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Abstract: In this article, a collocation method using radial polynomials (RPs) based on the multiquadric
(MQ) radial basis function (RBF) for solving partial differential equations (PDEs) is proposed. The new
global RPs include only even order radial terms formulated from the binomial series using the Taylor
series expansion of the MQ RBF. Similar to the MQ RBF, the RPs is infinitely smooth and differentiable.
The proposed RPs may be regarded as the equivalent expression of the MQ RBF in series form
in which no any extra shape parameter is required. Accordingly, the challenging task for finding
the optimal shape parameter in the Kansa method is avoided. Several numerical implementations,
including problems in two and three dimensions, are conducted to demonstrate the accuracy and
robustness of the proposed method. The results depict that the method may find solutions with high
accuracy, while the radial polynomial terms is greater than 6. Finally, our method may obtain more
accurate results than the Kansa method.

Keywords: multiquadric; radial basis function; radial polynomials; the shape parameter; meshless;
Kansa method

1. Introduction

Recently, the meshless approach has raised extensive attention due to its computational efficiency
as well as simple collocation scheme. Many varieties of the radial basis functions (RBFs) have been
developed for dealing with partial differential equations (PDEs) [1–3]. Most popular RBFs, such as
the Gaussian [4–6], multiquadric (MQ) [7,8], and inverse multiquadric (IMQ) [9–11], require the
shape parameter. Among them, the Kansa method [12] is recognized as one of the most popular
domain-type meshfree approaches for solving PDEs. The MQ RBF adopted by the Kansa method
becomes the well-known RBF, which has been successfully adopted for solving numerous engineering
problems [13,14]. Despite the success of the Kansa method, limitations regarding to the accuracy
affecting by the shape parameter still remain. The MQ RBF depends on the shape parameter that
plays an important role for remaining the RBF as a smooth and non-singular function for solving
PDEs. Attempts regarding for identifying proper value for the shape parameter of the MQ RBF have
been widely studied, such as the LOOCV optimization technique [15–17]. The question of finding the
optimal shape parameter in the MQ RBF, however, is still very challenging.

In this study, we propose radial polynomials (RPs) rooted in the MQ RBF for solving PDEs.
Formulated from the binomial series using the Taylor series expansion of the MQ RBF, the new global
RPs include only even order radial terms. The proposed RPs may be regarded as the equivalent
expression of the MQ RBF in series form. Not only are the RPs infinitely smooth and differentiable in
nature, but the proposed RPs do not require any extra shape parameters. Therefore, the challenging
task for finding the optimal shape parameter in the Kansa method is avoided. Several numerical

Symmetry 2020, 12, 1419; doi:10.3390/sym12091419 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8533-0946
https://orcid.org/0000-0002-3763-351X
http://www.mdpi.com/2073-8994/12/9/1419?type=check_update&version=1
http://dx.doi.org/10.3390/sym12091419
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 1419 2 of 14

implementations, including two- and three-dimensional problems, are conducted to verify the accuracy
and robustness of the proposed RPs. The structure of this article is organized as follows: In Section 2,
formulation of the radial polynomial basis function is presented. To verify the proposed RPs, we conduct
a convergence analysis in Section 3. Section 4 is devoted to present several numerical examples in
two and three dimensions. The discussion of this paper is addressed in Section 5. Conclusions are
given finally.

2. Formulation of the Radial Polynomials

Considering a region, Ω, with the boundary, ∂Ω, the governing equation for the three-dimensional
PDE can be expressed as follows.

∆u(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H in Ω, (1)

u(x) = g(x) on ∂ΩD, (2)

∂u(x)
∂n

= f (x) on ∂ΩN, (3)

in which ∆ represents Laplace operator, x = (x, y, z), u(x) is the unknown, D, E, F, G and H are given
functions. Ω is a bounded domain with boundary ∂ΩD and ∂ΩN. ∂ΩD denotes boundary subjected
to Dirichlet data, ∂ΩN denotes boundary subjected to Neumann data, g(x) and f (x) represent given
boundary data. The meshless method using the MQ RBF is often named the Kansa method, where the
RBFs are directly implemented for the approximation of the solution of partial differential equations.
We may express the unknown by the RBF as follows.

u(x) =
Mc∑
j=1

λ jϕ(r j), (4)

where r j is the radial distance, r j =
∣∣∣x− s j

∣∣∣, ϕ(r j) represents the RBF which is the distance of x and s j,
s j is the center, x denotes an arbitrary point inside the domain, λ j is the coefficient to be solved and Mc

is the number of the center points. The MQ RBF may be expressed as follows.

ϕ(r j) =
√

r j2 + c2. (5)

With the introduction of the shape parameter, the MQ RBF becomes a smooth and non-singular
function. Because the Kansa method is a domain-type method, it has to discretize the governing
equation inside the domain using the MQ RBF. We may insert the above equation into Equation (1).
After obtaining the MQ RBF derivatives, we may obtain the following equation in two-dimensions.

Mc∑
j=1

λ j
r j

2 + 2c2(
r j2 + c2

)1.5
+

Mc∑
j=1

λ j
D
(
x− x j

)
+ E

(
y− y j

)
(
r j2 + c2

)0.5 + G
Mc∑
j=1

λ j
(
r j

2 + c2
)0.5

= H in Ω. (6)

The above equation demonstrates that the derivatives of the MQ basis function may become
singular at the center point (r j = 0) if the shape parameter is zero. It is obvious that the MQ RBF
is infinitely differentiable depending on the shape parameter. To avoid the singularity, the shape
parameter must not be equal to zero. In this study, we propose RPs based on the MQ RBF without
the shape parameter. For the mathematical formulation of the RPs, we may start from the MQ RBF.
Equation (5) can be rewritten as follows.

ϕ(r j) = c
√
(r j/c)2 + 1. (7)
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Using the binomial series from the Taylor series of Equation (7), we have

c
√
(r j/c)2 + 1 = c

∞∑
k=0

(
α
k

)(
(r j/c)2

)k
, (8)

where
(
α
k

)
:= α(α−1)(α−2)···(α−k+1)

k! and α = 1/2.

Using the finite terms, Mn, to approximate the solution, we may express the MQ RBF in series
form as follows.

ϕ(r j) = c
Mn∑
k=0

(
0.5
k

)(1
c

)2k

r2k
j , (9)

where Mn is the order of the radial polynomials. In this study, we propose a novel meshless method to
approximate the solution in terms of the RPs as follows.

u(x) =
Mc∑
j=1

a jϕ(r j), (10)

where Mc represents the center point number. The above equation proves that the MQ RBF can be
expressed as a radial polynomial with only even order terms. Equation (8) can be regarded as the
equivalent series form of the MQ RBF. Inserting Equation (8) into Equation (10), we have

u(x) ≈
Mc∑
j=1

a jc
Mn∑
k=0

(
0.5
k

)(1
c

)2k

r2k
j . (11)

Combining the constants in the above equation, we obtain

u(x) ≈
Mc∑
j=1

Mn∑
k=0

b j,kr2k
j , (12)

in which b j,k are the coefficients to be solved. Using Equation (12) for the discretization of Equation (1),
we may obtain the following equation:

Mc∑
j=1

Mn∑
k=0

b j,kL1cr j
2k−2 +

Mc∑
j=1

Mn∑
k=0

b j,k2kL2cr j
2k−2 + G

Mc∑
j=1

Mn∑
k=0

b j,kr j
2k = H in Ω, (13)

where L1c = 4k2, L2c = (D(x−xj)+E(y− yj)) and L1c = 4k2 +2k, L2c = (D(x−xj)+E(y− yj)+F(z− zj))

are in two and three dimensions, respectively. To determine the unknown coefficients, we apply the
approximate solution with the boundary data at collocation points to satisfy the governing equation.
We may get the system of simultaneous equations.

Ab = R, (14)

where b is the unknown coefficient with the size of N × 1 to be evaluated, R is the known function with
the size of M× 1, A is an M×N matrix where M = Mi + Mb and N = Mc ×Mn. The above equation
can be written as follows: [

AI

AB

]
[b] =

[
RI

RB

]
. (15)

In the preceding equations, AI represents the Mi ×N submatrix from the inner collocation points,
AB represents the Mb ×N submatrix from the boundary collocation points, RI is the vector of function
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values at the inner points which is a Mi × 1 vector, RB is the data at the boundary points which is an
Mb × 1 vector, Mb is the boundary point number, Mi is the inner point number. The root mean square
error (RMSE) is adopted to evaluate the accuracy which is defined by

Root mean square error =

√√√
1

Mm

Mm∑
i=1

(û(xi) − u(xi))
2, (16)

in which Mm represents the number of the measuring points with uniform distribution; u(xi) and û(xi)

are the exact and approximate solutions at the ith collocation point, respectively.

3. Accuracy and Convergence Analysis

We first investigate a Laplacian problem in two dimensions enclosed by an irregular domain.
The governing equation is

∆u(x) = 0, (x) ∈ Ω. (17)

The star–like object boundary in two dimensions can be expressed in the following form:

∂Ω =
{
(x, y)

∣∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = sec (3θ)sin(6θ), 0 ≤ θ ≤ 2π
}
. (18)

The exact solution of Equation (17) is designated as

u(x) = ex cos(y) + ey sin(x). (19)

To verify the accuracy and convergence, we conduct a series of testing cases for the radial
polynomial terms in which all cases adopt the same configurations of the boundary, center and inner
points as shown in Figure 1. In the analysis, Mb, Mi and Mc are 1208, 151, and 151, respectively.
The number of the RPs terms, Mn, needs to be given for the proposed method. As shown in Figure 2,
for the RPs, it is found that the RMSE decreases with the increase in the number of RPs terms in which
solutions with high accuracy may be found with the radial polynomial terms from 6 to 12.
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On the other hand, other testing cases using the Kansa method for considering different shape
parameters are conducted. Figure 2 shows different shape parameters versus the RMSE. The optimal
shape parameter is found within a narrow range of 0.5 to 1. We may also observe that the shape
parameter is very sensitive to the accuracy in the Kansa method, such that attempts regarding for
identifying proper values for the shape parameter of the Kansa method may be important. It is
apparent that the minimums of the RMSE for the Kansa method and the RPs are in the order of 10−9

and 10−12, respectively.
In addition, to investigate the accuracy, another convergence analysis for investigating the

boundary and inner point number is carried out. Table 1 shows the comparison of this study with the
Kansa method. We find that very high accurate results may be obtained using the proposed RPs.

Table 1. Results comparison between this study and the Kansa method with the optimal shape parameter.

Mb Mi Mc

RMSE Condition Number

This Study The Kansa Method
(Optimal Shape Parameter) This Study The Kansa Method

736 92 92 3.77× 10−12 2.96× 10−9 (c = 0.70) 8.33× 1022 5.32× 1020

1208 151 151 7.29× 10−12 2.44× 10−9 (c = 0.95) 1.09× 1023 2.63× 1020

1792 224 224 7.06× 10−12 7.53× 10−9 (c = 1.05) 4.52× 1023 7.30× 1021

2480 310 310 5.90× 10−12 5.70× 10−9 (c = 1.05) 3.86× 1024 4.21× 1020

3240 405 405 5.31× 10−12 9.42× 10−9 (c = 1.30) 1.81× 1024 1.52× 1021

4115 514 514 4.77× 10−12 7.52× 10−9 (c = 1.25) 1.18× 1024 2.87× 1021

4. Numerical Examples

To investigate the applicability of the proposed RPs, four numerical examples are conducted,
in which Sections 4.1 and 4.2 are steady-state linear two-dimensional PDEs, Section 4.3 is
the three-dimensional modified Helmholtz equation, and Section 4.4 is the three-dimensional
Poisson equation.

4.1. A Two-Dimensional Ameoba-Shaped Problem

We first consider the following two-dimensional PDEs.

∆u(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H, x ∈ Ω, (20)
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where D = y cos(x), E = − sin h(x), F = 0, G = x2 + y2. The function, H, can be directly derived from
the exact solution as follows:

H =
(
−π2 + 1

)
[sin(πx) cosh(y)] +

(
π2
− 1

)
[cos(πx)sinh(y)]

+(πy cos(x) − sinh(x))[sin(πx)sinh(y)] + (πy cos(x) + sinh(x))[cos(πx) cosh(y)]
+

(
x2 + y2

)
[sin(πx) cosh(y) − cos(πx)sinh(y)]

(21)

The amoeba-like object boundary in two dimensions is defined as

∂Ω =
{
(x, y)

∣∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = e(sinθ sinθs)2
+ e(cosθ cosθc)2

, 0 ≤ θ ≤ 2π
}
. (22)

Both Dirichlet and Neumann boundary conditions are considered as follows:

u(x) = sin(πx) cosh(y) − cos(πx)sinh(y), (x, y) ∈ ∂ΩD, (23)

∂u(x)
∂n

= [∇(sin(πx) cosh(y) − cos(πx)sinh(y))] ·
⇀
n , (x, y) ∈ ∂ΩN. (24)

In this example, the Kansa method and the proposed RPs are examined. Figure 3 depicts the
configuration of the collocation points. The over-specified Dirichlet as well as Neumann boundary data
are imposed on the whole boundary. In the analysis, Mb, Mi and Mc are 1750, 500 and 500, respectively.
The analysis of convergence for the RPs terms is conducted, as shown in Figure 4. According to
Figure 4, it is found that highly accurate solutions may be solved with the radial polynomial terms
from 7 to 12. Consequently, the terms of the RPs are set to 9. The result comparison for the Kansa
method and the proposed RPs is shown in Table 2. Table 2 demonstrates that highly accurate results
are obtained in which the RMSE of the proposed method is within the order of 10−8. On the other
hand, the minimum RMSE for the Kansa method with the optimal shape parameter can only reach to
the order of 10−4. Figure 4 demonstrates results of the convergence analysis in which it is found that
solutions with high accuracy may be obtained with the radial polynomial terms from 6 to 11. Moreover,
it is clear that the number of terms is not very sensitive to the result. Figure 5 depicts the numerical
solution is identical to the exact solution.
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Table 2. The RMSE of the RPs and the Kansa method.

Mb Mi Mc
RMSE

This Study The Kansa Method (Optimal Shape Parameter)

1050 300 300 7.65× 10−8 5.46× 10−4 (c = 1.00)
1400 400 400 8.89× 10−8 4.72× 10−4 (c = 0.95)
1750 500 500 6.77× 10−8 4.14× 10−4 (c = 1.05)
2100 600 600 6.26× 10−8 3.79× 10−4 (c = 1.05)
2450 700 700 5.80× 10−8 3.56× 10−4 (c = 1.30)
2800 800 800 5.41× 10−8 3.45× 10−4 (c = 1.25)
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4.2. A Two-Dimensional Star-Shaped Problem

The second example is a problem enclosed by a star-shaped boundary in two dimensions.

∆u(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H, x ∈ Ω, (25)

where D = y2 sin(x), E = xey, F = 0, G = sin(x) + cos(y). The function, H, can be directly derived
from the exact solution as follows:

H =
(
−π2y sin(πx) −π2x cos(πy)

)
+

(
y2 sin(x))[πy cos(πx) + cos(πy)]

+(xey)[sin(πx) −πx sin(πy)] + (sin(x) + cos(y))[y sin(πx) + x cos(πy)]
(26)

The star-like object boundary in two dimensions is defined as

∂Ω =
{
(x, y)

∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = 1 + (cos 4θ)2, 0 ≤ θ ≤ 2π
}
. (27)

The Dirichlet boundary conditions are considered as follows:

u(x) = y sin(πx) + x cos(πy), (x, y) ∈ ∂ΩD. (28)

In this example, the Dirichlet data are applied on the whole boundary using Equation (28). In the
analysis, Mb, Mi and Mc are 1800, 200 and 200, respectively. We conduct the convergence analysis
for the RPs terms. Figure 6 displays the configuration of the boundary, inner and center collocation
points. Figure 7 displays the terms of the RPs versus the RMSE in which we may find that solutions
with high accuracy in the order of 10−8 may be found with the radial polynomial terms from 7 to 12.
Consequently, the terms of the RPs are set to 9.
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Figures 8 and 9 demonstrate the RMSE versus the boundary and inner point numbers, respectively.
We may find that promising solutions may be found while the boundary and inner point numbers are
greater than 500 and 100, respectively. Figure 10 demonstrates the comparison of the analytical and the
numerical solutions. It can be found that the results agree with the analytical solutions.
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4.3. A Three-Dimensional Modified Helmholtz Problem

Consider a three-dimensional modified Helmholtz equation. The equation is written as follows.

∆u(x) + Gu(x) = H, x ∈ Ω, (29)

where D = E = F = 0, G = −λ2, H = (1 − λ2)(ex + ey + ez) + xyz, λ represents wave number and
λ = 100. The domain in three dimensions can be expressed in the following form.

∂Ω =
{
(x, y, z)

∣∣∣x = ρ(θ) sinθ cosϕ, y = ρ(θ) sinθ sinϕ, z = ρ(θ) cosϕ
}
, (30)

where ρ(θ,ϕ) = 1 + 1/8 sin(10 θ) sin(9 ϕ), 0 ≤ θ ≤ 2, 0 ≤ ϕ ≤ π. The Dirichlet boundary data are
applied on ∂Ω using the following exact solution.

u(x) = ex + ey + ez
− xyz/λ2, (x, y) ∈ ∂ΩD. (31)

In this example, the layout of the domain is depicted in Figure 11. The Dirichlet data are applied
on the whole boundary using Equation (31). In the analysis, Mb, Mi and Mc are 7569, 800 and 800,
respectively. Figure 12 demonstrates solutions with high accuracy in the order of 10−8 may be found
with the radial polynomial terms from 8 to 11. Consequently, the terms of the RPs are set to 9. The result
comparison for the Kansa method and the proposed RPs is shown in Table 3. Table 3 demonstrates
that highly accurate results are obtained in which the RMSE is within the order of 10−11. On the other
hand, the best RMSE for the Kansa method with the optimal shape parameter can only reach to the
order of 10−7.
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Table 3. The RMSE of the RPs and the Kansa method.

Mb Mi Mc
RMSE

This Study The Kansa Method (Optimal Shape Parameter)

6724 700 700 4.28× 10−11 1.10× 10−6 (c = 1.30)
7569 800 800 2.32× 10−11 8.48× 10−7 (c = 1.30)
8100 900 900 4.40× 10−11 1.01× 10−6 (c = 1.90)
9025 1000 1000 5.99× 10−11 1.08× 10−6 (c = 1.10)

10,000 1100 1100 5.03× 10−11 7.88× 10−7 (c = 1.30)
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4.4. A Three-Dimensional Poisson Problem

The last example under consideration is a three-dimensional Poisson equation enclosed by an
irregular domain. The governing equation is expressed as follows.

∆u(x) = H, x ∈ Ω, (32)

where D = E = F = G = 0 and H = − sin x − cos y − sin z. The domain in three dimensions can be
expressed in the following parametric equation.

∂Ω =
{
(x, y, z)

∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ sinϕ, z = ρ(θ) sinθ cosϕ
}
, (33)

where ρ(θ) =
[
cos(3θ) +

√
8− sin2(3θ)

]1/3

. The Dirichlet boundary data are assigned on ∂ΩD using

the following exact solution.

u(x) = sin(x) + cos(y) + sin(z), (x, y) ∈ ∂ΩD. (34)

The layout of the domain is depicted in Figure 13. The Dirichlet boundary conditions are given on
the irregular domain in three dimensions using Equation (34). In the analysis, Mb, Mi and Mc are 7357,
756 and 756, respectively. Figure 14 shows the RMSE versus the terms of the RPs. It is apparent that
the promising numerical solution in the order of 10−8 may be obtained while the Mn is greater than 6.
Consequently, the terms of the RPs is set to 9. Additionally, several cases for evaluating the number of
the collocation points to the accuracy are conducted in Table 4. According to Table 4, it depicts that the
accuracy can reach up to the order of 10−10.

Table 4. The RMSE of the RPs.

Mb Mi Mc
RMSE

This Study

5706 630 630 1.75× 10−10

7357 756 756 1.82× 10−10

9208 882 882 1.87× 10−10

11,259 1008 1008 1.92× 10−10

13,510 1134 1134 1.94× 10−10
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5. Discussion

This study presents a collocation method using RPs which is regarded as the equivalent expression
of the MQ RBF in series form for PDEs. The conception of the new global RPs includes only even order
radial terms formulated from the binomial series using the Taylor series expansion of the MQ RBF.
The discussions for this study are as follows.

The MQ RBF adopted by the Kansa method becomes one of the most successful RBFs for solving
numerous problems. With the introduction of the shape parameter, the MQ RBF becomes a smooth and
non-singular function. Even though the MQ RBF and its derivatives are smooth and global infinitely
differentiable, the discretization of the governing equation may become singular while c = 0 at r j = 0.
It is obvious the shape parameter plays a role for shifting from the singularity while the center point is
coincided with the inner point. However, the near singular effects still remain. This may explain that
the accuracy in the Kansa method is strongly affected by the shape parameter.

To deal with the issue, we adopt the RPs as the basis function in which the proposed RPs are the
equivalent expression of the MQ RBF in series form. It is advantageous that the proposed RPs and
their derivatives are infinitely smooth and differentiable in nature without using the shape parameter.
Because RPs are a non-singular series function, there are no near singular or singular effects at all.
Accordingly, the method may obtain more accurate solutions than the Kansa method in our numerical
implementations. In addition, accurate results can be directly obtained without using the tedious
procedure for finding the optimal shape parameter.

Even though the shape parameter is not required in the proposed method, the radial polynomial
terms have to be decided in advance. From the numerical implementations, solutions with high
accuracy in the order of 10−8 may be found with radial polynomial terms from 6 to 12. The radial
polynomial terms are selected to be 9 in our numerical examples. It demonstrates that the radial
polynomial terms are considerably less significant to the accuracy than the shape parameter. In the
numerical examples, it is found that satisfactory solutions could be obtained while the terms of the RPs
are within the range of 6 to 12.

6. Conclusions

A mathematical formulation of the RPs from the binomial series using the Taylor series expansion
of the MQ RBF is presented. We prove that the proposed RPs are an equivalent expression of the
MQ RBF in series form. Highly accurate results can be directly obtained without using the tedious
procedure for finding the optimal shape parameter. Additionally, numerical comparisons reveal that
the presented RPs could obtain better accurate solutions than those of the MQ RBF, even with the
optimal shape parameter for solving multi-dimensional PDEs.
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