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Abstract: In this paper, we study the problem of minimizing a general quadratic function subject
to a quadratic inequality constraint with a fixed number of additional linear inequality constraints.
Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two
different conditions, that are minimizing a linear objective function over two convex quadratic
constraints with additional linear inequality constraints. Then, we discuss cases where the CQRs
return the optimal solution of the problem, revealing new conditions under which the underlying
problem admits strong Lagrangian duality and enjoys exact semidefinite optimization relaxation.
Finally, under the given sufficient conditions, we present necessary and sufficient conditions for
global optimality of the problem and obtain a form of S-lemma for a system of two quadratic and a
fixed number of linear inequalities.

Keywords: the generalized trust-region sub-problem; convex quadratic relaxation; strong duality;
SDO-relaxation

1. Introduction

Consider the following generalized trust-region subproblem with additional linear
inequality constraints:

p∗ := inf q1(x) :=xT Ax + 2aTx

q2(x) :=xT Bx + 2bTx + β ≤ 0, (1)

cT
i x ≤ di, i = 1, ..., m,

where A, B ∈ Rn×n are symmetric matrices but not necessarily positive semidefinite, a, b, ci ∈ Rn

and β, di ∈ R, i = 1, ..., m. Model problem (1) arises for instance in nonlinear optimization problems
with linear inequality constraints when the trust-region methods are applied to solve [1] or in general
nonlinear programming for computing search directions when sequential quadratic programming
methods are employed [2] and polyhedral data uncertainty [3,4] or in robust optimization problems
under matrix norm [5].

Although some special cases of problem (1) are polynomially solvable, it is a difficult problem
in general. When B = I, b = 0, β < 0 and (ci, di) = (0, 0), i = 1, ..., m, problem (1) is known as the
trust-region subproblem (TRS) which is fundamental in the trust-region methods for unconstrained
optimization [1]. Several efficient algorithms have been introduced for TRS in the literature [6–10].
Specifically, TRS has many nice properties such as exact semidefinite optimization (SDO) relaxation
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and strong duality [7,11]. In general, these important features do not hold for the following extended
trust-region subproblem (eTRS) with a fixed number of linear inequality constraints, even for eTRS
with one linear inequality constraint [12–14]:

min xT Ax + 2aTx

||x||2 + β ≤ 0,

cT
i x ≤ di, i = 1, ..., m.

Jeyakumar and Li [15] proved that the SDO-relaxation of eTRS is exact whenever the
dimension condition

dim Null(A− λmin(A)I) ≥ s + 1, (2)

is satisfied where s = dim span{c1, ..., cm} and λmin(A) denotes the smallest eigenvalue of A. They also
derived necessary and sufficient optimality conditions for eTRS under the Slater condition and the
dimension condition (2). Later, in Reference [16], the authors obtained the exactness of SDO-relaxation
of eTRS under the following condition

Rank([A− λmin(A)I c1 ... cm]) ≤ n− 1, (3)

which is more general than the dimension condition of Jeyakumar and Li. Most recently,
in Reference [17], the authors have studied variants of TRS having additional conic constraints,

min q1(x) =xT Ax + 2aTx

||x|| ≤ 1, (4)

Hx− h ∈ K,

where A ∈ Rn×n is a symmetric matrix, H ∈ Rm×n, h ∈ Rm and K ⊆ Rm is a closed convex cone.
Assuming λmin(A) < 0, they introduced the following convex relaxation for (4):

min q1(x) + λmin(A)(1− ||x||2)
||x|| ≤ 1, (5)

Hx− h ∈ K,

and showed that this convex relaxation is exact if there exists nonzero z ∈ Null(A− λmin(A)I) such
that Hz ∈ K and aTz ≤ 0.

When (ci, di) = (0, 0), i = 1, ..., m, problem (1) reduces to the generalized trust-region subproblem
(GTRS) [18]. The GTRS has been well studied in the literature and several methods have been proposed
to solve it under various assumptions [11,18–25]. It has strong duality and exact SDO-relaxation
under the Slater condition [11,22]. Under the assumption that the Hessian of quadratic functions are
simultaneously diagonalizable, Ben-Tal and den Hertog [26] proved that GTRS admits a second order
cone programming (SOCP) reformulation. Under the same assumption, they generalized this result to
GTRS with two quadratic inequality constraints. They showed that under certain additional conditions,
the optimal solution of the original problem can be recovered from the optimal solution of the SOCP
relaxation [26]. However, in Reference [26], it has been illustrated that even in the simplest case where
B � 0 and the second constraint is linear (eTRS with m = 1), the SOCP relaxation may not be exact.
After that, Locatelli [27] extended the SOCP relaxation to eTRS and gave conditions under which the
SOCP relaxation is tight. Moreover, in Reference [28], it has been shown that the SOCP relaxation
of eTRS and its SDO-relaxation are equivalent. Also, through this equivalence, new conditions are
introduced that ensure the exactness of the SDO-relaxation of eTRS and are more general than the
condition (3) [28]. Most recently, in Reference [29], the authors have proposed a new convex quadratic
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reformulation for GTRS that minimizes a linear objective function subject to two convex quadratic
constraints. They also have shown that the optimal solution of GTRS can be recovered from the optimal
solution of the new reformulation.

The main contributions of this paper are as follows:

(i) Under a regularity condition, we present two convex quadratic relaxations (CQRs) under two
different conditions for problem (1) that minimize a linear objective function subject to two convex
quadratic constraints with a fixed number of additional linear inequality constraints. Our CQRs
are inspired by the one proposed for GTRS in Reference [29]. Then we derive sufficient conditions
under which problem (1) is equivalent to exactly one of the CQRs and the optimal solution
of (1) can be recovered from an optimal solution of the CQRs. These sufficient conditions are
easy to verify and involve only one (any) optimal solution of CQRs. We also show that under
these conditions the attractive features of GTRS such as strong Lagrangian duality and exact
SDO-relaxation hold for (1). It should be noted that in the case of GTRS, the CQRs reduce to the
ones proposed in Reference [29]. The CQRs are always exact for GTRS but in the presence of linear
constraints, they are not exact in general.

(ii) Exploiting the results in (i), we also derive sufficient conditions that are expressed in terms of
the data of the model problem (1) for exactness of the CQRs, strong Lagrangian duality and
consequently for tightness of the SDO-relaxation. In the case of eTRS, these sufficient conditions
reduce to the one presented in Reference [17] that is the existing best results in the literature. As a
consequence, we present necessary and sufficient conditions for global optimality of problem (P)
under the new condition together with the Slater condition. We also obtain a form of S-lemma for
the system of two quadratic and a fixed number of linear inequalities.

(iii) The sufficient conditions in (i) and (ii) ensure the exactness of the CQRs and the SDO-relaxation of
problem (1). It is worth noting that solving large-scale semidefinite problems is still an intractable
task. In contrast, the CQRs are significantly more tractable than SDOs, and advanced commercial
software is available to solve them [30].

The rest of the paper is organized as follows—in Section 2, we introduce the CQRs and discuss
when and how one can obtain an optimal solution of problem (1) from an optimal solution of the CQRs,
revealing new sufficient conditions for strong duality of problem (1). In Section 3, we use the results in
Section 2 to derive sufficient conditions based on the data of the original problem for exactness of the
CQRs, strong Lagrangian duality and exact SDO-relaxation. We also present necessary and sufficient
conditions for global optimality of problem (1) and an application of strong duality to S-lemma.

Notation 1. Throughout this paper, for a symmetric matrix A, A � 0(A � 0) denotes that A is positive definite
(positive semidefinite). Moreover, Null(A) and Rank(A) denote its Null space and Rank. Finally, A • B :=
trac(AB) is the usual matrix inner product of two symmetric matrices A and B.

2. Convex Quadratic Relaxation, Global Minimization and Strong Duality

In this section, following the idea of Reference [29], first we present two new convex quadratic
relaxations for problem (1) under two different conditions. Then we discuss cases where problem
(1) is equivalent to one of the CQRs and its global optimal solution can be obtained from an optimal
solution of the CQRs. This equivalence reveals new conditions under which problem (1) enjoys strong
Lagrangian duality. We start by considering the following assumptions

Assumption 1. There exists λ̂ ≥ 0 such that A + λ̂B � 0.

Assumption 2. The Slater condition holds for problem (1), that is, there exists x̂ with q2(x̂) < 0, cT
i x̂ ≤ di for

i = 1, ..., m.

Assumptions 1 and 2 ensure that problem (1) is solvable as proved in the following lemma.
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Lemma 1. Suppose that Assumptions 1 and 2 hold. Then problem (1) has an optimal solution,
that is, the infimum in (1) is always attainable.

Proof. See Appendix A.1.

Assumption 1 implies that matrices A and B are simultaneously diagonalizable by congruence [31],
that is, there exists an invertible matrix S and diagonal matrices D = diag(α1, · · · , αn) and
E = diag(e1, · · · , en) such that ST AS = D and ST BS = E. Define IPSD := {λ ≥ 0|A + λB � 0}.
By Assumption 1, IPSD 6= ∅. It is easy to see that IPSD = [λ1, λ2] where

λ1 = max{−αi
ei
|ei > 0}, λ2 = min{−αi

ei
|ei < 0}.

We have two cases for the set IPSD as follows, where λ̂1 = max{0, λ1}:

Condition 1. IPSD = [λ̂1, λ2] as long as B is not positive semidefinite.

Condition 2. IPSD = [λ̂1, ∞) as long as B is positive semidefinite.

In the sequel, we introduce two new CQRs (6) and (7) corresponding to Condition 1 and Condition
2, respectively, by defining h1(x) = q1(x) + λ̂1q2(x) and h2(x) = q1(x) + λ2q2(x):

p∗1 := inf
x,t

t

h1(x) ≤ t, (6)

h2(x) ≤ t,

cT
i x ≤ di, i = 1, ..., m,

and

p∗2 := inf
x

h1(x)

q2(x) ≤ 0, (7)

cT
i x ≤ di, i = 1, ..., m.

In the case where both A and B are positive semidefinite, problem (7) is equal to problem (1) that
is already a convex quadratic problem. Hence, from now on, we suppose that at least one of q1(x) and
q2(x) is nonconvex. As it is shown in the proof of Lemma 1, problem (1) is equivalent to its epigraph
as follows:

p∗ = inf
t,x

t

q1(x) ≤ t, (8)

q2(x) ≤ 0,

cT
i x ≤ di, i = 1, ..., m.

Problems (6) and (7) are both convex. Under Condition 1, problem (6) is a convex relaxation of
problem (8) and hence p∗1 ≤ p∗. To see this, let x be a feasible solution of problem (8). Since q2(x) ≤ 0
and λ̂1, λ2 ≥ 0, then

h1(x) = q1(x) + λ̂1q2(x) ≤ q1(x) ≤ t,

h2(x) = q1(x) + λ2q2(x) ≤ q1(x) ≤ t.
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Therefore, the feasible region of problem (6) contains that of problem (8) and since the two
problems have the same objective function, then p∗1 ≤ p∗. Next, suppose that Condition 2 holds.
Problems (7) and (1) have the same feasible region and since h1(x) ≤ q1(x), we have p∗2 ≤ p∗.
The following lemma states that problems (6) and (7) are bounded from below and their optimal values
are attained.

Lemma 2. Under Assumptions 1 and 2, problems (6) and (7) are bounded from below and their optimal values
are attained.

Proof. See Appendix A.2.

In the case of GTRS, the CQRs (6) and (7) reduce to the ones introduced in Reference [29].
Under Assumptions 1 and 2, the CQRs (6) and (7) are always exact for GTRS [29] while in the presence
of linear constraints, they are not exact in general as illustrated in the following example.

Example 1. Consider the following GTRS:

p∗ = min q1(x) :=− 1
2

x2 − 1
2

x

q2(x) :=x2 − 1 ≤ 0. (9)

The CQR relaxation of (9) is

p∗2 = min h1(x) =− 1
2

x− 1
2

q2(x) =x2 − 1 ≤ 0. (10)

It is easy to see that the CQR (10) is exact, that is, p∗ = p∗2 = −1. If we add the linear constraint x ≤ 1
2 to

problem (9), then the resulting CQR is not exact.

In the following theorems, we state cases where the nonconvex problem (1) is equivalent to one of
the CQR (6) or (7), that is, p∗ = p∗1 or p∗ = p∗2 and the optimal solution of (1) can be obtained from an
optimal solution of the CQRs. In particular, this equivalence results in sufficient conditions for the
strong Lagrangian duality for problem (1).

Theorem 1. Suppose that Assumptions 1, 2 and Condition 1 hold, (x∗, t∗) is an optimal solution of problem (6)
and one of the following holds:

(1) h1(x∗) = h2(x∗) = t∗.
(2) h1(x∗) < t∗ and there exists nonzero z ∈ Null(A + λ2B) such that (a + λ2b)Tz = 0 and cT

i z ≤ 0 for
i = 1, ..., m.

(3) h2(x∗) < t∗ and λ̂1 = 0.
(4) h2(x∗) < t∗, λ̂1 > 0 and there exists nonzero z ∈ Null(A + λ1B) such that (a + λ1b)Tz = 0 and

cT
i z ≤ 0 for i = 1, ..., m.

Then problem (1) is equivalent to (6), that is, p∗ = p∗1 , strong duality holds for (1) and its Lagrangian dual
problem is solvable. Also, in case (1) or (3), x∗ is an optimal solution to (1) and in case (2) or (4), x̄∗ := x∗+ α∗z
is an optimal solution for (1) where α∗ is the positive root of the quadratic equation q2(x∗ + αz) = 0.

Proof. See Appendix A.3.

Theorem 2. Suppose that Assumptions 1, 2 and Condition 2 hold, x∗ is an optimal solution of problem (7) and
one of the following holds:
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(1) q2(x∗) = 0.
(2) q2(x∗) < 0 and there exists nonzero z ∈ Null(A + λ̂1B) such that (a + λ̂1b)Tz = 0 and cT

i z ≤ 0 for
i = 1, ..., m.

Then problem (1) is equivalent to (7), that is, p∗ = p∗2 , strong duality holds for (1) and its Lagrangian dual
problem is solvable. Also, in cases (1), x∗ is an optimal solution to (1) and in case (2), x̄∗ := x∗ + α∗z is optimal
for (1) where α∗ is the positive root of the quadratic equation q2(x∗ + αz) = 0.

Proof. See Appendix A.4.

3. New Conditions for Strong Duality and Exact SDO-Relaxation

In the previous section, we derived sufficient conditions for exactness of the CQRs and
strong Lagrangian duality of problem (1) based on an optimal solution of CQRs (6) and (7)
(see Theorems 1 and 2). Here we exploit the results in Theorems 1 and 2 to derive new sufficient
conditions that are expressed in terms of the data of the original problem for the exactness of the CQRs,
strong Lagrangian duality and tightness of the SDO-relaxation of problem (P). Recall that we have
assumed at least one of A and B is not positive semidefinite. Otherwise, by Assumption 2, problem (1)
is a convex optimization problem that satisfies the Slater condition and hence, it has strong duality
and exact SDO-relaxation.

The so-called SDO-relaxation of (1) is

p∗r := min M • X

M0 • X ≤ 0, (11)

Mi • X ≤ 0, i = 1, ..., m,

I0 • X = 1,

X � 0,

where

M =

[
A a
aT 0

]
, M0 =

[
B b
bT β

]
, I0 =

[
On×n On×1

O1×n 1

]
, Mi =

[
On×n

ci
2

cT
i
2 −di

]
, i = 1, ..., m.

The dual of (11) is

d∗ := max s

M +
m

∑
i=0

yi Mi − sI0 � 0, (12)

yi ≥ 0, i = 0, ..., m,

which is also the Lagrangian dual problem of (1). Note that by Assumption 1, problem (12) is strictly
feasible and hence, d∗ = p∗r . This together with the fact that d∗ ≤ p∗r ≤ p∗ imply that the strong duality
holds for (1) if and only if the SDO-relaxation for (1) is exact.

Condition 3. Consider problem (1). We say that problem (1) satisfies Condition 3 whenever one of the
following holds:

1. Condition 1 holds, λ̂1 = 0 and there exists nonzero z ∈ Null(A + λ2B) such that (a + λ2b)Tz ≤ 0 and
cT

i z ≤ 0 for i = 1, ..., m.
2. Condition 1 holds, λ̂1 > 0, there exist nonzero z1 ∈ Null(A + λ1B) and z2 ∈ Null(A + λ2B), such that

(a + λ1b)Tz1 ≤ 0, (a + λ2b)Tz2 ≤ 0, cT
i z1 ≤ 0 and cT

i z2 ≤ 0 for i = 1, ..., m.
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3. Condition 2 holds and there exists nonzero z ∈ Null(A + λ̂1B) such that (a + λ̂1b)Tz ≤ 0 and cT
i z ≤ 0

for i = 1, ..., m.

Lemma 3. Suppose that Assumptions 1, 2 and Condition 3 hold for problem (1). Then the CQRs (6) and (7)
are exact and problem (1) enjoys strong duality and exact SDO-relaxation.

Proof. Suppose that Condition 1 holds and let (x∗, t∗) be an optimal solution of (6).
If h1(x∗) = h2(x∗) = t∗, then by Theorem 1, the CQR (6) is exact, strong Lagrangian duality holds
for problem (1) and the SDO-relaxation is exact. Otherwise, either h1(x∗) < t∗ or h2(x∗) < t∗.
Let h1(x∗) < t∗. We show that, in this case, for all z ∈ Null(A + λ2B) satisfying Condition 3,
we have (a + λ2b)Tz = 0, implying that Item (2) in Theorem 1 holds and thus the CQR (6) is exact,
strong Lagrangian duality holds for (1) and the SDO-relaxation is exact. To this end, suppose by
contradiction that there exists z ∈ Null(A + λ2B) such that (a + λ2b)Tz < 0 and cT

i z ≤ 0 for i = 1, ..., m.
Set x̄∗ = x∗ + α∗z where α∗ is the positive root of Equation (A17). We have q2(x̄∗) = 0, cT

i x̄∗ ≤ 0 for
i = 1, ..., m and since (a + λ2b)Tz < 0,

h2(x̄∗) = x̄∗
T
(A + λ2B)x̄∗ + 2(a + λ2b)T x̄∗ + λ2β < h2(x∗) = t∗.

On the other hand, since q2(x̄∗) = 0, we have t̄ := h1(x̄∗) = h2(x̄∗) < t∗. These mean that
(x̄∗, t̄) is a feasible solution of (6) with t̄ < t∗ that contradicts the fact that (x∗, t∗) is optimal for (6).
Next, suppose that h2(x∗) < t∗. If λ̂1 = 0, then by Theorem 1, the CQR (6) is exact, strong Lagrangian
duality holds for problem (1) and the SDO-relaxation is exact. Otherwise, a similar discussion as above
proves the existence of vector z in Item (2) of Theorem 1. Similarly, we can prove the existence of vector
z in Item (2) of Theorem 2 when Condition 2 holds.

Remark 1. Condition 3 can be verified easily by solving a linear programming problem. To verify condition

∃0 6= z ∈ Null(A + λ2B) s.t (a + λ2b)Tz ≤ 0 and cT
i z ≤ 0, i = 1, ..., m, (13)

it is sufficient to solve the following linear programming problem:

p̂ := min (a + λ2b)Tz

(A + λ2B)z = 0, (14)

cT
i z ≤ 0, i = 1, ..., m.

Condition (13) holds if and only if problem (14) is either unbounded or has multiple optimal solutions.
If problem (14) is unbounded, then obviously condition (13) holds. If problem (14) is bounded, then p̂ = 0.
In this case, since z = 0 is an optimal solution of (14), condition (13) holds if and only if (14) has multiple
optimal solutions. The same discussion holds when λ2 is replaced by λ1 or λ̂1.

Remark 2. It is worth noting that the sufficient conditions for strong duality of problem (1) established in
Theorems 1 and 2 are more general than Condition 3. The following is an example where Condition 3 does not
hold, while the condition in Theorem 2 does.

Example 2. Consider the following one-dimensional problem:

min q1(x) :=− 1
2

x2 − 1
2

x

q2(x) :=x2 − 1 ≤ 0, (15)

− x ≤ 0.
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The CQR relaxation of (15) is

min h1(x) =− 1
2

x− 1
2

q2(x) =x2 − 1 ≤ 0, (16)

− x ≤ 0.

The optimal solution of (16) is x∗ = 1 and q2(x∗) = 0. Hence, the sufficient condition in Theorem 2
is fulfilled. However, Condition 3 is not fulfilled. Moreover, it is easy to verify that strong duality holds for
problem (15) and the SDO-relaxation and the CQR (16) are exact.

Remark 3. For the case of eTRS which is a special case of (4), the convex relaxation (5) is equal to problem (7).
Also, it is easy to see that in the case of eTRS, Condition 3 reduces to the condition in Reference [17].

We now present necessary and sufficient conditions for global optimality of (1) whenever
Condition 3 and Assumptions 1 and 2 are satisfied.

Corollary 1. For problem (1), suppose that Condition 3, Assumptions 1 and 2 hold. Let x∗ be a feasible solution
of (1). Then x∗ is a global minimizer of (1) if and only if there exist nonnegative multipliers λ∗i , i = 0, ..., m such
that the following conditions hold

(A + λ∗0 B)x∗ = −(a + λ∗0b +
m

∑
i=1

λ∗i
2

ci), (17)

λ∗0q2(x∗) = 0, (18)

λ∗i (c
T
i x∗ − di) = 0, i = 1, ..., m, (19)

(A + λ∗0 B) � 0. (20)

Proof. Let x∗ be a global minimizer of (1). Recall that by Lemma 3, strong duality holds for problem (1).
Suppose that (λ∗0 , λ∗1 , ..., λ∗m) is an optimal solution of Lagrangian dual of (1) and d∗ denotes the dual
optimal value. We have

p∗ = d∗ = min
x
{q1(x) + λ∗0q2(x) +

m

∑
i=1

λ∗i (c
T
i x− di)}

≤ q1(x∗) + λ∗0q2(x∗) +
m

∑
i=1

λ∗i (c
T
i x∗ − di)

≤ q1(x∗) = p∗,

where the last inequality follows from λ∗i ≥ 0, i = 0, ..., m and feasibility of x∗. We conclude that the
two inequalities in this chain hold with equality. Since the inequality in the second line is an equality,
we conclude that x∗ is a minimizer of the minimization problem in the first line. This gives relations
(17) and (20). Moreover, it follows from the last line that λ∗0q2(x∗) +∑m

i=1 λ∗i (c
T
i x∗− di) ≤ 0 which with

the fact that each term in this sum is nonpositive, we obtain (18) and (19). Conversely, suppose that x∗

satisfies (17) to (20). We have the following chain of inequalities:
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p∗ ≥ d∗ : = max
λi≥0,i=0,...,m

min{q1(x) + λ0q2(x) +
m

∑
i=1

λi(cT
i x− di)}

≥ min{q1(x) + λ∗0q2(x) +
m

∑
i=1

λ∗i (c
T
i x− di)}

= q1(x∗) + λ∗0q2(x∗) +
m

∑
i=1

λ∗i (c
T
i x∗ − di)

= q1(x∗) ≥ p∗,

where the first inequality comes from weak duality property, the second equality follows from (17)
and (20), the third equality follows from (18) and (19) and the last inequality comes from the fact that
x∗ is a feasible solution of (1). Therefore, q1(x∗) = p∗ and so x∗ solves (1).

As a consequence of our strong duality result, we obtain the following form of the celebrated
S-lemma [32] for a system of two quadratic and a fixed number of linear inequalities.

Lemma 4. Let A, B ∈ Rn×n, a, b, ci ∈ Rn, β, γ, di ∈ R, i = 1, ..., m. Suppose that Assumptions 1, 2 and
Condition 3 are satisfied. Then the following statements are equivalent:

(1) xT Bx + 2bTx + β ≤ 0, cT
i x ≤ di, i = 1, ..., m ⇒ xT Ax + 2aTx + γ ≥ 0.

(2) There exist λi ≥ 0, i = 0, ..., m such that

(xT Ax + 2aTx + γ) + λ0(xT Bx + 2bTx + β) +
m

∑
i=1

λi(cT
i x− di) ≥ 0, ∀x ∈ Rn.

Proof. It is easy to see that (2) ⇒ (1). So, in the sequel, we show that (1) ⇒ (2). To see this, let (1)
holds. Then,

min
x
{xT Ax + 2aTx|xT Bx + 2bTx + β ≤ 0, cT

i x ≤ di, i = 1, ..., m} ≥ −γ.

By Lemma 3, we have strong duality for the above problem. Suppose that (λ0, λ1, ..., λm) is the
dual optimal solution. This means that

min
x
{xT Ax + 2aTx|xT Bx + 2bTx + β ≤ 0, cT

i x ≤ di, i = 1, ..., m}

=min
x
{xT Ax + 2aTx + λ0(xT Bx + 2bTx + β) +

m

∑
i=1

λi(cT
i x− di)} ≥ −γ,

which implies (2).

4. Conclusions

Under a regularity condition, we introduced two convex quadratic relaxations (CQRs)
corresponding to two different conditions for model problem (1) that are the problems of minimizing
a linear objective function over two convex quadratic constraints with additional linear inequality
constraints. We presented sufficient conditions based on an optimal solution of the CQRs under which
the problem (1) is equivalent to exactly one of the CQRs. We also showed that this equivalence reveals
the strong duality holds for (1) and consequently problem (1) enjoys exact SDO-relaxation. We also
derived new sufficient conditions based on the data of the model problem (1) for strong Lagrangian
duality, exact SDO-relaxation and exact CQRs.

Possible subjects for future research direction would be finding more general conditions for
exactness of CQRs (maybe even necessary and sufficient conditions), and other relaxations that are as
simple as problems (6) and (7), but tight under more general conditions.



Symmetry 2020, 12, 1369 10 of 14

Author Contributions: Conceptualization, A.T. and M.S.; Formal analysis, M.S.; Funding acquisition, T.A.A.;
Investigation, A.H.; Methodology, T.A.A. and A.H.; Project administration, T.A.A.; Writing—original draft, A.T.;
Writing—review & editing, A.H. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to express their thanks to Qatar University for supporting their project under
Grant NCBP-QUCP-CAS-2020-1.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Proof of Lemma 1

Consider epigraph reformulation of (1) as following:

p∗0 := inf
t,x

t

q1(x) ≤ t, (A1)

q2(x) ≤ 0,

cT
i x ≤ di, i = 1, ..., m.

First we show that the infimum in (A1) is attainable. To this end, note that under Assumptions
1 and 2, problem (1) without the linear constraints is bounded from below (see Theorem 5 of
Reference [33]). This implies that (A1) is equivalent to the following problem:

p∗0 = inf
t,x

t

q1(x) ≤ t,

q2(x) ≤ 0, (A2)

cT
i x ≤ di, i = 1, ..., m,

t̂ ≤ t ≤ M,

where t̂ is the optimal (infimum) value of q1(x) over the constraint q2(x) ≤ 0 and M is a sufficiently
large constant. Let S denote the feasible region of problem (A2). The set S is closed and the objective
function in problem (A2) is continuous. Therefore, to prove that the infimum in (A1) is attainable,
it is sufficient to establish that S is bounded. Since t̂ ≤ t ≤ M, we only need to show that there exists
M̂ > 0 such that ||x|| ≤ M̂ for all (x, t) ∈ S. To do so, let h(x) := q1(x) + λ̂q2(x) where λ̂ is the
same as in Assumption 1. The function h is strictly convex and for any (x, t) ∈ S, we have h(x) ≤ M,
implying that S is bounded. Next, we show that problem (A1) is equivalent to problem (1) and hence
the infimum in (1) is always attainable. Let (x∗, t∗) be an optimal solution of (A1). Since q2(x∗) ≤ 0
and cT

i x∗ ≤ di, i = 1, ..., m, x∗ is feasible for (1) and since q1(x∗) ≤ t∗, we have p∗ ≤ t∗ = p∗0 . We show
that p∗ = p∗0 . Suppose by contradiction that p∗ < p∗0 . Then by definition of infimum, there exists a
feasible solution of (1), x, such that q1(x) < p∗0 . Set t = q1(x). Then (x, t) is a feasible solution of (A1)
with a smaller objective value that contradicts the fact that p∗0 is the optimal value of (A1). Therefore,
p∗ = p∗0 and since q1(x∗) = t∗ = p∗, x∗ is the optimal solution of (1).

Appendix A.2. Proof of Lemma 2

Consider problem (6). By Theorem 2.9 of Reference [29], problem

inf
x,t

t

h1(x) ≤ t, (A3)

h2(x) ≤ t,
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is bounded from below and its optimal value is attained. This implies that problem (6) is equivalent to
the following problem:

p∗1 = inf
x,t

t

h1(x) ≤ t, (A4)

h2(x) ≤ t,

cT
i x ≤ di, i = 1, ..., m,

t∗ ≤ t ≤ M,

where t∗ is the optimal value of (A3) and M is a sufficiently large constant. Let S denote the feasible
region of (A4). The set S is closed and the objective function in (A4) is continuous. Therefore, to prove
the assertion, it is sufficient to establish that S is bounded. Since t∗ ≤ t ≤ M, we only need to show
there exists M̂ > 0 such that ||x|| ≤ M̂ for all (x, t) ∈ S. To this end, let h(x) := α1h1(x) + α2h2(x)
where α1, α2 > 0 and α1 + α2 = 1. The function h is strictly convex and for any (x, t) ∈ S, we have
h(x) ≤ M. The proof for problem (7) is similar.

Appendix A.3. Proof of Theorem 1

Since problem (6) is convex and satisfies the Slater condition, there exist nonnegative multipliers
µ∗1 , µ∗2 , s∗i , i = 1, ..., m, such that

(A + (µ∗1 λ̂1 + µ∗2λ2)B)x∗ = −(a + (µ∗1 λ̂1 + µ∗2λ2)b +
m

∑
i=1

s∗i
2

ci), (A5)

µ∗1(h1(x∗)− t∗) = 0, (A6)

µ∗2(h2(x∗)− t∗) = 0, (A7)

s∗i (c
T
i x∗ − di) = 0, i = 1, ..., m, (A8)

µ∗1 + µ∗2 = 1, (A9)

h1(x∗) ≤ t∗, (A10)

h2(x∗) ≤ t∗, (A11)

cT
i x∗ ≤ di, i = 1, ..., m. (A12)

It follows from (A10) and (A11) that there are three possible cases: (i) h1(x∗) = h2(x∗) = t∗,
(ii) h1(x∗) < t∗ or (iii) h2(x∗) < t∗. In what follows, we discuss these cases and we consider the two
possible cases h2(x∗) < t∗, λ̂1 = 0 and h2(x∗) < t∗, λ̂1 > 0, separately.

(1) h1(x∗) = h2(x∗) = t∗ implies that (λ̂1− λ2)(x∗
T

Bx∗+ 2bTx∗+ β) = 0. Furthermore, since λ̂1 6= λ2,
we obtain

x∗
T

Bx∗ + 2bTx∗ + β = 0. (A13)

It follows from (A12) and (A13) that (x∗, t∗) is also feasible for (8) and since (6) is a relaxation
of (8), then (x∗, t∗) solves (8), p∗ = p∗1 and thus x∗ solves (1). To prove strong duality,
set λ∗ = µ∗1 λ̂1 + µ∗2λ2. Since µ∗1 ≥ 0, µ∗2 ≥ 0 and µ∗1 + µ∗2 = 1, then λ∗ ∈ [λ̂1, λ2] and thus

A + λ∗B � 0. (A14)
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Also, we have

p∗ ≥ d∗ : = max
γi≥0,i=0,...,m

min
x

{
q1(x) + γ0q2(x) +

m

∑
i=1

γi(cT
i x− di)

}
(A15)

≥ min
x

{
q1(x) + λ∗q2(x) +

m

∑
i=1

s∗i (c
T
i x− di)

}

= q1(x∗) + λ∗q2(x∗) +
m

∑
i=1

s∗i (c
T
i x∗ − di)

= q1(x∗) ≥ p∗,

where the first inequality follows from the weak duality property, the second equality follows from
(A5) and (A14), the third equality follows from (A8) and (A13) and the last inequality follows from
(A12) and (A13). Therefore, we have p∗ = d∗, that is, the strong duality holds for problem (1) and
the maximum in (A15) is attained.

(2) In this case, µ∗2 = 1 and hence, h2(x∗) = t∗. Then h1(x∗) < t∗ and h2(x∗) = t∗ imply that
(λ̂1 − λ2)(x∗

T
Bx∗ + 2bTx∗ + β) < 0. Since λ̂1 < λ2, we obtain

x∗
T

Bx∗ + 2bTx∗ + β > 0. (A16)

By the assumption, there exists nonzero z ∈ Null(A + λ2B) such that (a + λ2b)Tz = 0 and cT
i z ≤ 0

for i = 1, ..., m. Consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zT Bz + 2α(zT Bx∗ + bTz) + x∗
T

Bx∗ + 2bTx∗ + β = 0. (A17)

The fact that zT Bz < 0 (see Lemma 3.4 of Reference [22]) with (A16) imply that the above equation
has a positive root α∗. Set x̄∗ = x∗+ α∗z. We have q2(x̄∗) = 0 and since cT

i z ≤ 0, i = 1, ..., m, we also
have cT

i x̄∗ ≤ di, i = 1, ..., m. Furthermore, since z ∈ Null(A + λ2B) and (a + λ2b)Tz = 0, we have

h2(x̄∗) = x̄∗
T
(A + λ2B)x̄∗ + 2(a + λ2b)T x̄∗ + λ2β = h2(x∗) = t∗. (A18)

It follows from (A18) and q2(x̄∗) = 0 that q1(x̄∗) = t∗ and consequently h1(x̄∗) = t∗. These indicate
that (x̄∗, t∗) is an optimal solution of (6) which is also feasible for (8). Since (6) is a relaxation of (8),
(x̄∗, t∗) solves (8), p∗ = p∗1 and thus x̄∗ solves (1). The same approach as in part (1) can be applied
to show that strong duality holds for (1) and the Lagrangian dual problem is solvable.

(3) In this case, µ∗1 = 1 and hence, h1(x∗) = t∗. Also, h2(x∗) < t∗ and h1(x∗) = t∗ imply that
(λ2 − λ̂1)(x∗

T
Bx∗ + 2bTx∗ + β) < 0. Then λ2 > λ̂1 results in

x∗
T

Bx∗ + 2bTx∗ + β < 0. (A19)

It follows from (A19) and (A12) that (x∗, t∗) is also feasible for (8) and since (6) is a relaxation of (8),
x∗ solves (1) and p∗ = p∗1 . Then by setting λ∗ = 0, the same approach as in part (1) can be applied
to show that strong duality holds for (1) and the Lagrangian dual problem is solvable.

(4) By the assumption, there exists nonzero z ∈ Null(A + λ1B) such that (a + λ1b)Tz = 0 and cT
i z ≤ 0

for i = 1, ..., m. Consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zT Bz + 2α(zT Bx∗ + bTz) + x∗
T

Bx∗ + 2bTx∗ + β = 0.

The fact that zT Bz > 0 (see Lemma 3.4 of Reference [22]) with (A19) imply that the above equation
has a positive root α∗. Then following the same discussion as in part (2) where λ2 is replaced by λ1
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and h2(x̄∗) in (A18) is replaced by h1(x̄∗), it can be shown that x̄∗ := x∗ + αz solves problem (1),
p∗ = p∗1 , strong duality holds for problem (1) and the Lagrangian dual problem is solvable.

Appendix A.4. Proof of Theorem 2

Since we have assumed that q1(x) and q2(x) are not both convex, then λ̂1 > 0. Moreover,
problem (7) is convex, satisfies the Slater condition and by Lemma 2 is solvable. Let x∗ be an optimal
solution of (7). Therefore, there exist nonnegative multipliers µ∗1 , s∗i , i = 1, ..., m, such that

(A + (λ̂1 + µ∗1)B)x∗ = −(a + (µ∗1 + λ̂1)b +
m

∑
i=1

s∗i
2

ci), (A20)

µ∗1q2(x∗) = 0, (A21)

s∗i (c
T
i x∗ − di) = 0, i = 1, ..., m, (A22)

q2(x∗) ≤ 0, (A23)

cT
i x∗ ≤ di, i = 1, ..., m. (A24)

(1) In this case, since q2(x∗) = 0 and (7) is a relaxation of (1), then q1(x∗) = p∗2 ≤ p∗ ≤ q1(x∗) and
consequently p∗ = p∗2 = q1(x∗). Next by setting λ∗ = µ∗1 + λ̂1, the same approach as in part (1) of
Theorem 1 can be applied to show that strong duality holds for problem (1) and the Lagrangian
dual problem is solvable.

(2) By the assumption, there exists nonzero z ∈ Null(A + λ̂1B) such that (a + λ̂1b)Tz = 0 and cT
i z ≤ 0

for i = 1, ..., m. Consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zT Bz + 2α(zT Bx∗ + bTz) + x∗
T

Bx∗ + 2bTx∗ + β = 0.

The fact that zT Bz > 0 with q2(x∗) < 0 implies that the above equation has a positive root α∗.
Set x̄∗ = x∗ + α∗z. We have q2(x̄∗) = 0 , cT

i x̄∗ ≤ 0 for i = 1, ..., m and

h1(x̄∗) = x̄∗
T
(A + λ̂1B)x̄∗ + 2(a + λ̂1b)T x̄∗ + λ̂1β = h1(x∗),

since (a + λ̂1b)Tz = 0 and z ∈ Null(A + λ̂1B). These imply that x̄∗ is an optimal solution of (7).
Moreover, since q2(x̄∗) = 0, we have q1(x̄∗) = h1(x̄∗), implying that x̄∗ solves problem (1), p∗ = p∗2 .
Now the same approach as in part (1) shows that strong duality holds for (1) and the Lagrangian
dual problem is solvable.
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