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Abstract: For studying biological conditions with higher precision, the memory characteristics
defined by the fractional-order versions of living dynamical systems have been pointed out as a
meaningful approach. Therefore, we analyze the dynamics of a glucose-insulin regulatory system by
applying a non-local fractional operator in order to represent the memory of the underlying system,
and whose state-variables define the population densities of insulin, glucose, and β-cells, respectively.
We focus mainly on four parameters that are associated with different disorders (type 1 and type 2
diabetes mellitus, hypoglycemia, and hyperinsulinemia) to determine their observation ranges as
a relation to the fractional-order. Like many preceding works in biosystems, the resulting analysis
showed chaotic behaviors related to the fractional-order and system parameters. Subsequently,
we propose an active control scheme for forcing the chaotic regime (an illness) to follow a periodic
oscillatory state, i.e., a disorder-free equilibrium. Finally, we also present the electronic realization of
the fractional glucose-insulin regulatory model to prove the conceptual findings.

Keywords: fractional-order; glucose-insulin system; chaotic attractor; active control; synchronization

1. Introduction

Homeostasis is the tendency of organisms to auto-regular and maintain their internal environment
in a stable state [1], For instance, an excellent model to describe the homeostatic process in the organism is
the glucose-insulin system [1,2]. On one side, when the glucose level is low, arises diverse pathologies
(anxiety, tremors, obfuscation, coma, etc.). On the other side, microvascular damages in the retina, kidney,
and neuronal injuries, which lead to chronic renal insufficiency and blindness, are originated by high
glucose concentrations. The principal pathology of glucose homeostasis is diabetes. Diabetes can be
stated as a chronic disorder provoked when the pancreas does not produce insulin in enough quantities,
and also if the body cannot successfully process it, resulting in atypical high blood sugar levels.
Because of the autoimmune annihilation of β-cells, the insulin released by the pancreas to the human
organism is not enough to maintain a certain healthy level, and therefore, the Type 1 Diabetes Mellitus
(T1DM) may be manifested. On the contrary, when the beta-cells can produce supranormal, or average
concentrations of insulin, but cannot be adequately used in reducing glycemia, the Type 2 Diabetes
Mellitus (T2DM) appears [3].
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Health agencies [4] demonstrate people, mainly adults, living with diabetes has almost quadrupled
from 1980 to 422 million. This rise is primarily due to the rise in T2DM and factors driving it, including
overweight and obesity. Diverse mathematical models using ODEs and OdEs have provided a common
path to understand multiple complex systems [5,6]. In the last years, because of the long-memory
of fractional-order operators, fractional-order systems have gained extensive attention for describing
and understanding physical and biological systems [5,7–10]. For instance, the analysis of diverse
biological systems, such as bio-impedance, drug diffusion, respiratory tissue, and so forth, was reported
in [11] using fractional calculus. In [12], the authors characterize the trade-offs between HIV infection
and the tumor-immune system employing fractional-order biological systems. Kheiri and Jafari [13]
formulated a fractional-order theory that was focused on the multi-patch HIV/AIDS model to
analyze whether human migration has effects on the propagation of the HIV/AIDS outbreak. In [14],
the authors reported a fractional-order Izhikevich system to obtain insights on distinct neuronal spike
responses, including bursting, fast-, regular-spiking, and chattering, as the no-integer order varies.
The functioning at electrical level of a fractional-order system of an isolated β-cell is presented in [15,16].
In [17], was reported the comparison among diverse scenarios, such as integer, constant, no-constant
and fractional-order derivatives, in order to explain the memory index. In [18], the transmission issues
of a susceptible-infected-recovered model were analyzed. They found a proper yield of memory of the
fractional-order systems to forecast the pandemic spread. Finally, [19] discovered that the neuron’s
firing rate could be emulated with a fractional derivative and a slowly varying of the parameters.
Therefore, the unique rat neocortical pyramidal neurons have several time-scales.

Therefore, the study of fractional-order biological models continues been critical for an
accurate analysis of several health conditions, as well as being essential to understanding this
significant open-topic.

Additionally, the synchronization and collective dynamics play an essential role both in
physical [20–22] and biological systems [15,23–26]. By one side, the synchronization is necessary for
systems with stable behavior, for instance, the human heartbeat and respiration [27,28]; nevertheless,
on the other hand, the synchronized state could provoke severe pathologies such as the Parkinson’s
disease where the excessive synchronization correlates with a motor deficit. For the glucose-insulin
regulatory system, a synchronization state is mandatory, since this condition is closely related
to a disorder-free state where the glucose-insulin concentrations synchronize. In [29], the β-cell
synchronization is fundamental to effectuate a pulsatile insulin liberation, which carries more substantial
hypoglycemic results compared to constant secretion. In [30], the synchronization between gap-junctions
and adjacent cells is essential to limit the heterogeneity and biological noise, thence obtaining a robust
activation of the β-cells population within the islet. Pecora and Carroll in [31] showed that two
nonlinear dynamical systems could be synchronized by introducing appropriate coupling, since then,
a variety of approaches were proposed to deal with synchronized states of fractional-order chaos
generators, and these include backstepping, adaptive, and active controls [32,33]. Regarding the chaos
synchronization applying the active control method [34], it has been demonstrated that an active
controller can be straightforwardly designed to achieve synchronization globally if the nonlinearity
of the system is known. Thereupon, it is considered to be a promising control strategy due to its
straightforwardness. [33].

In addition, the experimental verification of fractional-order models is a topic that has been
attracting the attention of researchers [35–39]. In this scenario, ARM-based embedded systems
have become in a central block integrated with non-embedded technologies, such as FPGAs, DSPs,
and microcontrollers. Subsequently, now it is possible to implement complex software and hardware
functionality on a single chip [40]. Several digital hardware have been reported and verified
contemplating integer-order chaotic systems [41–43]. Notwithstanding, just a short-list of papers have
studied the implementation of fractional chaos oscillators on ARM platforms [44,45].

Motivated by the discussion mentioned above, we analyze the effect of a non-local fractional
operator in an asymmetrical glucose-insulin regulatory system. More specifically, the system parameters
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that were related to hypoglycemia, hyperinsulinemia, T1DM, and T2DM, were studied by using both
analytical (stability of equilibrium) and numerical (bifurcation diagrams and basins of attraction)
techniques. Additionally, we found that the system presents a chaotic attractor, as demonstrated by its
phase portraits and Lyapunov exponent spectrum. Besides, the theoretical insights of the glucose-insulin
interaction can be validated by using the proposed electronic implementation based on the embedded
SoC ARM Broadcom BCM2837B0. Latter, the synchronization between a chaotic behavior (disorder)
and periodic behaviors (average condition) were achieved by applying a simple control strategy.

The sections of the manuscript contain the following. The fractional-order glucose-insulin system,
in the sense of Caputo, is presented in Section 2. The stability of the equilibrium points is analyzed
in Section 3. Several dynamical analysis for the hypoglycemia, hyperinsulinemia, T1D, and T2D are
presented in Section 4. Two synchronization schemes using the active control approach are introduced
in Section 5. The ARM implementation is carried out in Section 6, which is followed by the conclusions
in Section 7.

2. Fractional-Order Glucose-Insulin Regulatory System

Because diverse biological systems present memory effects, direct generalization maybe by applying
fractional-order differential equations, i.e., arbitrary (non-integer) orders. In this manner, we can get
a closer insight into the real phenomena. The benefits of fractional-order are mainly to capture the
entire time evolution for physical processes, being a kind of memory index, as well as more degrees of
freedom for the resulting models. The analysis conducted in this work is inspired by the glucose-insulin
regulatory system in [46], as given in Equation (1). This model was derived from the Ackerman, Bajaj,
and Rao, and predator-prey Volterra models. As a consequence, the resulting system is formulated as
the trade-off relating the glucose and insulin, but including the beta-cells interaction. Apart from normal
metabolic conditions described by the classical relation between prey (glucose) and predator (insulin),
the model (1) also characterizes the metabolic disorders as chaotic oscillations. Abnormal biological
conditions, including glucose-insulin interactions, can be stated as chaotic evolutions of the dynamical
systems, as given in [47–50], to mention a few. From experimental data, Ref. [51] also discussed that
the T1DM may have chaotic behaviors. In this manner, the proposed analysis of the glucose-insulin
regulatory system is in the same line of previous studies, but instead applying fractional-calculus theory.

ẋ = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z− 0.06z2 + a7z3 − 0.19,

ẏ = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1− y)− 1.37z + 0.3z2 − 0.22z3 − 0.56, (1)

ż = a15y− 1.35y2 + 0.5y3 + 0.42z + 0.15yz,

we now introduce a fractional-order version [52], but instead applying the Caputo’s definition.
Let us consider the fractional differential operator Dq f (t) = Jn−γDn f (t), with q > 0 and n ∈ N,
where Dn describes the n-order derivative, while Jγ defines the γ-order integral operator in the sense
of Riemann-Liouville as

Definition 1. For a function f (t), the fractional-order (γ) integral, with γ ∈ R+ can be determined by

Jγ f (t) =
1

Γ(γ)

∫ t

t0

(t− s)γ−1 f (s)ds, (2)

where t ≥ t0 and Γ(·) is the Gamma function, defined as Γ(s) =
∫ ∞

0 ts−1e−tdt.

In this manner, the Caputo operator of fractional-order can be established by
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Definition 2. The fractional derivative of Caputo with order q for a function f (t) ∈ Cn([t0, ∞),R) is given as

Dq f (t) =
1

Γ(n− q)

∫ t

t0

f (n)(s)
(t− s)q−n+1 ds, (3)

and when 0 < q < 1 is given, as follows

Dq f (t) =
1

Γ(1− q)

∫ t

t0

f
′
(s)

(t− s)q ds. (4)

By substituting Equation (4) in Equation (1), we get the fractional-order glucose-insulin regulatory
system that is given by

Dq1 x = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z− 0.06z2 + a7z3 − 0.19, (5)

Dq2 y = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1− y)− 1.37z + 0.3z2 − 0.22z3 − 0.56,

Dq3 z = a15y− 1.35y2 + 0.5y3 + 0.42z + 0.15yz,

where Dqi (x, y, z) with i = 1, 2, 3 is the the fractional derivative operator in Caputo’s sense [53],
qi is the fractional-order satisfying 0 < qi ≤ 1, (x, y, z) describe the population density of insulin,
the population size of glucose, and the population size of β-cells, respectively. The representative
reduction of insulin levels for glucose deficiency is described by a1, whereas the parameter a8 stands
for the impact of insulin on glucose. Additionally, the increment rate of insulin concentrations released
by b-cells is provided by a7. Finally, the increasing rate of the β-cells provoked, when the glucose levels
also grow, is given by a15 [46]. From the nature of how this system was conceived, the parameters
must be nonnegative [46].

The discrete-time version for the proposed system (5) is set as:

xn+1 = x0 +
hq1

Γ(q1 + 2)

(
f1(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α1,k,n+1 f1(xk, yk, zk)

)
,

yn+1 = y0 +
hq2

Γ(q2 + 2)

(
f2(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α2,k,n+1 f2(xk, yk, zk)

)
,

zn+1 = z0 +
hq3

Γ(q3 + 2)

(
f3(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α3,k,n+1 f3(xk, yk, zk)

)
,

(6)

where

xp
n+1 = x0 +

1
Γ(q1)

n

∑
k=0

β1,k,n+1 f1(xk, yk, zk),

yp
n+1 = y0 +

1
Γ(q2)

n

∑
k=0

β2,k,n+1 f2(xk, yk, zk),

zp
n+1 = z0 +

1
Γ(q3)

n

∑
k=0

β3,k,n+1 f3(xk, yk, zk),

(7)

with

αi,k,n+1 =


nqi+1 − (n− qi)(n + 1)qi , k = 0, k = 0
(n− k + 2)qi+1 + (n− k)qi+1 − 2(n− k + 1)q+1, 1 ≤ k ≤ n,
1, k = n + 1,

(8)

and
βi,k,n+1

hqi

qi

(
(n + 1− k)q

i − (n− k)q
i

)
. (9)
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note that x0, y0, z0 are the initial values for, f1(x, y, z) = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z −
0.06z2 + a7z3 − 0.19, f2(x, y, z) = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1− y)− 1.37z + 0.3z2 − 0.22z3 − 0.56
and f3(x, y, z) = a15y − 1.35y2 + 0.5y3 + 0.42z + 0.15yz, whether qi = q, i = 1, 2, 3 the system is
said to be commensurate then the convergence order is described as |y(tn)− yn| = O(hmin(2,1+q)),
h→ 0 [54–56].

3. Stability Analysis of Fractional-Order Glucose-Insulin Model

A non-local differential equation with fractional-order q ∈ (0, 1), normally has a stability region
larger than that of the integer-order version with q = 1 [57]. We introduce the following theorems and
definitions to discuss the stability of the proposed fractional-order system.

Definition 3. A system denoted as

Dqi xi(t) = fi(x1(t), x2(t), . . . , xn(t), t), xi(0) = ci, i = 1, 2, . . . , n, (10)

with trajectory x(t) = 0, where ci are the starting conditions is t−q asymptotically stable if there is a nonnegative
real q, so that:

∀||x(t)||with t ≤ t0, ∃N(x(t)), such that ∀t > t0, ||x(t)|| ≤ Nt−q.

Subsequently, fractional-order systems are known to have long memory, since they obey a behavior like t−q,
which slowly tends to 0 for the solutions x(t). A particular case of Mittag–Leffler stability is stated as power-law
stability t−q. [58,59].

Theorem 1. Let a commensurate order system described by Dqx = Ax, with x(0) = x0, 0 < q < 1, x ∈ Rn

and A ∈ Rn×n, is asymptotically stable if | arg(λ)| > qπ/2, is fulfilled for all eigenvalues of A. Besides,
the critical eigenvalues fulfilling | arg(λ)| = qπ/2 holding geometric multiplicity of one, where the geometric
multiplicity of an eigenvalue is called the dimension of the subspace vectors v for Av = λv [60–65].

Theorem 2. Let Dqx = Ax, with x(0) = x0 an incommensurate-order system, where x = (x1, x2, . . . , xn)T ∈
Rn, Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T, qi ∈ R+, i = 1, 2, . . . , n., qi ∈ (0, 1), and A = (aij) ∈ Rn×n,
i = j = 1, 2, . . . , n. By supposing w as the lowest common multiple of the denominators ui’s of qi’s, with qi = vi/ui,
(ui, vi) = 1, ui, vi ∈ Z+ for i = 1, 2, . . . , n., the matrix of system is given by

∆(λ) =


λwq1 − a11 −a12 . . . −a1n
−a21 λwq2 − a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λwqn − ann

 . (11)

Therefore, the system Dqx = Ax is globally asymptotically stable if the roots λ’s of its characteristic
equation det(∆(λ)) = 0 fulfil | arg(λ)| > π/2w, [60–65].

Theorem 3. The equilibria E∗ with a instability measure defined as

ρ = (π/2w)−min
i
{| arg(λi)|}, (12)

is asymptotically stable if and only if (12) is defined nonpositive. Where λi’s are the roots of characteristic equation:
det(diag([λwq1 λwq2 . . . λwqn ])− ∂ f /∂x|x=E∗) = 0, ∀E∗ ∈ Ω [64,65].

Remark 1. If ρ is nonnegative, the underlying system can show a chaotic evolution since the equilibrium E∗ is
unstable [64,65].
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The first step consists of finding the equilibrium points of (5), which are calculated via f(x) = 0,
as follows

0 = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z− 0.06z2 + a7z3 − 0.19, (13)

0 = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1− y)− 1.37z + 0.3z2 − 0.22z3 − 0.56,

0 = a15y− 1.35y2 + 0.5y3 + 0.42z + 0.15yz.

Because of the biological interpretation of state variables [46], the stability analysis for E∗ =

(x∗, y∗, z∗) is only performed for nonnegative fixed points. Equation (5) has the following Jacobian

J =

 −a1 + 0.1y∗ 0.1x∗ + 2.18y∗ − 3.24y∗2 0.03− 0.12z∗ + 3a7z∗2

−a8y∗ + 7.68x∗ + 3.6x∗2 −a8x + 0.3(1− 2y∗) −1.37 + 0.6z− 0.66z∗2

0 a15 − 2.7y∗ + 1.5y∗2 + 0.15z 0.42 + 0.15y∗

 . (14)

By setting a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3, we compute the equilibrium points
and eigenvalues, as shown in Table 1. As can be noted, the system (5) has two nonnegative fixed
points characterized for saddle points of index-1 and index-2, respectively. According to Theorem 1,
chaos behavior may arise in the fractional-order glucose-insulin system when | arg(λ)| > qπ/2, holds.
Therefore, the minimum commensurate fractional-order leading to chaotic oscillations is q > 0.7638,
which is remarkably lower than that reported in [52].

Table 1. Nonnegative equilibrium points and eigenvalues of the system (5).

Ei Equilibrium Point Eigenvalues

E1 (0.802, 1.853, 1.286) λ1 = 1.4652, λ2,3 = −1.4353± 7.7140i
E2 (0.584, 0.832, 0.728) λ1 = −2.5327, λ2,3 = 0.7664± 1.9699i

The chaotic attractor existence and local stability of the equilibria are presented below.
The Jacobian matrix considering the equilibria E1 and parameter a1 is

JE1 =

 −a1 + 0.1853 −7.0110 9.8541
8.0788 −0.9887 −1.6903

0 0.6420 0.6420

 , (15)

which generates the characteristic equation given, as follows

P(λ) = λ3 + (a1 + b1)λ
2 + (b2a1 + b3)λ + b4a1 − b5 = 0, (16)

where b1 = 0.1054, b2 = 0.2907, b3 = 56.9826, b4 = 0.395, and b5 = 90.7232, when considering the
Routh–Hurwitz theory, obtaining the following conditions a1 + b1 > 0, b2a1 + b3 > 0, and b4a1− b5 > 0,
which become in a1 > −b1 and b3 > −b2a1, respectively. Due b5 > b4a1, there is a root positive which
is unstable and a pair of complex conjugate with the negative real part. Thus E1 is unstable being a
saddle point of index 1.
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The presence of a Hopf bifurcation in the system (5) at the equilibrium point E1 is analyzed by
replacing λ = iω in (16) obtaining

(iw)3 + (a1 + b1)(iω)2 + (b2a1 + b3)(iω) + b4a1 − b5 = 0, (17)

then
− (iw)3 − (a1 + b1)ω

2 + (b2a1 + b3)(iω) + b4a1 − b5 = 0, (18)

taking into account the real part of (18), therefore,

ω2 =
b5 − b4a1

−(a1 + b1)
, (19)

because a1 + b1 > 0, and b5, b4, a1 > 0, hence ω2 < 0, so it is not possible, then, the equilibrium point
E1 does not suffer a Hopf bifurcation.

In order to study the stability of E1 we consider the discriminant D(P) of characteristic
equation P(λ), given as follows

D(P) = 18d1d2d3 + (d1d2)
2 − 4d3d3

1 − 4d3
2 − 27d2

3, (20)

where d1 = (a1 + b1), d2 = (b2a1 + b3), and d3 = (b4a1 − b5). Following the Routh–Hurwitz stability
conditions for fractional-order differential equations [66], we establish the following terms:

(i) If D(P) < 0, d1 > 0, d2 > 0, d1d2 = d3, then the equilibrium point E1 is locally asymptotically
stable ∀q ∈ (0, 1).

(ii) d3 > 0 is the necessary condition for the equilibrium point E1 to be locally asymptotically stable.

Remark 2. For parameter values di, i = 1, 2, 3 with d1 = 1.4054, d2 = 57.3606 and d3 = −90.2097 the
discriminant D(P) = −1.098041820× 106, but d1d2 = 80.6144 6= d3, and d3 < 0 thence, the Routh–Hurwitz
conditions are unsatisfied. Thus, the E1 is unstable for the given parameters.

When q1 = q2 = q3 ≡ q = 0.9 = 9/10, with w = 10, the characteristic equation of (5) in the
equilibrium point E1 = (0.802, 1.853, 1.286) is given by Theorem 3, as follows

λ27 + (a1 + b1)λ
18 + (b2a1 + b3)λ

9 + b4a1 − b5 = 0, (21)

if we set a1 = 1.3 the characteristic equation has an unstable root λ = 1.0434 and the | arg(λ)| <
π/20, moreover the E1 is saddle point. While the characteristic equation at the equilibrium point
E2 = (0.584, 0.832, 0.728) is

λ27 + (a1 − 0.3002)λ18 + (−0.217a1 + 0.868)λ9 − 1.2036a1 + 12.88179578 = 0, (22)

by considering a1 = 1.3 we obtain unstable roots λ1,2 = 1.0771± 0.1444i. thence, the instability measure
of the system is ρ = (π/2w)− 0.1333 > 0. Therefore, the fractional-order system (5) satisfies the
necessary condition for exhibiting a chaotic attractor according to Theorem 3. This can be understood
by locating the respective eigenvalues in the complex plane. Figure 1, displays the 27 eigenvalues of
the system in the complex plane, the unstable region is delimited by the red lines which is denoted
by π/2w. The eigenvalues for E1 are given in Figure 1a, we can observe that the system has one
eigenvalue in the unstable region, it is a saddle point of index 1. Meanwhile, Figure 1b shows the
eigenvalues of equilibrium point E2; it has two unstable eigenvalues (saddle point of index 2).
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Figure 1. Eigenvalues of the system (5) in the complex plane. (a) eigenvalues for equilibria E1,
(b) eigenvalues for equilibria E2.

Figure 2(a)-(c), exhibits the chaotic attractor found in the glucose-insulin model (5) for
fractional-orders q1 = q2 = q3 = 0.9. The results were computed by applying the predictor-corrector
scheme Adams–Bashforth–Moulton (ABM) [54–56]. Due to Caputo’s fractional differential operator (4)
permits to select both homogeneous and inhomogeneous initial conditions, the ABM algorithm can be
executed without particular constraints [56].

As well known, the differential equations that model dynamical systems regularly present
symmetries and, therefore, it is rare the solutions do not evolve in a symmetrical orientation. The most
common effect is asymmetric attractors for a proper range of parameters, which almost all converges
to a singlesymmetric attractor [67]. For dynamical systems with three state variables x, y, and z,
there are three types of involuntary symmetries: inversion, rotation, and reflection. We consider the
following transformations (x, y, z)→ (−x,−y,−z), (x, y, z)→ (−x,−y, z), and (x, y, z)→ (−x, y, z)
corresponding to the invariance of the equations with changes of sign in three, two, and one variable,
respectively. As a result, the system (5) does not have a symmetry under the proposed transformations,
and its trajectories (x(t), y(t), z(t)) cannot cross the (0, 0, 0) coordinate.

0.4 0.6 0.8 1

x

0.5

1

1.5

y

(a)

0.4 0.6 0.8 1

x

0.6

0.7

0.8

0.9

1

1.1

z

(b)

0.5 1 1.5

y

0.6

0.7

0.8

0.9

1

1.1

z

(c)

Figure 2. Chaotic attractor of the fractional-order glucose-insulin model (5) for fractional-orders q = 0.9,
a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3, (x0, y0, z0) = (0.5, 1.2, 1), and integration step-size h = 0.01.
(a) x− y phase plane, (b) x− z phase plane, (c) y− z phase plane.
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4. Numerical Analysis of the Non-Local Fractional Operators on Hypoglycemia,
Hyperinsulinemia, T1DM, and T2DM

As reported in [46–48], when the chaotic behavior appears, it could mean the existence of some
disorders in the inherent dynamics of a biological system. In this manner, we analyze four health
disorders related to fractional-order glucose-insulin model (5) through one- and two-dimensional
bifurcation diagrams and Lyapunov exponents. In particular, we construct a map that relates the
fractional-order derivative with a specific parameter, such as a1 (hypoglycemia), a7 (hyperinsulinemia),
a8 (T1DM), and a15 (T2DM).

4.1. Hypoglycemia: Parameter a1 as a Function of Fractional-Order q

For patients with diabetes, hypoglycemia emerges when the reduction of blood glucose
concentration reduces below 185 3.9 mmol/L (70 mg/dL) [68]. This is a critical condition,
since hypoglycemia may lead to a life-alarming state. In Equation (5), this complication is analyzed
when considering the parameter a1 and the fractional-order q. It means that, if the rate of
insulin decrease, which is represented by a1 in the system (5), gets low, then the hypoglycemia
phenomenon emerge. Therefore, we suppose that the underlying system converges into a chaotic
behavior as shown in Figure 2.

Figure 3a exhibits the bifurcation diagram of system (5) with a fixed fractional-order and considering
a1 as a critical parameter. The bifurcation diagram was made when considering the following: when the
state-variable x intersects the Poincaré plane provided by x − px = 0 with px = 0.5, the measure
r =

√
y2 + z2 is delineated. It can be observed that system is stable for values of parameter a1 > 1.5 but

as the parameter diminishes the behavior turns chaotic.
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Figure 3. (a) Bifurcation diagram varying the hypoglycemia parameter a1 and setting q = 0.9,
and (b) its Lyapunov exponent spectrum when a1 = 1.3.

Additionally, we observed that the fractional-order q produces a shift concerning the bifurcation
diagram showed in Ref. [46]. This consideration exemplifies the importance of considering a
fractional-order derivative in the dynamical system, i.e., when values lesser than a1 = 2.3 are set in
the integer-order system [46], chaotic behavior was observed; however, this limit is different for the
fractional-order model (a1 ≤ 1.45). It is at this moment when we could mention that a disorder appears.
The numerical results of Lyapunov exponents denoted by λi with i = 1, 2, 3 are shown in Figure 3b for
a1 = 1.3 and q = 0.9 by applying Wolf’s algorithm [69]. The fractional-order glucose-insulin system is
chaotic because of the exponents are λ1 > 0, λ2 = 0 and λ3 < 0 with |λ1| < |λ2 + λ3|. Those results
imply that the system is sensitive to tiny variations of its initial conditions [70,71].
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Besides, a two-dimensional bifurcation diagram between the hypoglycemia parameter a1 and q is
presented in Figure 4. The unbounded behavior is represented by green regions, whereas chaos regions
are denoted by red color. The black regions lead to healthy behavior (free of hypoglycemia). We found
the lower the fractional-order, the lower the effect of a1. The basin of attraction in the plane x(0)− y(0)
for z(0) = 1, q = 0.9 and a1 = 1.3, is plotted in Figure 4b, the yellow region stand for a chaotic
attractor shown in Figure 2, whereas initial conditions from blue region converge into a unbounded
behavior. Finally, Figure 5a–c and Figure 6, presents the phase portraits and Lyapunov exponents,
respectively, of healthy behavior for system (5) obtaining a Lyapunov exponent with magnitude zero
and two negatives.

(a) (b)

Figure 4. (a) Two-dimensional bifurcation diagram for the hypoglycemia parameter a1 and fractional-order
q, where green region stands for unbounded behavior, red for chaotic behavior, and blue regions lead
to healthy (periodic) behavior. (b) Basin of attraction on the x(0)− y(0) plane with z(0) = 1, q = 0.9,
and a1 = 1.3 showing the chaotic behavior. The initial conditions marked in the yellow color lead into a
bounded chaotic attractor, whereas the initial conditions in blue region converge into unbounded behavior.
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Figure 5. Stable behavior of the fractional-order system (5) considering q = 0.9, a1 = 1.55, and initial
conditions (x0, y0, z0) = (0.5, 1.2, 1), with a integration step-size h = 0.01. (a) x− y phase plane, (b)
x− z phase plane, (c) y− z phase plane.

4.2. Hyperinsulinemia: Parameter a7 as a Function of Fractional-Order q

Hyperinsulinemia means the quantity of insulin in the blood is higher than normal levels.
Hyperinsulinemia is most often caused by insulin resistance, both humans and animals [72].
A condition in which the body is not capable of acts in the right form to the effects of insulin.
Consequently, in order to compensate the high blood glucose levels, the pancreatic β-cells irrigate
more insulin [73–76]. Hyperinsulinemia condition is analyzed in the fractional-order glucose-insulin
regulatory system (5) by the parameter a7. Figure 7a shows the bifurcation diagram for different values
of a7 as a function of fractional order q.
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Figure 6. Lyapunov spectrum of (5): a1 = 1.55 and q = 0.9.
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Figure 7. (a) Bifurcation diagram varying the hyperinsulinemia parameter a7 and setting q = 0.95
and (b) Two-dimensional bifurcation diagram for a7 and fractional-order q where the unbounded
behavior is represented by the green regions; chaotic behavior is denoted by red regions, and the
healthy behavior (free of hyperinsulinemia) is given by the blue regions.

From Figure 7a, we can observe that the system is stable when the values for a7 are small,
which describes the increased rate of insulin. If a7 increases, the system becomes in a chaotic manner,
which can be proved by Proposition 1 as follows

Proposition 1. When q1 = q2 = q3 ≡ q = 0.95 and a1 = 2.04, a7 = 2.4, a8 = 0.22, a15 = 0.3, the system
(5) exhibits a chaotic attractor.

Proof. To demonstrate the nonlinear behavior (chaotic behavior) in (5), it is mandatory that the
instability measure ρ defined in (12) is nonnegative. When considering q = 0.95, a7 = 2.4, and w = 100,
the characteristic equation at the equilibrium point E1 = (0.802, 1.866, 1.273) is

λ285 + 2.149λ190 + 58.565λ95 − 102.703, (23)

with a unstable root λ = 1.0049, whereas the characteristic polynomial at E2 = (0.606, 0.889, 0.812) is

λ285 + 1.764λ190 + 1.658λ95 + 17.26, (24)
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with unstable roots λ1,2 = 1.0090 ± 0.0137i, then ρ = (π/2w) − 0.0136 > 0. This result implies
system (5) could generate a chaotic attractor when q = 0.95 and a1 = 2.04, a7 = 2.4, a8 = 0.22,
a15 = 0.3.

Besides, the phenomenon antimonotonicity is stated in Figure 7a, which refers to the creation of
period orbits followed by their nullification with reverse bifurcation sequences [77]. This phenomenon
is one of the most common paths to chaos [78,79]. Antimonotonicity was found in Equation (5) by
sweeping a7 in the interval 2.6 ≤ a7 ≤ 3.2 with q = 0.95. Additionally, we obtain the Lyapunov
exponents λ1 = 1.6617, λ2 =0, λ3 =-24.7646) indicating chaos.

On the other hand, Figure 7b gives the two-dimensional bifurcation diagram between the
hyperinsulinemia parameter a7 and the fractional-order q. The unbounded behavior is represented
by the green regions; chaotic behavior is denoted by red regions and the healthy behavior (free of
hyperinsulinemia) is given by the blue regions. We found that hyperinsulinemia disorder depends on
the value of fractional-order. For values q < 0.92, the hyperinsulinemia tends to periodic oscillations.

4.3. Type-2 Diabetes Mellitus: Parameter a7 as a Function of Fractional-Order q

The abnormal insulin secretion of the pancreatic β-cells is commonly related to T2DM or
non-insulin-dependent diabetes mellitus, which is known to be a disorder with insulin resistance [80–82].
The interconnection among T2DM, insulin resistance, and obesity relies on the β-cell dysfunction [80,83].
T2DM condition is characterized by the parameter a8 in (5). Figure 8a shows the bifurcation diagram for
the parameter a8 with a fractional-order q = 0.98. The parameter a8 is appropriate to understand the
insulin resistance of the human body since it describes the effect of emitted insulin on glucose level [46].
In the bifurcation diagram, that phenomenon is detected when a8 < 0.37, which is associated with
chaotic behavior, as demonstrated by Proposition 2.
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Figure 8. (a) Bifurcation diagram varying the T2DM parameter a8 and setting q = 0.98 and (b)
Two-dimensional bifurcation diagram for a8 and fractional-order q, the chaotic behavior is denoted by
red regions, and the periodic behavior (healthy behavior) is given by the blue regions.

Proposition 2. When q1 = q2 = q3 ≡ q = 0.98, and a1 = 2.04, a7 = 2.01, a8 = 0.27, a15 = 0.3,
the system (5) exhibits a chaotic attractor.

Proof. By applying Theorem 3, we can determine the instability measure ρ. When ρ is strictly positive,
a chaos condition could be established. By selecting q = 0.98, a8 = 0.27, and w = 100 the characteristic
polynomial at E1 = (0.814, 1.813, 1.320) is

λ294 + 2.174λ196 + 54.782λ98 − 82.2, (25)
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with unstable root λ = 1.0033, while at the equilibrium point E2 = (0.63, 0.937, 0.879) is

λ294 + 1.818λ196 + 2.903λ98 + 16.537, (26)

with unstable roots λ1,2 = 1.0089 ± 0.0140i, where the instability measure of the system is ρ =

(π/2w)− 0.0138 > 0. Thus, the system (5) fulfills the essential requirement for getting chaos when
q = 0.98 and a1 = 2.04, a7 = 2.01, a8 = 0.27, a15 = 0.3.

Additionally, we compute the Lyapunov exponents λ1 = 0.56, λ2 = 0, λ3 = −21.03.
Figure 8b sketches the two-dimensional bifurcation diagram for the T2DM parameter a8 and the
fractional-order q. Analogous previous cases, the red areas evolve to chaos, whereas the blue regions
converge to a stable behavior (healthy condition). There is a linear fit between the fractional-order
and T2DB. The lower the fractional-order, the lower the value for a8, where the T2DM disorder
is observed. Besides, for q < 0.97 the T2DM disappear for 0.25 < a8 < 0.7. These results suggest that
the T2DM is not presented in the glucose-insulin system (5) for lowers fractional-orders.

4.4. Type-1 Diabetes Mellitus: Parameter a15 as a Function of Fractional-Order q

T1DM is a common autoimmune disease that originates when the pancreatic β-cells cannot
produce insulin at normal levels, and patients will require hormone dosage for their entire life. [84].
The fractional-order system (5) exhibits this condition when the density of β-cells distinguished
by a15 reduces and, therefore, the pancreas may not secrete sufficient insulin to stabilize the
glucose concentration.

The bifurcation diagram of Equation (5) is shown in Figure 9a when considering a15 as critical
parameter with q = 0.95. As can be seen, the system (5) exhibits different types of steady behaviors
for specific values of a15. However, whether this parameter decreases, the system behaves chaotically,
as is demonstrated in Proposition 3.
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Figure 9. (a) Bifurcation diagram varying the T1DM parameter a15 and setting q = 0.95, and (b)
Two-dimensional bifurcation diagram for a15 and fractional-order q. The unbounded behavior is
represented by the green regions; chaotic behavior is denoted by red regions, and the periodic behavior
(healthy behavior) is given by the blue regions.

Proposition 3. When q1 = q2 = q3 ≡ q = 0.95 and a1 = 2.04, a7 = 2.01, a8 = 0.22, a15 = 0.26,
the system (5) exhibits a chaotic attractor.
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Proof. By selecting q = 0.95, a15 = 0.26, and w = 100, we attain the characteristic polynomial at
E1 = (0.823, 1.881, 1.366) as

λ285 + 2.159λ190 + 61.954λ95 − 106.369, (27)

being λ = 1.0048 the unstable root. At the equilibrium point E2 = (0.618, 0.883, 0.867), we obtain

λ285 + 1.765λ190 + 1.535λ95 + 17.503, (28)

with unstable roots λ1,2 = 1.0091± 0.0137i. Therefore, ρ = (π/2w)− 0.0135 > 0. In this manner,
the proposed system (1) fulfills Theorem 3 for generating a chaotic attractor.

The Lyapunov exponents when q = 0.95 and a1 = 2.04, a7 = 2.01, a8 = 0.22, a15 = 0.26 are
λ1 = 1.7733, λ2 = 0, and λ3 =−24.3966. Similarly previous case, Figure 9b presents the two-dimensional
bifurcation diagram relating a15 and the fractional-order q. The green, red, and blue colors denote
unbounded, chaotic, and steady-state behaviors, respectively. A healthy behavior, free of T1DM, is
found for fractional-orders lowers than q < 0.925. Those results may imply that lower fractional-orders
mitigate the effect of the reduction of population density of β-cells for T1DM.

5. Synchronization between Fractional-Order Glucose Insulin Systems

Synchronization is a nonlinear phenomenon that was observed in biological systems; it is seen on
isolated cells [15], clusters of cells as in organisms, and even in collective dynamics of populations [25].
Regarding the glucose-insulin system, it has been shown pancreatic β-cells also present a collective behavior
whose synchronization underlies a small-world functional organization [24–26]. Thus, the synchronization
is crucial to effectuate a pulsatile insulin liberation in cells, which guarantees more substantial hypoglycemic
effects. Hence, we study the synchronization between fractional-order glucose-insulin regulatory systems.
We expect that the synchronization state converges into a periodic behavior, because it is the typical
response in a suband blood glucose concentrations. We define thject with normal metabolic conditions,
allowing with this, the synchronization between the insulin e drive and response system, as follows

Dq1 x1 = −a1x1 + 0.1x1y1 + 1.09y2
1 − 1.08y3

1 + 0.03z1 − 0.06z2
1 + a7z3

1 − 0.19, (29)

Dq2 y1 = −a8x1y1 + 3.84x2
1 + 1.2x3

1 + 0.3y1(1− y1)− 1.37z1 + 0.3z2
1 − 0.22z3

1 − 0.56,

Dq3 z1 = a15y1 − 1.35y2
1 + 0.5y3

1 + 0.42z1 + 0.15y1z1,

and

Dq1 x2 = −â1x2 + 0.1x2y2 + 1.09y2
2 − 1.08y3

2 + 0.03z2 − 0.06z2
2 + â7z3

2 − 0.19 + u1, (30)

Dq2 y2 = −â8x2y2 + 3.84x2
2 + 1.2x3

2 + 0.3y2(1− y2)− 1.37z2 + 0.3z2
2 − 0.22z3

2 − 0.56 + u2,

Dq3 z2 = â15y2 − 1.35y2
2 + 0.5y3

2 + 0.42z2 + 0.15y2z2 + u3,

where u1, u2, u3 in (30) represents the unknown control terms, and the error can be defined by

e1 = x2 − x1,

e2 = y2 − y1, (31)

e3 = z2 − z1.
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To achieve the synchronization, it is essential that the errors ei → 0 as t → ∞ with i = 1, 2, 3.
Equation (31), together with (29) and (30), yield the error system

Dq1 e1 = −â1x2 + 0.1x2y2 + 1.09y2
2 − 1.08y3

2 + 0.03z2 − 0.06z2
2 + â7z3

2 +

+a1x1 − 0.1x1y1 − 1.09y2
1 + 1.08y3

1 − 0.03z1 + 0.06z2
1 − a7z3

1 + u1, (32)

Dq2 e2 = −â8x2y2 + 3.84x2
2 + 1.2x3

2 + 0.3y2(1− y2)− 1.37z2 + 0.3z2
2 − 0.22z3

2

+a8x1y1 − 3.84x2
1 − 1.2x3

1 − 0.3y1(1− y1) + 1.37z1 − 0.3z2
1 + 0.22z3

1 + u2,

Dq3 e3 = â15y2 − 1.35y2
2 + 0.5y3

2 + 0.42z2 + 0.15y2z2

−a15y1 + 1.35y2
1 − 0.5y3

1 − 0.42z1 − 0.15y1z1 + u3.

Let us define the active control functions ui with i = 1, 2, 3

u1 = V1 + â1x2 − 0.1x2y2 − 1.09y2
2 + 1.08y3

2 − 0.03z2 + 0.06z2
2 − â7z3

2 −
a1x1 + 0.1x1y1 + 1.09y2

1 − 1.08y3
1 + 0.03z1 − 0.06z2

1 + a7z3
1,

u2 = V2 + â8x2y2 − 3.84x2
2 − 1.2x3

2 − 0.3y2(1− y2) + 1.37z2 − 0.3z2
2 + 0.22z3

2

−a8x1y1 + 3.84x2
1 + 1.2x3

1 + 0.3y1(1− y1)− 1.37z1 + 0.3z2
1 − 0.22z3

1,

u3 = V3 − â15y2 + 1.35y2
2 − 0.5y3

2 − 0.42z2 − 0.15y2z2

+a15y1 − 1.35y2
1 + 0.5y3

1 + 0.42z1 + 0.15y1z1, (33)

where the linear functions V1, V2, V3 are given by

V1 = −e1,

V2 = −e2, (34)

V3 = −e3.

By using (33) and (34), the error system (32) becomesDq1 e1

Dq2 e2

Dq3 e3

 =

−1 0 0
0 −1 0
0 0 −1


e1

e2

e3

 . (35)

The synchronization error vanishes eventually because of the eigenvalues are −1,−1,−1 in
Equation (35).

The synchronization scenario is as follows. The drive system has a periodic behavior, while the
response system is in a chaotic state. We study the Type-1 Diabetes Mellitus (parameter a8), since it is
the most common disorder, and affects most world population as well as it is correlated with obesity.
For this case, a8 = 0.5 and â8 = 0.27 for drive and response systems, respectively, while a1 = â1,
a7 = â7, and a15 = â15. The fractional-order are q1 = q2 = q3 = q = 0.95 in both systems with
x1(0) = 0.53, y1(0) = 1.31, z1(0) = 1.03 and x2(0) = 0.5, y2(0) = 1.1, z2(0) = 1.3, for drive and
response systems, respectively. Figure 10a–c show the phase planes between the periodic (free of
T1DM) and chaotic (with T1DM) systems. Additionally, the synchronization error by considering (36)
is given in Figure 11. Due to the error tends to zero as time evolves, we infer that the proposed control
strategy is suitable for forcing the system with the disorder to a state free of T1DM. It is worth noting
that the control strategy can be extended to incorporate uncertainties and improve the robustness of the
synchronization using other approaches, as shown in [22,85]. From a practical biological point of view,
for instance, recent works have employed optical-based control using a light-activated Na+ channel,
to attain insulin from β-cells both in-vitro and vivo [86,87]. Therefore, our results could be useful for
future works where the glucose-insulin system could be controlled with an artificial control signal.
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ln(error1(t)) = ln ([x2 − x1])
2 ; ln(error2(t)) = ln ([y2 − y1])

2 ; ln(error3(t)) = ln ([z2 − z1])
2 . (36)
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Figure 10. Synchronization planes for the fractional-order glucose-insulin systems (29) and (30) with
a8 = 0.5, â8 = 0.27, and q = 0.95, respectively. (a) x1 − x2 phase plane, (b) y1 − y2 phase plane, (c)
z1 − z2 phase plane.
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Figure 11. Synchronization error between the fractional-order glucose-insulin systems (29) and (30)
when a8 = 0.5, â8 = 0.27, q = 0.95, and (x1, y1, z1, x2, y2, z2) = (0.53, 1.31, 1.03, 0.49, 1, 0.8), respectively.

6. Physical Realization of the Fractional-Order Glucose-Insulin System Based on an
ARM Processor

As well known, the experimental realization of fractional-order dynamical systems is a hot
topic that has been attracting the attention of researchers since it is a path for demonstrating the
complex dynamics, including chaos [35–39,44,45]. For fractional-order systems, there three typical
approaches for getting electronic circuits: frequency-domain approximation, numerical algorithms,
and the Adomian decomposition method [35–39,44,45]. The first-mentioned is not recommended for
chaos detection, since it may induce incorrect results [62,63]. On the other hand, the second and latter
approaches are good options for physically implementing fractional-order systems in re-programmable
digital hardware [44,45]. Therefore, we chose the numerical algorithm approach for programming the
ABM method. Subsequently, we select herein the ARM SoC Broadcom BCM2837B0 for the experimental
verification of the fractional-order glucose-insulin regulatory system. The SoC contains an ARM core
with 64-bit. An SDRAM LPDDR2 with 1GB. The ARM cores are capable of running at up to 1.4 GHz.
It’s possible to create an interface by using the GPIO port with a 16-bit monotonic voltage output
D/A converter AD569. Figure 12a,b present the block diagram of the working principle and the main
instructions of the pseudo-code, respectively.

After initializing the ARM processor, we set the initial values, h, q, x0, y0, z0. Because of the negative
values of the system (1), a positive integer φ is needed to offset the time-series of the state-variables
to avoid losing data. In this manner, all computed data are now positive. Next, we multiply the
data by a positive integer γ to fit them to the DAC resolution of 214 bits. Finally, the obtained
results visualize in an oscilloscope, as shown in Figures 13 and 14. We analyze the scenario related to
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hypoglycemia. First, we implement the case where system (1) presents the hypoglycemia condition,
as given in Figure 13. As can be seen, the experimental phase portraits are pretty similar to those that
are shown in Figure 1. Finally, the case when the fractional-order system (1) is free of hypoglycemia,
i.e., an steady-state and, therefore, convergers to a periodic attractor, is given in 14. Similar to the previous
case, the experimental results are in good agreement with Figure 4. Subsequently, it indicates that the
fractional-order glucose-insulin regulatory system was successfully realized on an ARM digital platform.

(a) (b)

Figure 12. (a) Simplified diagram of the implementation of the fractional-order glucose-insulin
regulatory system (1), and (b) the main steps of the proposed algorithm for implementing it on
an ARM digital platform.

(a) (b) (c)

Figure 13. Experimental phase portraits of the fractional-order glucose-insulin regulatory system (1)
showing hypoglycemia (chaos behavior) with h = 0.01, a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3,
q1 = q2 = q3 = 0.9 and (x0, y0, z0) = (0.5, 1.2, 1). (a) x− y plane, (b) x− z plane, (c) y− z plane.

(a) (b) (c)

Figure 14. Experimental phase portraits of the fractional-order glucose-insulin regulatory system (1)
depicting a steady-state free of hypoglycemia with h = 0.01, a1 = 1.55, a7 = 2.01, a8 = 0.22, a15 = 0.3,
q1 = q2 = q3 = 0.9 and (x0, y0, z0) = (0.5, 1.2, 1).(a) x− y plane, (b) x− z plane, (c) y− z plane.
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7. Conclusions

The dynamical analysis, synchronization, and physical realization of a glucose-insulin regulatory
system has been presented by using Caputo’s non-local fractional-order operator. In particular,
we studied four common disorders, such as T1DM, T2DM, Hypoglycemia, and Hyperinsulinemia.
We found that the fractional-order system switches between a chaotic behavior (a health disorder)
and a disorder-free state, not only for the values of systems parameters, but also as a function of
the fractional-order, due it adds more degrees of freedom in the model.To understand that insight,
we computed two-dimensional bifurcations diagrams, which demonstrated the importance of
considering the fractional-order (memory index) for getting a higher approximation of the observed
behavior because fractional-order systems describe the whole-time domain in the solution, while the
integer-order model is related to the local properties. Additionally, a phenomenon of antimonotonicity
was observed in the parameter related to the hyperinsulinemia case. Besides, by applying the
straightforward active control method, we showed that stable behavior in the fractional glucose-insulin
system under the T1DM condition could be attained when it synchronizes with a disorder-free system.
We remark that the synchronization can be extended to the remaining conditions. Finally, the electronics
approach-based validation of chaotic and periodic behaviors was shown using an ARM digital platform.
The experimental observations were in good agreement with the theoretical findings.

In this manner, the system-of-a-chip circuit designs are the right candidate for exploiting the
advantages of the fractional-order models due to their simplicity, programmable characteristics,
and portability, therefore increasing the fractional-order-based oncoming applications. As future work,
an analysis related to robustness of the synchronization scheme will be developed.
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