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Abstract: In this paper, we show how the longest non-decreasing subsequence, identified in the graph of
the paired marginal ranks of the observations, allows the construction of a statistic for the development of
an independence test in bivariate vectors. The test works in the case of discrete and continuous data. Since
the present procedure does not require the continuity of the variables, it expands the proposal introduced
in Independence tests for continuous random variables based on the longest increasing subsequence (2014). We
show the efficiency of the procedure in detecting dependence in real cases and through simulations.
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1. Introduction

In this article, we use an expanded structure of the symmetric group Sn, over the set of permutations
from {1, . . . , n} to {1, . . . , n}, to develop a dependence detection procedure in bivariate random vectors.
The procedure is based on identifying the longest non-decreasing subsequence (LNDSS) detected in the
graph of the paired marginal ranks of the observations. It records the size of the subsequence and verifies
the chances that it has to occur in the expanded space of Sn, under the assumption of independence between
the variables. The procedure does not require assumptions about the type of the two random variables
being tested, such as being both discrete, both continuous or a mixed structures (discrete-continuous).

When we face the challenge of deciding whether the independence between random variables can
be discarded, it is necessary to establish the nature of the variables, whether they are continuous or discrete.
For continuous random variables, we have several procedures, for example, Hoeffding’s test and those
based on dependence’s coefficients (Spearman’s coefficient, Pearson’s coefficient, Kendall’s coefficient, etc.).
Instead, for the discrete case, the options are few, the most popular is Pearson’s Chi-squared test.
Also, the tests based on Kendall and Spearman coefficients going through corrections that consider
ties can be used to test for independence between two discrete and ordinal variables (see [1,2]). In general,
recommended for small sample sizes. Moreover, some derivations of the Chi-squared statistic have been
projected to test independence between two nominal variables, as is the case of the Cramér’s V statistic,
see [3].

The goal of this article is to show an independence test, developed from the notion of the LNDSS
among the ranks of the observations, see [4]. The main notion was introduced previously in [5] with a
different implementation from the one proposed in this paper. The alterations proposed in this paper aim
to improve the procedure’s performance. This methodology works without limitation on the type of the
two random variables being tested, which can be continuous/discrete.
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The existence of ties in a dataset cast doubts about the use of matured tests for continuous variables,
see, for instance, [6] for a discussion on this issue. The use of procedures preconized for continuous
random variables, in cases with repetitions in the observations due to the precision used to record the data,
may have unforeseen consequences on the performance of the procedure. If the ties are eliminated, the use
of asymptotic distributions can be compromised, if the ties are considered (by means of some correction),
the control of type 1 and 2 errors can be put at risk (increasing the false positives/negatives of
the procedure). Another frequent situation is when one of the variables is continuous, and the other is
discrete. For some test of independence, problems may arise from this situation forcing the practitioner to
apply some arbitrary data categorization. Under this picture, one of the most popular procedures is the
Pearson’s Chi-squared statistic. The traditional tests are based on some of the following statistics Pearson’s
Chi-squared, likelihood ratio [1], and Zelterman’s [7] for the case in which the number of categories is
too large for the available sample size. Moreover, Zelterman’s [7] do not work well when one of the
variables is continuous. [1] shows several examples of independent data, where Pearson’s Chi-squared,
likelihood ratio, and Zelterman statistics fail. In [1] is shown that to be reliable, those tests require that
each cell in the frequency table should have a minimal (non zero) frequency, which can depend on the total
size of the data set. It is shown in [7], that in some situations, with a large number of factors, Pearson’s
Chi-squared statistic will behave as a normal random variable with summaries as variance and mean that
are unassociated to the Chi-squared distribution, even with large sample size. Those situations are similar
to the case of continuous random variables registered with limited precision, which in fact, is similar to a
discrete random variable with a large number of categories producing sparseness (or sparse tables).

This article is organized as follows. Section 2 introduces the formulation of the test showing the
new strategy, in comparison with the implemented in [5]. Section 3 simulates different situations showing
the performance of the procedure. The purpose is to show situations in which the statistic proposed in this
paper is efficient in detecting dependence. We consider in the simulations settings concentrating points in
the diagonals, the variables being continuous or discrete. We also consider perturbations of such situations,
which will show the maintenance or loss of power of the test developed here. Section 4 applies the new
procedure to real data, and Section 5 presents the final considerations.

2. The Procedure

We start this section with the construction of the test’s statistics. For that, we introduce the
LNDSS notion.

Definition 1. Given the set Q = {q1, . . . , qn} of cardinality n such that qi ∈ R, ∀i ∈ {1, . . . , n},

i. the subsequence {qi1 , . . . , qik} of Q is a non-decreasing subsequence of Q if 1 ≤ i1 < · · · < ik ≤ n and
qi1 ≤ qi2 ≤ · · · ≤ qik ;

ii. the length of a subsequence verifying i. is k;
iii. lndn(Q) = maxk{1 ≤ k ≤ n : {qi1 , . . . , qik} ∈ Sn}, where Sn is the set of subsequences of Q verifying i.

lndn(Q) (item iii., Definition 1) is the length of the LNDSS of Q. Here, consider two illustrations
of Definition 1. Suppose that Q = {1.3, 0.2, 2, 2.1, 1.2}. Then the LNDSS are {1.3, 2, 2.1} and {0.2, 2, 2.1},
then lnd5(Q) = 3. Consider now a collection Q with replications Q = {1.5, 2.4, 1.1, 2.4, 3, 3.1}, so the
LNDSS is {1.5, 2.4, 2.4, 3, 3.1} and lnd6(Q) = 5.

Using the next Definition we adapt this notion to the context of random samples.
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Definition 2. Consider (X, Y) a random vector with joint cumulative distribution function H,
let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent realizations of (X, Y), we denote by LNDn the random variable
built from iii. of Definition 1 as

LNDn = lndn (QD) ,

where D = {(Xi, Yi)}n
i=1 and QD = {qrank(Xi)

= rank(Yi), i = 1, . . . , n}.

Remark 1.

i. Note that without the presence of ties, the set QD is a particular case of all the permutations of the values in the
set {1, . . . , n}.

ii. With ties, there is more than one way of defining ranks. We apply the minimum rank notion. For example,
the sample 6.1, 2.1, 5.3, 4.7, 5.5, 6.2, 5.3, 4.7 has ranks 7, 1, 4, 2, 6, 8, 4, 2.

If we consider Sn =
{

π permutations such that π : {1, . . . , n} → {1, . . . , n}
}

, the subset QD given
by Definition 2 and without ties is a specific case of the finite set Sn. Also, Sn is an algebraic group if
it is considered operating with the law of composition among the possible permutations. Given two
permutations π1, π2 the composition between them results when applying π2 ∗ π1 from right to left,
it means first applying π1 and to its result applying π2, that composition also is a permutation. The law of
composition is associative, with an identity element and with the existence of an inverse element for each
member of Sn. By Definition a symmetric group defined over any set is the group whose elements are all
the bijections from the set to itself, then Sn is the symmetric group of the set {1, . . . , n} since, it is composed
by all the bijections from {1, . . . , n} to {1, . . . , n}. Since {1, . . . , n} is finite, the bijections are permutations.

Through the next example, we show the construction of the LNDSS in a set QD related to
fictional observations.

Example 1. Table 1 shows an artificial data with n = 6 and already ordered in terms of the magnitude of xi values.
We show the graphical construction of LNDn,

Table 1. Artificial data set, and its marginal ranks.

xi yi Rank (xi) Rank (yi)

5.3 10.2 1 5
5.3 9.3 1 1
6.1 9.3 3 1
6.1 10.1 3 3
7.1 10.1 5 3
7.3 11.0 6 6

This data defines a QD = {5, 1, 1, 3, 3, 6}. The maximal non-decreasing subsequence is {1, 1, 3, 3, 6} given by
the trajectory (0, 0)− (1, 1)− (3, 1)− (3, 3)− (5, 3)− (6, 6) from the plot between the ranks of the observations,
shown in Figure 1. The value of LND6 for this example is 5. We note that the indicated trajectory refers to the
correspondence of 1 → 1, 3 → 1, 3 → 3, 5 → 3, 6 → 6, which is no longer a permutation in the traditional
sense since, it allows repetition both in the domain and in the image.

Remark 2. Note that the construction of the statistic LNDn is symmetric in the sense that if we exchange the
roles of X and Y, we obtain the same result. Formally, this characteristic is a consequence of the following
property. Consider a sample {(Xi, Yi)}n

i=1 and the increasing set of indexes {I1, . . . , Ik} ⊆ {1, . . . , n} such that
the trajectory (XI1 , YI1)− (XI2 , YI2)− · · · − (XIk , YIk ) constitutes a non-decreasing subsequence (as illustrated
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by Example 1), this occurs if and only if XIi ≤ XIi+1 and YIi ≤ YIi+1 , 1 ≤ i ≤ k − 1, then the trajectory
(YI1 , XI1)− (YI2 , XI2)− · · · − (YIk , XIk ) constitutes a non-decreasing subsequence also.

The example shows that the procedure operates in an extended space of the symmetric group Sn.
Below we show a motivation to identify the dependence by trajectories such as those used by Definition 2
and exemplified in Figure 1. The dependence on a bivariate vector can be represented by the ranks of
the observations; let’s see a simple motivation.
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Figure 1. The LNDSS of QD , from Table 1.

We see on the left of Figure 2 an apparent relationship between the random variables, this illusion
of relationship disappears in the graph on the right, since when computing the ranks of the
observations, the marginal stochastic structure is neutralized, showing the dependence between X and Y.
And, in this case, X and Y are independent, since they have been generated in this way. On the other hand,
if the variables X and Y were dependent, Figure 2 on the right should expose a pattern, and traces of it
would be captured by the LNDn notion.
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Figure 2. (left) X vs. Y. (right) ranks(X) vs. ranks(Y). The values of X and Y are simulated from two
independent exponential distributions, λ = 10 for X and λ = 20 for Y, n = 100.
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The formulation of the conjectures of independence between the random variables is then given by

H0 : X and Y are independent (1)

H1 : X and Y are dependent.

Here follows the test’s statistic build from Definition 2.

Definition 3. Let D = {(Xi, Yi)}n
i=1 be replications of (X, Y). Define JLNDn = 1

n ∑(u,v)∈D LNDn(u, v),
where LNDn(u, v) = lndn−1(QD(u,v)) as given by Definition 2, and D(u,v) = D \ {(u, v)} , with (u, v) ∈ D.

That is, we consider the notion given by the Definition 2 for each set D(u,v), which include the entire
sample except one, allowing to build QD(u,v) . Then, we define LNDn(u, v) and, the test statistic is the
average between all the cases LNDn(u, v). Next we introduce the most frequent formulation of estimation
of the two-sided p-value in a context such as that given by the JLNDn statistic.

Definition 4. The estimator of the two sided p-value for the statistical test of independence between X and Y
(see (1)) is defined by,

min
{

2F̂JLNDn(jlnd0)I{F̂JLNDn (jlnd0)≤ 1
2} + 2(1− F̂JLNDn(jlnd0))I{F̂JLNDn (jlnd0)>

1
2}, 1

}
,

where jlnd0 is the value of JLNDn calculated in the sample, see Definition 3. F̂JLNDn is the empirical cumulative
distribution function of JLNDn, under independence, and IA is the indicator function of the set A.

In the following subsection, we analyze the performance of two proposals to estimate FJLNDn ,
one introduced in [5] and the other proposed by this paper.

2.1. FJLNDn Estimates

F̂JLNDn can be estimated by using bootstrap, for instance see [5]. Denote this kind of estimation
as F̂B

JLNDn
. The procedure to buid F̂B

JLNDn
under H0 hypothesis is replicated here. Let be B a positive

and integer value, we compute B size n resamples with replacement of X1, X2, . . . , Xn and Y1, Y2, . . . , Yn

separately, since we assume that H0 is true. That is, we generate Xb
1, Xb

2, . . . , Xb
n for b = 1, 2, . . . , B,

resampling from X1, X2, . . . , Xn, and, we generate Yb
1 , Yb

2 , . . . , Yb
n for b = 1, 2, . . . , B, resampling from

Y1, Y2, . . . , Yn. Then, for each b define Db =
{
(Xb

i , Yb
i )
}n

i=1
and from that sample compute the notion

JLNDn, from Definition 3, say JLNDb
n. Then, if |A| denotes the cardinal of A, set

F̂B
JLNDn

(q) =
|{b : JLNDb

n ≤ q}|
B

. (2)

In Table 2, we show the performance of the JLNDn’ s test based on the computation of the
p-value (Definition 4) according to the Bootstrap technique, given by Equation (2). We generated
n independent pairs of discrete Uniform distributions from 1 to m, and we computed in 1000
simulations, the proportion of them showing a p-value (Definition 4) ≤ α, indicating the rejection
of H0. Such a proportion is expected to be close to α, in order to control type 1 error. As we
can see, when increasing the number of categories m, the α level is no longer respected, since the
registered proportion always exceeds α. In order to improve the control of type 1 error, in this paper
is proposed an alternative way to estimate FJLNDn . The Bootstrap method described above and used
in [5] can be modified in order to avoid the removal of any of the observations, following the
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strategy of swapping them. We consider X1, X2, . . . , Xn and Y1, Y2, . . . , Yn separately, given B ∈ Z,
for each b ∈ 1, . . . , B consider a permutation πb : {1, . . . , n} → {1, . . . , n} and define Xπb(1), . . . , Xπb(n).
Similarly, consider a permutation σb : {1, . . . , n} → {1, . . . , n} and define Yσb(1), . . . , Yσb(n). Then, for each

b defineDπb ,σb
=
{
(Xπb(i), Yσb(i))

}n

i=1
and from that sample compute the notion JLNDn, from Definition 3,

say JLNDπbσb
n . Then, set

F̂B,π,σ
JLNDn

(q) =
|{b : JLNDπbσb

n ≤ q}|
B

. (3)

Bootstrap generates the estimate by Equation (2), it considers samples with replacement, which tends
to increase the number of ties. For example, if the original sample has no ties, the Bootstrap procedure
tends to create ties, leading to longer non-decreasing subsequences. The permutation-based procedure
that allows the formulation of Equation (3) lacks such a tendency, and this principle seems to be a more
suitable strategy.

Table 2. The proportion of p-value ≤ α computed from Definition 4 and Equation (2), in 1000 simulations
of size n, of two independent and discrete Uniform distributions in {1, . . . , m}. On top, results for α = 0.01,
on bottom results for α = 0.05.

n m = 10 m = 20 m = 50 m = 100

α = 0.01

20 0.013 0.021 0.022 0.032
40 0.021 0.038 0.037 0.041
60 0.025 0.033 0.043 0.050
80 0.019 0.040 0.053 0.050

100 0.028 0.034 0.044 0.059

n m = 10 m = 20 m = 50 m = 100

α = 0.05

20 0.084 0.089 0.112 0.100
40 0.091 0.105 0.134 0.143
60 0.104 0.114 0.148 0.149
80 0.095 0.124 0.139 0.159

100 0.113 0.111 0.125 0.143

In Table 3, we show the performance of the JLNDn’ s test based on the computation of the p-value
(Definition 4) according to Equation (3). We implement the same settings used in Table 2, also we include
simulations for m = 2, 3, 4, 5. The impact of Equation (3) allows better control of the type 1 error, we see
that in most cases the proportion does not exceed α and when it does it remains close to α.

Returning to the construction of the hypothesis test (Equation (1)), we note that the hypothesis H0 is
used in the construction of both types of estimates of the cumulative distribution, Equations (2) and (3).
For both cases, the observed values {(Xi, Xi)}n

i=1 are treated separately, as being independent {Xi}n
i=1

by one side and {Yi}n
i=1 for other side. Then, the distribution of the length of the LNDSS, under H0,

is estimated by both procedures, which allows computing the evidence against H0 given by the observed
value in the originally paired {(Xi, Yi)}n

i=1 sample and applying Definition 4. Moreover, the type 1 error
control refers to the ability of a procedure to reject H0 under its validity. In other words, it represents an
unwanted situation, which we must control. In the study presented by Tables 2 and 3, based on the two
ways of estimating the cumulative distribution of JLNDn (under H0) by Equations (2) and (3) respectively,
we see that fixed a level α, Equation (3) offers better performance than Equation (2) since it maintains
type 1 error at pre-established levels. For this reason, the test based on the statistic JLNDn with the
implementation given by Equation (3) is more advisable in practice.
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The following section describes the behavior of the test in different simulated situations, in order to
identify its strengths and weaknesses.

Table 3. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n, of two independent and discrete Uniform distributions in {1, . . . , m}. On top, results for α = 0.01,
on bottom results for α = 0.05.

n m = 2 m = 3 m = 4 m = 5 m = 10 m = 20 m = 50 m = 100

α = 0.01

20 0.004 0.006 0.008 0.014 0.011 0.007 0.007 0.004
40 0.004 0.009 0.005 0.008 0.007 0.008 0.010 0.011
60 0.005 0.004 0.009 0.007 0.006 0.004 0.010 0.014
80 0.006 0.005 0.010 0.011 0.012 0.009 0.006 0.008

100 0.005 0.011 0.011 0.009 0.007 0.009 0.012 0.008

n m = 2 m = 3 m = 4 m = 5 m = 10 m = 20 m = 50 m = 100

α = 0.05

20 0.021 0.032 0.041 0.047 0.038 0.048 0.042 0.043
40 0.019 0.038 0.030 0.043 0.030 0.046 0.045 0.037
60 0.029 0.041 0.042 0.044 0.040 0.032 0.056 0.044
80 0.039 0.031 0.045 0.046 0.051 0.046 0.046 0.052

100 0.031 0.041 0.048 0.049 0.052 0.054 0.053 0.053

3. Simulations

To investigate the performance of the JLNDn-based procedure, we will aim to determine the rejection
ability of the procedure in scenarios with dependence. Our research focuses on the procedure that uses the
Equation (3) to compute the p-value, given the justification of Section 2.1. We begin our study considering
discrete distributions that we describe below and some mixtures or disturbances of them.

We take discrete uniform distributions on different regions, consider m, b and a fixed values such that
m, b, a ∈ Z>0, and set

i. D1(m, a) : Uniform on A =
{
(x, y) ∈ {1, . . . , m}2 : |x− y| ≤ a

}
;

ii. D2(m, a) : Uniform on A =
{
(x, y) ∈ {1, . . . , m}2 : |x− y| ≤ a or |x + y−m− 1| ≤ a

}
;

iii. D3(m, a, b) : Uniform on A =
{
(x, y) ∈ {1, . . . , m}2 : |x− y| ≤ a or |x− y + b| ≤ a or |x− y− b| ≤ a

or |x− y− 2b| ≤ a or |x− y + 2b| ≤ a
}

.

The performance of the distributions i.- iii. is illustrated in Figure 3, using m = 20, a = 1 and b = 6.
Denote by U(m) the Uniform distribution on A =

{
(x, y) ∈ {1, . . . , m}2}, given p ∈ [0, 1] consider now

the next three mixture of distributions

iv. M1(m, a) : pD1(m, a) + (1− p)U(m);
v. M2(m, a) : pD2(m, a) + (1− p)U(m);
vi. M3(m, a, b) : pD3(m, a, b) + (1− p)U(m).

where the notation pD1(m, a) + (1− p)U(m) represents that the bivariate vector is given in proportion
p by the distribution D1(m, a) and in proportion (1− p) by the distribution U(m). Note that if p = 1
we recover the distributions Di, i = 1, 2, 3. From Tables 4–6, settings have projected that increase the
number of categories of the discrete Uniform distribution U(m), and also increase the parameters a and b.
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Figure 3. (left) D1(20, 1), n = 80, (middle) D2(20, 1), n = 80, (right) D3(20, 1, 6), n = 80.

Tables 4–6 show the rejection rates, obtained through 1000 simulations of samples of size n. We inspect
the distributions Di, i = 1, 2, 3 and the mixtures Mi, i = 1, 2, 3 with p = 0.8. What is sought is to obtain
high proportions evidencing the control of type 2 error.

Table 4. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n. On top, results for α = 0.01, on bottom results for α = 0.05. m = 20, a = 1, b = 6.

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.349 0.028 0.994 0.179 0.018
40 1.000 0.798 0.050 1.000 0.568 0.034

α = 0.01 60 1.000 0.983 0.136 1.000 0.858 0.078
80 1.000 0.999 0.252 1.000 0.963 0.109

100 1.000 1.000 0.352 1.000 0.990 0.181

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.537 0.101 1.000 0.366 0.064
40 1.000 0.906 0.177 1.000 0.757 0.125

α = 0.05 60 1.000 0.993 0.306 1.000 0.934 0.192
80 1.000 1.000 0.468 1.000 0.985 0.250

100 1.000 1.000 0.601 1.000 0.997 0.368

Table 5. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n. On top, results for α = 0.01, on bottom results for α = 0.05. m = 50, a = 2, b = 12.

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.431 0.044 0.993 0.229 0.024
40 1.000 0.902 0.172 1.000 0.719 0.079

α = 0.01 60 1.000 0.989 0.374 1.000 0.924 0.180
80 1.000 1.000 0.615 1.000 0.986 0.342

100 1.000 0.999 0.762 1.000 0.998 0.515

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.610 0.126 0.998 0.404 0.097
40 1.000 0.949 0.368 1.000 0.837 0.196

α = 0.05 60 1.000 0.997 0.608 1.000 0.963 0.370
80 1.000 1.000 0.823 1.000 0.993 0.571

100 1.000 1.000 0.918 1.000 0.999 0.711
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Table 6. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n. On top, results for α = 0.01, on bottom results for α = 0.05. m = 100, a = 5, b = 30.

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.409 0.038 0.997 0.179 0.024
40 1.000 0.865 0.137 1.000 0.623 0.063

α = 0.01 60 1.000 0.984 0.292 1.000 0.884 0.141
80 1.000 0.999 0.473 1.000 0.969 0.247

100 1.000 1.000 0.655 1.000 0.991 0.394

p = 1.0 p = 0.8

n D1 D2 D3 M1 M2 M3

20 1.000 0.597 0.110 1.000 0.345 0.090
40 1.000 0.933 0.300 1.000 0.771 0.194

α = 0.05 60 1.000 0.996 0.520 1.000 0.949 0.326
80 1.000 1.000 0.715 1.000 0.990 0.468

100 1.000 1.000 0.848 1.000 0.998 0.620

As expected, for distribution D1 the procedure JLNDn shows maximum performance, for all
sample sizes and variants of m and a. For distribution D2, the performance of the procedure JLNDn

improves and reaches maximum performance as the sample size increases, for all variants of m and a.
For distribution D3, we noticed a deterioration in the performance of the test when compared to the other
two cases D1 and D2, despite this, the procedure responds adequately to the sample size, increasing its
ability to detect dependence with increasing sample size.

Mi is a distribution that results from disturbing Di, so it makes sense to compare the effect of
the disturbance, which in the illustrated cases is 20% from U(m). For the distribution M1 the JLNDn-based
procedure shows optimal performance, as occurs in the case D1. In cases M2 and M3, there is a
deterioration in the performance of the procedure JLNDn when compared to D2 and D3, respectively.
Despite this, within the framework given by M2, we see that the good properties of the procedure are
preserved when the sample size is increased.

In the following simulations, we investigate the dependence between discrete and
continuous variables. The types explored are denoted by D4 and D5, Figure 4 illustrates the cases.
Consider m ∈ Z>0,a ∈ R>0 and set

vii. D4(m, a): Uniform distribution on A =
{
(x, y) ∈ {1, . . . , m} × [0, m + 1] : |x− y| ≤ a

}
;

viii. D5(m, a): Uniform on A =
{
(x, y) ∈ {1, . . . , m} × [0, m + 1] : |x− y| ≤ a or |x + y−m− 1| ≤ a

}
.
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Figure 4. (left) D4(5, 0.5), n = 80, (right) D5(5, 0.5), n = 80.
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Denote by W(m) the Uniform distribution on A =
{
(x, y) ∈ {1, . . . , m} × [0, m + 1]

}
given p ∈ [0, 1]

consider now the next two mixture of distributions

ix. M4(m, a) : pD4(m, a) + (1− p)W(m);
x. M5(m, a) : pD5(m, a) + (1− p)W(m).

Note that when using p = 1 in ix (or x) we recorver D4 (or D5).
Tables 7 and 8 show the performance of 1000 simulations of size n, from M4(m, 0.5) in Table 7,

M5(m, 0.5) in Table 8. To the left of each Table (with p = 1), are simulated cases similar to the illustrated in
Figure 4, D4 and D5. Table 7 shows that in the case of distribution D4, the procedure is very efficient and,
we see that when the distribution is disturbed (by including 20% from W, to the right of Table 7)
the procedure maintains its efficiency in detecting dependence. In relation to the distribution D5, we see
from Table 8 that two effects occur, the one produced by the sample size n and the one produced by the
value of m. By increasing n and m the procedure gains power quickly. The same effect is observed in the
M5 distribution (D5 disturbance), with a certain deterioration in the power of the test.

Table 7. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n. On top, results for α = 0.01, on bottom results for α = 0.05. Distribution M4 with a = 0.5.

p = 1.0 p = 0.8

n m = 2 m = 3 m = 5 m = 10 m = 2 m = 3 m = 5 m = 10

α = 0.01

20 1.000 1.000 1.000 1.000 0.713 0.936 0.985 0.996
40 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

p = 1.0 p = 0.8

n m = 2 m = 3 m = 5 m = 10 m = 2 m = 3 m = 5 m = 10

α = 0.05

20 1.000 1.000 1.000 1.000 0.882 0.977 0.999 0.999
40 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8. The proportion of p-value ≤ α computed from Definition 4 and Equation (3), in 1000 simulations
of size n. On top, results for α = 0.01, on bottom results for α = 0.05. Distribution M5 with a = 0.5.

p = 1.0 p = 0.8

n m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

α = 0.01

20 0.070 0.209 0.446 0.031 0.105 0.209
40 0.211 0.634 0.926 0.118 0.374 0.708
60 0.446 0.910 0.996 0.224 0.655 0.945
80 0.611 0.977 1.000 0.364 0.852 0.994

100 0.728 0.999 1.000 0.528 0.949 0.999

p = 1.0 p = 0.8

n m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

α = 0.05

20 0.161 0.385 0.638 0.112 0.239 0.388
40 0.358 0.791 0.971 0.231 0.578 0.828
60 0.612 0.970 0.999 0.384 0.810 0.973
80 0.736 0.995 1.000 0.529 0.951 0.998

100 0.850 0.999 1.000 0.671 0.981 1.000
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The JLNDn statistic is built in the graph of the paired ranks of the observations, and it is given by the
size of the LNDSS found in this graph (see Figure 1). The proposal induces a region where this statistic can
found evidence of dependence, in the diagonal of the graph. The simulation study points that the detection
power of the procedure occurs in situations with an increasing pattern in the direction in which the JLNDn

statistic is built. Even more, the concomitant presence of increasing patterns and decreasing patterns does
not necessarily nullify the detection capacity of the procedure, since the statistic JLNDn is formulated
considering the expanded Sn space provided with the uniform distribution. See Tables 4–8 in which we
observe that by increasing the sample size, the detection capacity of JLNDn is preserved. Also, looking at
the right side of the tables already cited, we verify the robustness of the procedure, when inspecting cases
with a concentration of points in the diagonals and suffering contamination, if the sample size grows.

In the next section, we apply the test to real data and compare our results with other procedures.

4. Applying the Test in Real Data

As it has already been commented, in some data sets, we have ties, produced by the precision used in
data collection. This is the case of the wine data set (from the glus R-package), composed of 178 observations.
For example, consider the cases (i) Alcohol vs. Flavonoids (see Figure 5, left) and (ii) Flavanoids vs. Intensity
(see Figure 5, right). For each case (i) and (ii) both variables are continuous but recorded with a precision of
two decimal places. We use known procedures in the area of continuous variables. For all the computations
is used the R-project software environment. The “hoeffd” function in the “Hmisc” package is used to
compute the p-value in the case of Hoeffding’s test. The “cor.test” function in the “stat” package is used to
compute the p-value for Pearson, Spearman and Kendall tests, see also [8]. Finally, we use the “indepTest”
function, from the “copula” package to compute the “Copula“ test.
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Figure 5. (left): Alcohol vs. Flavanoids. (right): Flavanoids vs. Intensity. Variables coming from wine data set
from gclus R-package.

In case (i) of Figure 5 (left) all the procedures report p-value less than 0.02. Using JLNDn

(jlnd0 = 31.843) we obtain p-value = 0.0160 and p-value = 0.0004, applying Equations (2) and (3),
respectively. That is, JLNDn-based procedures detect dependence without the possible contraindications
that the other procedures have, since we see ties in the dataset.
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From the appearance of the scatter plot (Figure 5, right), it is understandable that the tests based on
the Spearman and Kendall coefficients show difficulties in recording dependence, see Table 9. We also
see that the other procedures capture the signs of dependence as well as the one proposed in this paper
(jlnd0 = 29.904). In both situations (cases (i) and (ii)) the only procedure, without contraindication,
with significant p-value to reject H0 is JLNDn.

Table 9. p-value of Copula’s test, Hoeffding’s test, JLNDn’s test (B = 5000); p-value and coefficient of
Kendall’s test, Pearson’s test and Spearman’s test. Case (ii) Flavanoids vs. Intensity.

Copula Hoeffding Spearman Pearson Kendall JLNDn JLNDn
Equation (2) Equation (3)

p-value 0.0005 0.0000 0.5695 0.0214 0.5713 0.0380 0.0044
coefficient −0.0429 −0.1724 0.0287

We inspect also the dependence between the variables Duration: duration of the eruption and Interval:
time until following eruption, both measures in minutes, corresponding to 222 eruptions of the Old Faithful
Geyser during August 1978 and August 1979. The data is coming from [9] and it is a traditional data set
used in regression analysis with the aim of predicting the time of the next eruption using the duration of
the most recent eruption (see [10]).

Figure 6 clearly shows the high number of ties, which compromises procedures designed for
continuous variables. We have run the JLNDn test (jlnd0 = 63.797), using various values of B,
B = 1000, 2000, 5000, 10,000. In all cases the p-value is less than 0.00001 and using both versions to estimate
the cumulative distribution, Equations (2) and (3). Then the hypothesis of independence between Duration
and Interval is rejected.
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Figure 6. Duration vs. Interval of geyser data set [9].

The data set, cdrate is composed by 69 observations given in the 23 August 1989, issue of Newsday,
it consists of the three-month certificate of deposit rates Return on CD for 69 Long Island banks and thrifts.
The variables are Return on CD and Type = 0 (bank), 1 (thrift), source: [9]. Table 10 shows the data arranged
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based on the values of the attribute Return on CD and divided into the two cases of the variable Type.
That table shows sparseness, an issue reported in the literature, that compromises the performance of tests
Pearson’s Chi-squared based (Table 11), see [1].

Table 10. Data set cdrate from [9] organized by attributes Return on CD and Type = 0 (bank), 1 (thrift).

Return on CD Type = 0 Type = 1 Return on CD Type = 0 Type = 1 Return on CD Type = 0 Type = 1

7.51 0 1 8.15 0 1 8.49 0 3
7.56 1 0 8.17 1 0 8.50 1 9
7.57 1 0 8.20 0 1 8.51 1 0
7.71 1 0 8.25 0 2 8.52 0 1
7.75 0 1 8.30 1 2 8.55 1 0
7.82 2 0 8.33 2 1 8.57 1 0
7.90 1 1 8.34 0 1 8.65 2 0
8.00 7 3 8.35 0 2 8.70 0 1
8.05 2 0 8.36 0 1 8.71 1 0
8.06 1 0 8.40 1 6 8.75 0 1
8.11 1 0 8.45 0 1 8.78 0 1

Table 11. Independence tests between Return on CD and Type of cdrate data set from [9].
In Equations (2) and (3), B = 5000.

Test χ2 JLNDn (Equation (2)) JLNDn (Equation (3))

p-value 0.0558 0.0320 0.0068
Statistic’s value 45.6450 (df = 32) 50.275 50.275

In Table 11 we see the results for testing H0. We see that according to JLNDn’s test we must reject H0,
which seems to be confirmed by Figure 7. Figure 7 comparatively shows the performance of variable
Return on CD, for the two values of variable Type.
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Figure 7. Boxplots of Return on CD by variable Type. See cdrate data set [9].

We conclude this section with a case of the wine data set, Class vs. Alcohol. Figure 8 shows the
relationship in which we wish to verify whether independence can be rejected. Class registers 3 possible
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values and Alcohol has been registered with low precision, which leads to observing ties. The observed
value of JLNDn is jlnd0 = 99.438. The p-value given by the Equations (2) and (3) indicate the rejection of H0.
By the Equation (2) we obtain a p-value = 0.0004 and by the Equation (3) we obtain a p-value < 0.00001.
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Figure 8. Class vs. Alcohol, see wine data set from gclus R-package.

We note that in the cases of Figure 5 we have verified that the test JLNDn through Equation (3)
offers lower p-value than the version given by Equation (2). In the cases of Figures 6 and 8, it may
simply be an effect of computational precision. For the other cases, it is necessary to take into
account that the Bootstrap version, by tending to create more ties, shows a tendency to underestimate
the cumulative distribution, in other words, F̂B

JLNDn
(q) ≤ FJLNDn(q) where FJLNDn(·) is the true

cumulative distribution. Due to the increasing tendency shown by the cases addressed (see Figure 5), it is
expected that the observed value of the statistic JLNDn, jlnd0, in each case is positioned in the upper tail
of the distribution, which leads to the p-value be given by 2(1− F̂B

JLNDn
(jlnd0)), see Definition 4. As a

consequence 2(1− F̂B
JLNDn

(jlnd0)) > 2(1− FJLNDn(jlnd0)). With the proposal made through Equation (3),
we seek to correct the underestimation, since it does not favor the proliferation of ties. Which would
explain the relationship between the p-value.

5. Concluding Remarks

In this article, we investigate the performance of the JLNDn statistic to identify dependence on
bivariate random vectors from a paired sample of size n. The procedure requires identifying the LNDSS that
can be found on the graph between the marginal ranks of the paired observations, see Definitions 1 and 2.
The goal is to compare the length of such subsequence (Definition 3) with the length of all possible
subsequences, under the assumption of independence. This means, imposing an uniform distribution on
the expanded Sn space. For the formulation of the procedure, it is required to estimate the distribution of
the statistic JLNDn, under the assumption of independence and, in this paper it is given by Equation (3)
(see also Definition 4). The estimation proposed in this paper shows an improved performance compared
with the one given in [5], see Section 2.1. The concept, longest non-decreasing subsequence, allows us to build
a tool without restrictions over the type of variable, continuous or discrete in which it can be applied.
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From the simulation study we confirm that the detection power of the procedure occurs in situations with
an increasing pattern from left to right and from bottom to top, which is the direction in which the JLNDn

statistic is sought (see Figure 1). The observations can be associated with continuous or discrete variables,
not affecting the power of the test. The concomitant presence of increasing patterns and decreasing
patterns does not necessarily nullify the detection capacity of the procedure if the size of the samples is big
enough. We also verify the robustness of the procedure when inspecting cases that suffer contamination
that could conceal the dependence. See Tables 4–8, we use different real data sets that expose the versatility
of the procedure to reject independence in situations such as (a) in the presence of ties, (b) in the presence
of sparseness, (c) in mixed situations.
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