ4(1− p)

(
φ(
√

1+α2z2)−φ(
√

1+α2z0)
ΦSN(z2)−ΦSN(z0)

)2

+(1− p)

√
2
π α−3δ4((α2δ−2z2

0+2)φ(
√

1+α2z0)−(α2δ−2z2
2+2)φ(

√
1+α2z2))+a22

ΦSN(z2)−ΦSN(z0)
,

where m(z) = −(z/2)φSN(z)− T(z, α) + (1/2)Φ(z)− (1/
√

2π)δφ(
√

1 + α2z) and ajk defined in (8).
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