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Abstract: Optical properties of metal nanostructures, governed by the so-called localised surface
plasmon resonance (LSPR) effects, have invoked intensive investigations in recent times owing to their
fundamental nature and potential applications. LSPR scattering from metal nanostructures is expected
to show the symmetry of the oscillation mode and the particle shape. Therefore, information on
the polarisation properties of the LSPR scattering is crucial for identifying different oscillation
modes within one particle and to distinguish differently shaped particles within one sample.
On the contrary, the polarisation state of light itself can be arbitrarily manipulated by the inverse
designed sample, known as metamaterials. Apart from polarisation state, external stimulus,
e.g., magnetic field also controls the LSPR scattering from plasmonic nanostructures, giving rise
to a new field of magneto-plasmonics. In this review, we pay special attention to polarisation and
its effect in three contrasting aspects. First, tailoring between LSPR scattering and symmetry of
plasmonic nanostructures, secondly, manipulating polarisation state through metamaterials and
lastly, polarisation modulation in magneto-plasmonics. Finally, we will review recent progress in
applications of plasmonic and magneto-plasmonic nanostructures and metamaterials in various fields.

Keywords: plasmonics; LSPR scattering; polarisation manipulation; metamaterials; Faraday effect
(rotation); magneto-optic Kerr effect (MOKE); magnetoplasmonics

1. Introduction

Of late, thanks to their unique chemical, electrical and optical properties, nanomaterials have
been the subject of extensive research in the frame of nanoscience and nanotechnology from the point
of view of both fundamental science and practical applications. Among the family of nanomaterials,
metallic nanostructures are of particular interest because of their remarkable optical properties that
leads to a plethora of novel phenomena, mediated by elementary excitations, known as plasmons [1,2].
Localised surface plasmon resonance (LSPR) takes place from the collective oscillations of conduction
electrons near metallic nanoparticles following light excitation [3]. LSPR in metallic nanoparticles
allows to manipulate light at the nanoscale that gives rise to exotic phenomena, e.g., optical near-field
enhancement at resonant wavelength, hot-electron generation [4,5], etc. Likewise, such effects find
tremendous potential applications in photocarrier generators [6], optical holography [7], plasmonic
routers [8], biosensors [9,10], surface-enhanced Raman scattering (SERS) [11], etc. LSPR of the
plasmonic nanostructures can be readily tuned by the geometry, i.e., shape and size of the plasmonic
nanostructures which in turn can be correlated with the polarisation state of the incident light [1,12].
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It is well known that polarisation is a key attribute of light that describes the oscillation direction
of the electromagnetic wave, that plays an important role in the light-matter interactions [13,14].
In particular, the resonant light scattering from plasmonic nanostructures (Figure 1) is expected to
show the symmetry of the plasmon mode and the particle shape [15]. Therefore, detailed knowledge
of the scattered light polarisation from plasmonic nanostructures is very important to understand
the fundamental physics and practical applications of such nanostructures. At the same time, it also
helps to differentiate several oscillation modes within one particle as well as distinguish particles of
different shape within one nanostructure. For example, smallest unit of nanostructures like silver/gold
nanosphere (diameter less than 50 nm) or nanoparticle dimer has high symmetry with only one dipole
plasmon [16,17].
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Figure 1. Plasmonic nanostructures of various shape. The arrow indicates the axis of symmetry of the
nanostructures for the excitation of LSPR.

Moving on to nanoparticle trimer with broken symmetry in their geometry, they exhibit a
polarisation response that is altogether different from the dipolar response of a dimer [17,18].
Similarly, in nanorods, instead of one dipole, two dipolar peaks, transverse and longitudinal [19] appear.
Further complicated nanostructures like triangular Ag nanoparticles [20,21] or nanocrescents [22]
possess in- and out-of-plane dipole, quadrupole and even higher multipoles. Several techniques,
including dark-field (DF) extinction [17,23], SERS scattering [24,25], infrared absorption [22,26]
have been used to extract the optical response of plasmonic nanostructures to get information on the
polarisation state. In the first part of the review, we aim to tailor between LSPR scattering and symmetry
of plasmonic nanostructures by going through polarisation sensitive optical measurements in such
nanostructures. On the contrary, in another end of the spectrum, artificial plasmonic nanostructures are
inversed designed to control the polarisation state of the light wave [27,28]. This new set of artificial
materials are classified as metamaterials, that are composed of periodically arranged subwavelength
dielectric elements or structured metallic components [29,30]. The metamaterials can arbitrarily
manipulate the polarisation state of the electromagnetic waves with multiple degrees of freedom,
that has found tremendous potential application in nanophotonics [31,32]. We will discuss the
designing of such metamaterial strictures and their excellent application prospective in the second
part of the review. In the last section, we will discuss magneto-optics and magnetoplasmonics with
particular emphasis on the role of polarisation in a number of experiments including the Faraday
effect, inverse Faraday effect, magneto-optical Kerr effect, magnetic second-harmonic generation and
magnetic circular dichroism. Finally, we will explore a number of relevant applications.



Symmetry 2020, 12, 1365 3 of 57

2. Tailoring between LSPR Scattering and Symmetry of Plasmonic Nanostructures

In this section, we will discuss the polarisation dependent LSPR response of various plasmonic
nanostructures of different shape and size. It is well known that axis of symmetry of plasmonic
nanostructures plays an important role and by exciting along the favourable symmetry axis LSPR
response can be enhanced significantly. Below we will analyse several plasmonic nanostructures and
their LSPR response by polarisation sensitive measurements.

2.1. Single Nanosphere and Dimer

The smallest unit of plasmonic nanostructure is a single nanoparticle or nanosphere. The scattering
spectra of a single Ag/Au nanosphere has one major peak, originated from the interaction of
electromagnetic waves with the free electrons of the nanospheres. For single nanoparticles, the LSPR
does not exhibit any marked polarisation dependence [33]. It can be seen from Figure 2a that LSPR of
two isolated Au nanoparticles occurs at 573 nm and it is indistinguishable for two orthogonal light
polarisations. However, if these two nanoparticles are brought closer, they get dimerised because of
plasmonic coupling and a strong polarisation anisotropy takes place. For polarisation perpendicular to
the long axis of the dimer, LSPR peak at 573 nm overlaps with that of a single particle [34], however,
for polarisation parallel to the long axis of the dimer, we observed a strongly red-shifted spectrum
with LSPR at 588 nm which is ascribed to the “long axis” mode of dimer. The position of the LSPR
of a dimer corresponding to both parallel and perpendicular polarisation depends strongly on the
interparticle distance (d) as well as their relative interaction [34]. In Figure 2b when d changes from
10 (1) to 25 nm (3), LSPR position of Ag dimer for parallel polarisation redshifts approximately by
100 nm. In contrast, for perpendicular polarisation LSPR exhibits very weak blueshift. It is important
to note that, for very large d ~ 250 nm, LSPR of the dimer (5) is comparable to that of an individual
particle (6). This observation indicates that when the separation is large between the pair of particles,
it becomes complicated to resolve the effects of particle interactions.

Figure 2. (a) Alignment of a dimer composed of two ~80 nm gold nanoparticles. The upper graphs are
spectra for the immobilised particle (left) and the optically trapped particle (right) before dimerisation.
The lower spectra correspond to the case when the two particles have been brought into near-field
coupling range. All the figures were reprinted (adapted) with permission from [33], Copyright 2010,
American Chemical Society. (b) DF spectra and SEM micrographs from isolated particle pairs with
varying separations in parallel and perpendicular polarisation, as indicated by arrows. The separations
(gaps) between the particles are d ~ (1) 10, (2) 15, (3) 25, (4) 50, and (5) 250 nm. Spectrum 6 from a single
particle is included for comparison. The vertical bars indicate the baselines for the different spectra.
(c) DF images form an array of “identical” silver disks with a diameter of 80 nm and a height of 25 nm.
The text “NANO” is written with pairs of such particles with an interparticle distance of approximately
110 nm. In the top image, the array is illuminated with light polarised parallel to the particle pair axis.
In the bottom image, the polarisation is perpendicular to the pair axis. All the figures were reprinted
(adapted) with permission from [34], Copyright 2005, American Chemical Society.



Symmetry 2020, 12, 1365 4 of 57

The effect of parallel and perpendicular polarisations on the dimer composed of Ag particles
array can be readily seen from the DF images shown in Figure 2c. For the top panel, under parallel
polarisation, the text “"NANO” written with dimers appears red compared to green single particles.
In contrast, for perpendicular polarisation the text appears blue in the green single particle background.
Such observation is in line with the results shown in Figure 2b.

Next, we discuss the detailed polarisation response of single Ag nanosphere dimer (Figure 3a).
The dimer is oriented at 40° with respect to the normal. In this regard, Figure 3b,c demonstrates the
polar plot of Raman scattering intensity profile and depolarisation ratio (p) of the dimer, respectively
against the polarisation angle at two dominant Raman bands of the dimer. Both the Raman scattering
intensity and depolarisation ratio varies between +1, at parallel and perpendicular to the dimer axis,
respectively [18]. Therefore, clearly indicating that scattering from the dimer is linearly polarised in
line with the results from Tian et al. [17]. Figure 3¢ also reveals that the depolarisation ratio of a dimer
is wavelength independent.
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Figure 3. Polarisation response of a nanoparticle dimer and trimer. SEM image of the (a) dimer and (d)
trimer of nanoparticles. The red arrow in (d) indicates the position of the molecule that leads to the
best agreement between experiment and calculation. Normalised RS intensity at 555 (black squares)
and 583 nm (red circles) as a function of the angle of rotation of the incident polarisation for (b) dimer
and (e) trimer. Depolarisation ratio (p) measured at 555 (black squares) and 583 nm (red circles) for (c)
dimer and (f) trimer. All the figures were reprinted (adapted) with permission from [18], Copyright
2008, National Academy of Sciences, USA.

2.2. Nanosphere Trimer

When an additional third particle (1) is added at the junction of a dimer formed by particles 2
and 3, it breaks the axial symmetry (Figure 3d) to form a trimer and the polarisation response of a
symmetry-broken trimer is altogether different from that of a dimer. Figure 3e represents the Raman
scattering profile of the trimer at the same wavelengths of that of the dimer, with varying incident
polarisation angle. The maximum signal is obtained at 75° which does not match with the alignment
of any of the pairs. The polar plot of the depolarisation ratio for a trimer shown in Figure 3f exhibits
strong wavelength dependence, i.e., for different wavelengths it is rotated at different angles from
the Raman intensity profile [18]. Unlike dimer, the scattered intensity in trimer never reaches +1,
signifying elliptically polarised light scattering from a trimer, which could arise from the presence of
broken symmetry, after a third particle is added to a symmetric dimer to form a trimer. Apart from
the results above, there are several other studies which also represent similar polarisation dependent
optical response of plasmonic dimer [17,23,35] and trimer nanostructures [36,37].
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2.3. Nanorod

Nanorods are the perfect example of “antenna-like” plasmonic structures, therefore the polarisation
pattern of the scattered light holds paramount importance for practical applications [15]. Especially,
gold nanorods have shown extremely strong light scattering due to the combination of lightning
rod effect [38] and the suppression of interband damping [39]. In this regard, Figure 4a reveals the
comparison between the single-particle scattering spectra of a nanosphere and a nanorod which shows
that LSPR of the sphere at 2.19 eV and for the long-axis mode of the rod at 1.82 eV [39]. By extracting
the linewidth (I') of the LSPR of nanosphere and nanorod, it is evident that I for nanorod is significantly
lower than that of nanosphere which leads to lower plasmon damping for nanorods owing to their
small volume.
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Figure 4. (a) Light-scattering spectra from a gold nanorod and gold nanosphere measured under
identical conditions (light polarised along the long rod axis). All the figures were reprinted (adapted)
with permission from [39], Copyright 2002, American Physical Society. Scattering spectra of single
AuNRs with (b) d = 32 nm, (¢) d = 81 nm, and (d) 4 = 100 nm, all having AR of ~2.2 + 0.1, and the
corresponding DDA calculations (e-g), respectively. All the figures were reprinted (adapted) with
permission from [40], Copyright 2010, American Chemical Society. The spectra were recorded for
scattered light polarised parallel (red) and perpendicular (blue) to the orientation of the main rod
axis. A fit to a sum of two Lorentzian curves is included as black lines in (g). In all images, the scale
bar represents 100 nm. (h) The polarisation at the longitudinal plasmon resonance wavelength Ares
is shown as a function of the resonance wavelength for three different gold particle samples (blue
dots, nominally spherical gold particles with 60 nm diameter; 87 nm diameter, teal dots; and red dots,
gold nanorods). The dashed black line is a theoretical prediction from simulations of gold rods of
different aspect ratios and sizes embedded in water. All the figures were reprinted (adapted) with
permission from [15], Copyright 2008, American Chemical Society. (i) UC emission spectra obtained
as the analyser angle varied from 0 to 2 7t under excitation polarisation parallel to the long axis of
the hybrid nanostructure. From these spectra, the polar plots were extracted for the green (j) and
red (k) emissions. (1) UC emission spectra under perpendicular excitation and corresponding polar
plots for green (m) and red (n) emissions. The lines in the polar plots are cosine-squared fits of the
experimental data. All the figures were reprinted (adapted) with permission from [41], Copyright 2017,
Springer Nature.
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It is well known that nanorods exhibit two LSPR modes, one that exhibits a strong polarisation
response along the long axis (length), known as longitudinal LSPR and the other one with very weak
polarisation response along the short axis (width) of nanorods, referred as transverse LSPR [40].

Longitudinal LSPR is of particular interest because it is tunable across the whole visible and
near-infrared region by precisely tailoring the length (I), width (d), and/or aspect ratio (AR) of the
nanorod as demonstrated in [40]. Figure 4 depicts the scattering spectra of AuNR for different d and
1 with fixed AR of 2.2 (+0.1). For the AuNR with (d, ) = 32 X 69 nm, a narrow longitudinal dipole
LSPR is observed at 620 nm with no transverse component. When the size of AuNR increases to
(d,1) =84 x 174 nm and (d, I) = 100 X 227 nm, a clear redshift is observed in longitudinal LSPR to 740
and 900 nm, respectively as shown Figure 4c,d. Apart from that, a weak transverse LSPR peak appears
in Figure 4c,d at 600 and 660 nm, respectively, because of the larger width of the AuNR [42,43]. Till now,
the AuNRs discussed have a low AR of 2.2. Increasing the AR of a slim AuNR to 3.1 (24 X 74 nm) can
lead to the similar redshift of the longitudinal LSPR. Experimental scattering spectra of these AuNR
shows good agreement with the DDA calculations as depicted in Figure 4e-g. The longitudinal LSPR
is highly anisotropic, i.e., it only favourably gets excited for polarisation along the long axis of the rod,
and remains unexcited otherwise. Likewise, the scattered light from AuNR exhibits a dipolar response,
in line with a cosine-squared function [44].

The strong polarisation dependent optical response in plasmonic nanosphere and nanorods in
turn can be exploited to reveal the nanoparticle symmetry. In this context, wavelength-dependent
polarisation anisotropy (PA(A)) serves as an efficient parameter to distinguish nanoparticles with
different symmetry [15]. In general, PA(A) = (Imajor — Iminor)/(Imajor + Iminor), Where Inajor and
Iminor are defined as the scattering intensity of light polarised parallel to the major and minor axes,
respectively [45]. For this purpose, PA is extracted at the resonance wavelength A.s. Figure 4h
shows that for an AuNR of (d, [) = 28 X 57 nm shows a high degree of PA(Ares) ~ 0.84 [39], whereas
for spherical AuNP of diameters 60 and 87 nm had an average PA(Ass) ~ 0.35. It is important to
note that AuNP and AuNR exhibit contrasting PA(A) spectra. For AuNR, it is strongly wavelength
dependent, i.e., the long-axis plasmon mode is only excited at the resonance wavelength, whereas for
AuNP, PA(}) is independent of excitation wavelength. It is also found that LSPR linewidth scales
inversely with PA(Ares), i.e., linewidth is lower for particles with high PA(Ars). Likewise, we can
conclude from Figure 4a AuNR with lower linewidth has high PA(Ares) compared to AuNP at resonance
wavelength [15].

AuNRs are an important plasmonic nanostructure which can strongly enhance as well as
influence the polarisation state of fluorescence from organic fluorophores or upconversion nanocrystals
(UCNC) [41]. It has been shown that, similar to bare AuNR, in hybrid nanostructures of AuNR-
fluorophore (oxazine 725), the fluorescent emission is also polarised along the long axis of the NR and
exhibits a dipolar pattern. However, the polarisation response of the emission pattern is bit compilated
for hybrid plasmonic UCNCs. By measuring the emission spectra of UCNC hybrid nanostructures
at polarisation angles from 0° to 360°, by keeping the excitation laser either parallel (Figure 4i) or
perpendicular (Figure 41) to the long axis of the hybrid nanostructure, two dominant emission bands
are observed cantered at 540 (green) and 660 nm (red). In this regard, Figure 4j,k,m n shows the polar
plot of red and green emission, respectively. Clearly, red emission is independent of the excitation
polarisation, i.e., for both parallel and perpendicular polarisation, red emission follows the scattering
pattern of AuNR. In stark contrast, green emission follows the excitation polarisation and oriented
along and perpendicular to the long axis of AuNR for parallel and perpendicular excitation polarisation,
respectively. The observed results are explained on the basis of Forster resonance energy transfer
(FRET) between the emission dipole of the UCNC and the plasmonic dipole of the AuNR [41].

Similar polarisation sensitive measurements on the LSPR of plasmonic Au nanorods and their
arrays can be found in the following articles [46-49].
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2.4. Nanowire

One-dimensional nanowires (NW) with length of tens of microns stand apart thanks to their easy
microscopic directionality [50,51] compared to other counterparts like dimer or NR, where because of
diffraction limit it is difficult to estimate the direction of the dimer axis or the long axis of the nanorod.
The LSPR response of a NW can be easily tuned by varying the polarisation angle between incident
polarisation and NW axis orientation. The excitation of LSPR in NW leads to well-known phenomenon
of surface-enhanced Raman scattering (SERS) [25,52,53] that has been explored extensively for chemical
and biological sensing. Mohanty et al. [54] demonstrated experimentally as well as from finite difference
time domain (FDTD) simulation that SERS signal in the AgNW system reached maximum when the
incident laser is perpendicular to NW axis. Similar results are also obtained by Li et al. [55] which
shows that when the SERS spectra of R6G is measured at one spot on a NW at different polarisation
angles it exhibits maximum at 0 = 90, i.e., for vertical polarisation as shown in the polar plot of Figure 5a.
The results remain consistent when measured at different spots of the sample. They also demonstrated
the dimerisation of 4-nitrobenzenethiol (4NBT) to p,p’-dimercaptoazobenzene (DMAB), arising from
LSPR and monitored via SERS. It is shown in Figure 5b that when the polarisation angle 0 changes
from 0 to 90, new peaks, e.g., V4, Vs, V¢ gradually increase, indicating the catalytical transformation
of 4NBT to DMAB. The above results are further substantiated with DF measurements (Figure 5c)
which shows that LSPR scattering increases with increase in polarisation angle and becomes maximum
for vertical polarisation, i.e., @ = 90. In another study, Wei and co-workers [25] have shown that
SERS of AgNW can be further enhanced by the presence of another metallic nanoparticle (AuNP)
adjacent to the wire. The magnitude of this coupling is shown to be independent of the NP shape
following the theoretical prediction. However, a strong polarisation dependence is expected owing
to strong local and polarisation sensitive electric field enhancements at the NP-NW junctions [56] as
shown by the SERS spectra in Figure 5d for different probe positions (Figure 5e) using Malachite green
isothiocyanate (MGITC). SERS is inherently a plasmonic property, and therefore remains absent from
Si substrate without Ag nanostructures, although the probe molecule MGITC is strongly resonant at
633 nm excitation. When SERS is probed on the trunk of the AgNW, a weak SERS signal is observed.
Surprisingly, a remarkable enhancement is observed in the SERS signal when an AuNP is placed near
the NW, thanks to the coupling between the AuNP-AgNW plasmons. A polarisation dependent study
of the SERS signal in AuNP-AgNW system reveals that when the laser is polarised perpendicularly to
the NW, the SERS intensity increases and remains weak for parallel polarisation [56]. The polarisation
pattern of the composite system shown in Figure 5f exhibits a dipolar pattern similar to the observation
by Mohanty [54] and Li [55].

Apart from SERS, one-photon photoluminescence (PL) is also found to be enhanced significantly
by the plasmon coupling between Ag nanowire on top of an Au film in the presence of a ~6 nm dielectric
spacer (gap plasmon mode) that supports a localised resonance. In their work, Hu and colleagues [57]
further demonstrated that the PL associated with the gap plasmon mode depends strongly on the
polarisation angle between the incident laser polarisation and the nanowire orientation, thus exhibits a
dipolar emission profile. In this regard, Figure 5g depicts the DF scattering spectra peaking at 655
nm, which is attributed to the gap plasmon mode. Clearly, for perpendicular polarisation (red curve)
the peak is much stronger than parallel polarisation (black curve). Such observation confirms that
gap plasmon mode is associated with the transverse charge oscillations across nanowire-film junction.
PL spectra in Figure 5h follow similar trend like DF scattering, i.e., maximum for perpendicular
polarisation (6 = 90°), which almost disappears under parallel polarisation (6 = 0°). Like excitation
polarisation, analyser or detection polarisation also plays a significant role in PL or SERS signal. It is
found that when the analyser polarisation (Figure 5i) is parallel with excitation polarisation, the detected
signal becomes strongest and diminishes when they are perpendicular to each other. In short, LSPR in
nanowires can be favourably excited when the incident laser is directed perpendicular to the nanowire
axis thanks to the spatial confinement of the electrons at the nanowire and the neighbouring medium
interface. Such polarisation dependence is in strong contrary to the case of spherical nanoparticle,
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where plasmon excitation is polarisation independent due to spherical geometry [58]. Apart from the
above-mentioned results, there are many other studies [59-62] which also discuss the polarisation

response LSPR response of plasmonic NWs.

(a) 120 = 60 I (b) Vv, Vi v,
3
-, / . o Al Y 2, Vs Y6 3
RN . i EAAw / Ve \
'z. 150 " 3' £ 3
3 4 s
8 400 8/ =2
> S| @
2 8 4
g opeo N 9 & |
g ; 2 L
Z 40 ' £ 9"
800 £ ~——2) [~
210 /330 1
1200 e : )
N A :
160 o % 1100 1200 1300 1400 1500 1600 400 500 600 700 800 900
270 Raman Shiftcm™) Wavelength(nm)
1361cm ™!

.(ﬂ_ EI .

Intensity

Intensity (a.u.)

1200 1400 1600 1200 1300 1400 1500 1600
Raman Shift (cm™1) Raman Shift (em™1)
1.0
— E/ Ag NW 2000 1000 M=1.03]

——ELAg NW

1600

®
-3
3

-------

1200

® ®

800

PL Intensity (a.u.)
PL intensity (a.u.)
2
3

&
3
3

Normalized scattering (a.u.)

400
200

550 600 650 700

‘Wavelength (nm)

600 650 700
Wavelength (nm)

0
500 550 600 650 700 750 800 750

Wavelength(nm)

550

Figure 5. (a) Polar plot of SERS intensity at different polarisation angles (I), at different spots (II) and (III)
Sin?0 function for comparison. (b) SERS spectrum of 4NBT on the NW at different polarisation angles 0.
(c) Experimentally measured DF scattering spectra with single NWs at different polarisation angles.
All the figures were reprinted (adapted) with permission from [54], Copyright 2018, Royal Society
of Chemistry. (d) Raman spectra of MGITC from different positions of the sample as shown in (e).
The scale bar is 400 nm. The arrow in the SEM image shows the incident polarisation. (f) SERS spectra
of MGITC at two different polarisations for the wire-particle shown in the inset. The scale bar in
the inset is 200 nm. All the figures were reprinted (adapted) with permission from [25], Copyright
2008, American Chemical Society. (g) The scattering spectra were obtained under horizontal (red)
and perpendicular (black) conditions. The strong and sharp resonant peak at 653 nm is due to the
gap plasmon resonance, which is barely present under parallel illumination. (h) and (i) represent the
excitation and detection polarisation dependences of PL intensity under 532 nm lasers, respectively.
The absolute peak intensities as a function of excitation and collection polarisation are shown in the
insets in (h) and (i), respectively, exhibiting a good dipole behaviour in photon absorption and emission
All the figures were reprinted (adapted) with permission from [57], Copyright 2013, Royal Society
of Chemistry.

2.5. Nanohole and Nanoellipse

Among the family of plasmonic nanostructures of different symmetry, elliptical geometry has

particular importance because of its inherent anisotropy [63,64]. Therefore, the LSPR of elliptical
plasmonic nanostructures is expected to be highly polarisation dependent. In this regard, Figure 6a
shows the reflectance spectra of Au ellipsoidal cylinders with axes 80 and 110 nm, inside an array with
a lattice constant of 200 nm under unpolarised and linearly polarised light parallel to two different
axes [65]. The inset depicts the SEM image of the nanoparticle array. The broad LSPR observed for
unpolarised excitation can be easily resolved by polarised illumination parallel to two axes, found to
be located near 630 and 730 nm. Experimental observations are further verified with DDA simulations
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in the sample with the same dimension, however, with a larger lattice constant of 300 nm. The DDA
simulations confirm the presence of two distinct resonance peaks even with unpolarised excitation
when there is no coupling between neighbouring particles due to a larger lattice constant. Nevertheless,
selective polarisation parallel to axes can lead to the excitation of the individual LSPR as evident from
Figure 6b. Of late, Xia and co-workers [66] exploited the inherent asymmetry of elliptical graphene
disks (Figure 6¢) and showed that two orthogonal plasmonic modes along minor and major axes can
be excited together or separately by choosing the incident light polarisation. The polarisation response
is shown in Figure 6d,e for minor and major axis excitation, respectively, that reveals that resonant
high frequency modes are favourably excited for minor axis polarisation. Apart from that, with an
increase in AR, LSPR frequency for the eigenmode along the minor axis shows a blueshift, while it
remains almost unchanged for the eigenmode along the major axis. Such observation indicates that the
LSPR frequency of the mode along the minor axis is more sensitive to its length. To understand the
role of incident light polarisation, first, the results are shown for a round graphene disk in Figure 6f,i.
Expectedly, polarisation independent isotropic response is observed due to spherical symmetry of the
round disk. On the other hand, Figure 6g,h shows polarisation dependent scattering spectra of two
different sized ellipses by varying the polarisation direction from the minor axis (0°) to the major axis
(90°). The relative strength of minor and major axes modes is shown by the polar plots for two ellipses
in Figure 6j,k. They found that for both the ellipses, scattered intensity along the major axis (blue curve)
is larger than that along the minor axis (red curve), thereby suggesting that light-matter interaction
takes place predominantly along the major axis. Notably, the frequency difference between major and
minor axes plasmon modes increases with increase in size difference between them, therefore provides
more degrees of freedom for light manipulation. A similar kind of polarisation dependent response in
plasmonic elliptical nanoholes can also be found elsewhere [67-69].
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Figure 6. (a) The reflectance spectra of an array of ellipsoidal Au nanoparticles with axes of 80 and
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110 nm, with a lattice constant of 200 nm over ITO coated glass under unpolarised illumination and
linear polarisations parallel to short (x-pol) and large (y-pol) axes. The inset gives SEM images of the
corresponding ellipsoid nanoparticle array. (b) DDA simulation results for the extinction efficiency of a
single Au nanoparticle with 80 and 110 nm axes standing on ITO/Air interface. All the figures were
reprinted (adapted) with permission from [65], Copyright 2010, The Optical Society. (c) The schematic
diagram and the SEM image of periodic graphene ellipse arrays on BaF;. The length of semi-major and
semi-minor axes are a and b, respectively. Scale bar of the SEM image: 140 nm. Experimental extinction
spectra at normal incidence with the polarisation along (d) minor and (e) major axes, respectively.
From yellow line to purple line, the sizes of ellipse are a = 77:5 nm, b = 30 nm (orange); a = 72:5 nm,
b = 25 nm (green); a = 67:5 nm, b = 20 nm (blue); a = 62:5 nm, b = 15 nm (purple), respectively.
Polarisation-dependent extinction spectra of three different ellipticity structures. The extinction spectra
of normal incident light with polarisations varied from 0° to 90° for (f) round graphene disk with
45 nm radius. (g) Ellipse with a = 70 nm, b = 38 nm; (h) ellipse with a = 70 nm, b = 32 nm. (i-k) are
polar plots showing the extinction intensities for all polarisation direction of the two resonant plasmonic
modes corresponding to (f-h), respectively. All the figures were reprinted (adapted) with permission
from [66], Copyright 2019, The Optical Society.

2.6. Nanoprism and Nanotriangle

Triangular nanoprisms are a special type of plasmonic nanostructure where the combination
of LSPR excitation and lightning rod effects leads to strong field enhancement [70,71]. Triangular
Au and Ag nanoprisms hold advantages over flat and round surfaced nanostructures thanks to the
presence of the sharp tips and edges, known as “hot spots” which favours strong enhancement in
their LSPR [20,72] and allows high sensitivity to bulk and local dielectric changes. Several theoretical
calculations by DDA simulation have shown the excitation of multipolar (I = 1, 2 and 3) LSPR modes in
nanotriangles [20,73-75]. In their work, Félidj et al. [21] used far-field extinction spectroscopy to study
in-plane multipolar LSPR modes on regular arrays of Au triangular particles (Figure 7a). Figure 7b
depicts the extinction spectra corresponding to the arrays of different lateral size. For the array A with
smallest lateral size, the LSPR response consists of a single peak at 590 nm, which is redshifted to
665 nm with increasing intensity for array B. With an increase in lateral size to arrays C and D, the
first peak further redshifts with an additional weak peak appearing on the blue side of the spectrum.
The strong peak in the longer wavelength regime is assigned to dipolar resonance (I = 1) while the
weaker peak in the shorter wavelength regime is ascribed to quadrupolar mode (I = 2). It is shown that
the theoretically calculated extinction cross-sections match well with the experimental results within
+ 10 nm. For further large triangle of edge length a = 360 nm and grating constant of 840 nm (array E),
I=1and [ =2 peak further redshifted to 974 and 672 nm while an additional new mode of | = 3 appears
at 615 nm. In a rather unconventional work, Gao at co-workers [74] theoretically demonstrated that
when the tips and edges, i.e., hotspots of lateral triangular nanoprisms are exposed to the environment
directly, their LSPR characteristics are predominantly controlled by the polarisation over propagation.
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Figure 7. (a) Scanning electron microscopy image of the array A, constituted of gold nanotriangles
on ITO. (b) Experimental extinction spectra of gold nanotriangles. The spectra correspond to triangle
arrays with five different lateral sides. (A) 50 nm, (B) 100 nm, (C) 150 nm, (D) 200 nm, and (E) 260 nm.
All the figures were reprinted (adapted) with permission from [21], Copyright 2008, American Institute
of Physics.

2.7. Nanocrescent

Nanocrescents (NC) are a very special type of nanostructures which are fabricated using nanosphere
template lithography (NTL) [76,77]. Bukasov and Shumaker-Parry [22] demonstrated that Polystyrene
spheres (PS) of varying diameters can be exploited as templates to fabricate NCs with well-defined
shape and size using NTL, as shown in Figure 8a—e. The NCs have sharp corners that can induce
strong electromagnetic field enhancement. The LSPR of NCs is easily tunable by structural parameters
like thickness, tip sharpness, tip gap angle, orientation [22,78]. Apart from that, due to the asymmetry
of the crescent structure, LSPR is believed to be highly polarisation dependent. Figure 8f shows
the extinction spectra consists of several peaks of the NCs produced from PS templates of different
diameters [22]. For all the NCs the weakest peaks appeared in the visible range around 600 + 50 nm
range which is ascribed to the out-of-plane LSPR mode that is less sensitive to the NC orientation as
well as to the incident polarisation. The dominating longitudinal LSPR peaks for all NCs appear in the
longer wavelength side, e.g., at 2640 and 2470 nm for 410 and 356 nm diameter templates when the
incident light is polarised along the long axis of the NC. On the other hand, transverse LSPR peak
dominates for polarisation along the short axis of NC, e.g., 1450 nm peak for the templates of diameter
356 nm. Notably, both the longitudinal and transverse LSPR peaks of the NCs redshift with an increase
in the template diameter as depicted in Figure 8g. The longitudinal LSPR peaks are found to be
very sensitive to the incident polarisation as it reduced by 300-500% with unfavourable polarisation,
while the transverse peaks are less sensitive which changes only by 10-30% against the variation of
incident polarisation. In this regard, Cooper et al. [79] studied the polarisation sensitive LSPR response
of open-structure NCs (Figure 8h). As shown in Figure 8i, LSPR extinction spectra of open-tip AuNCs
upon unpolarised light excitation, consists of four distinct peaks, each of which is associated with
particular mode.
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Figure 8. SEM images of nanocrescents template with PS beads with diameters of (a—c) 356 nm,
(d) 194 nm beads, and (e) nanorings template with 125 nm diameter PS beads. (f) Ensemble extinction
spectra with the PS bead template diameter shown near the longitudinal peaks. (g) The linear
dependence of nanocrescent LSPR peaks on the diameter of the PS template used to fabricate the
nanocrescents. All the figures were reprinted (adapted) with permission from [22], Copyright
2007, American Chemical Society. (h) Illustration of the direction of electric field polarisation with
respect to nanocrescent axes for distinct resonance modes. (i) Extinction spectra of 356 nm diameter
template AuNC. The varying polarisation angles (P) demonstrate selective excitation, co-excitation or
non-excitation of resonances at specific angles. Peak labels correspond to unique resonance modes
described in text: 1, long axis dipole; 2, short axis dipole; 3, long axis quadrupole; 4, out-of-plane dipole.
(j) Polar plot of normalised extinction values for the LA-D (red) and SA-D (purple) resonance modes,
demonstrating the anisotropy of 356 nm diameter AuNCs. (k) Experimental (solid) and calculated
(dashed) polarisation anisotropy values (A) for LA-D (red) and SA-D (purple) resonances of the same
AuNC sample. All the figures were reprinted (adapted) with permission from [79], Copyright 2013,
American Chemical Society.

The peaks shown in Figure 8f under different polarisation can be assigned to particular resonance
mode. The position of these peaks can be tuned by changing the angle between the incident light
polarisation and the nanostructure orientation. By setting the incident light polarisation along the long
and short axes of the nanocrescents, various resonance modes can be excited selectively and likewise
can be assigned to long axis dipole (LA-D), short axis dipole (SA-D), long axis quadrupole (LA-Q),
and out-of-plane dipole (OOPD) modes, as shown in Figure 8i. Both LA-D and LA-Q resonance modes
are selectively excited when the incident light polarisation is along the long axis of the nanocrescent
(0°). Notably, LA-D resonance mode shows strong electric field enhancement and appears between
the near- to mid-infrared regime. On the other hand, the LA-Q mode is much weaker compared
to LA-D and likewise produces a weaker peak with lower field enhancement. On the other hand,
when light is polarised along the short axis (SA) of the nanocrescent (90°), i.e., orthogonal to LA, SA-D
mode is excited, which is although strong, however less dominant than LA-D, thus not coupled with
incident light most efficiently. The last one, i.e., out-of-plane weak dipole (OOP-D) mode can be excited
irrespective of the incident polarisation, in a direction perpendicular to the plane of the nanocrescent
around the visible wavelength range. Notably, while LA-D and SA-D modes redshift with increasing
template diameter, OOP-D mode remains invariant against the variation of template diameter, similar
to observations by Bukasov et al. [22]. The polarisation dependence of the nanocrescent LSPR can
be visualised from the 360° polar plot as shown in Figure 8j. For LA-D mode maximum intensity is
obtained for 0° and 180°, whereas SA-D shows maxima for 90° and 270°, thus indicates that these two
modes are orthogonal to each other. Likewise, PA discussed before can be calculated for long axis
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as PA1 o = (Ita—Isa)/(Ipa+Isa) [80]. Here It o and Igp are defined as the normalised intensities of the
LA-D and SA-D resonance modes, respectively, for any given angle. From Figure 8k it is apparent that
both calculated and measured normalised extinction for LA-D mode at 2278 nm and SA-D mode at
1284 nm become 1 at 0° and 90° for PA; 5 and PAgy, respectively. In addition, Goerlitzer et al. [81]
and Zhang et al. [82] also demonstrated that LSPR of NCs depends strongly on the polarisation of the
excitation light.

2.8. Hybrid Plasmonic Nanostructures

The quest for an enhanced electromagnetic field with superior signal-to-noise ratio from the
optical signal leads to the idea of engineered plasmonic nanostructures [83]. Two-dimensional (2D)
materials, thanks to their reduced symmetry provides ample controllability over physical properties,
thus become an ideal candidate in the field of optics, optoelectronics and nanophotonics [84-86].
The integration of a 2D material with a plasmonic nanomaterial leads to a new generation of hybrid
nanostructures which can efficiently manipulate the light through LSPR, that leads to exotic spectroscopy
enhancement phenomenon, including SERS, PL, enhanced transmission, etc. [87-89]. Among the
family of 2D materials/plasmonic hybrid nanostructures, black phosphorus (BP) [90,91] and GaSe
metal chalcogenides [92] need special mention thanks to their tunable optical, electrical and electronic
properties. In a recent theoretical framework, Deng and co-workers [26] demonstrated that excitation
of surface plasmon polaritons (SPP) at the metal/BP array interface leads to broadband enhanced
transmission which is found to be strongly polarisation dependent because of the inherent anisotropy
of BP structure, coming from x-(armchair) and y-(zigzag) directions. A schematic diagram of gold
patch arrays with a BP sheet hybrid structure is shown in Figure 9a. Clearly in both x-(armchair) and
y-(zigzag) directions, transmission enhanced significantly (Figure 9b) through gold slit arrays after the
BP incorporation, when LSPR at gold/BP interface couples with the SSP modes of BP. Interestingly;,
enhancement of transmissions is strongly wavelength dependent and also occurs differently for
different polarisations, which leads to anisotropic polarisation response.
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Figure 9. (a) Schematic of continuous BP sheet at the bottom of the gold patch arrays and (b)
transmission of the structure with and without the BP sheet. (¢) Transmission spectra of the gold patch
arrays structures with BP under different polarisation angles. All the figures were reprinted (adapted)
with permission from [26], Copyright 2019, The Optical Society. (d) SEM image of the Ag nanoprism
gratings on GaSe layers. (e) Measured PL spectra with TM and TE polarisations for the normal GaSe/Ag
hybrid structure. (f) Measured PL spectra for the GaSe/Ag grating structure, along two detection
polarisation directions, TM and TE, with TM and TE excitation polarisations, respectively. The “TE-TE”
(“TM-TM”, “TE-TM”, and “TM~-TE”) indicates the spectrum pumped with the TE (TM, TE, and TM)
polarised incidence and detected along the TE (TM, TM, and TE) polarisation direction. All the figures
were reprinted (adapted) with permission from [93], Copyright 2019, American Chemical Society.
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To obtain a clear picture, Figure 9c shows the polarisation dependent transmission spectra at
different wavelengths. It can be seen that for varying polarisation angle from 0° to 90°, at shorter
wavelengths transmission slightly decreases, while transmission gets higher at longer wavelengths [26].
Such observation can be understood from wavelength dependence of x- and y-polarisation transmission.
Below 15 um, for both the x- and y-polarisation, the transmission with BP is almost indistinguishable.
However, for above 15 pum, as the excitation of the propagating SPPs is not possible in the x-direction,
transmission is reduced significantly. Nevertheless, transmission remains high in the y-direction
(Figure 9b). Hence, a strong polarisation-dependent wave transmission is observed in the proposed
hybrid nanostructures. In another similar work, Wan et al. [93] fabricated hybrid plasmonic
nanostructures by designing a periodic array of Ag metallic nanostructures on typical 2D GaSe
layers. Experimental results indicate that both SERS and PL signal enhanced significantly in the hybrid
nanostructures compared to pristine one and the effect is found to be strongest for thinnest GaSe layer.
Based on the plasmonic-enhanced optical response, they tried to manipulate the optical properties
on the GaSe/Ag hybrid nanostructure. To realise the optical anisotropy, it is desirable to have broken
structural symmetry in the x-y plane, which allows selective excitation of transverse and longitudinal
surface plasmons by varying incident polarisation. For practical application, Ag nanoprisms with
patterned gratings were imprinted on the GaSe layer, along the x axis with a periodicity of 1176 nm,
which can be clearly seen from the SEM image in Figure 9d. To experimentally observe the optical
anisotropy, PL spectra are recorded at TE (L to x-axis)) and TM (|| to x axis) polarisation as shown
in Figure 9¢f. We learnt from Figure 9e that PL spectra in normal GaSe/Ag hybrid structure is
polarisation-independent because of the presence of low anisotropy in geometric configuration.
In stark contrast, a strong polarisation dependent PL spectrum is obtained for the GaSe/Ag grating
structure. For example, under TM excitation polarisation, the PL at TM- and TE-polarised detections
show a 9.3% polarisation which remains 8.2% for TE polarised excitation. Both the excitation and
detection of PL signal show strong polarisation dependence which indicates anisotropic polarisation
response. Precisely, for both TE and TM excitations, PL signals are detected to be higher along the TM
polarisation [93]. On the other hand, when detected in two different polarisation directions, band edge
emissions are more favourably excited for TE polarised excitation compared to TM polarisation.
In short, polarisation sensitive, selective excitation and emission in GaSe/Ag grating structure confirms
the role of Ag nanoprism gratings in inducing anisotropic plasmonic pumping in GaSe luminescence,
which holds tremendous potential application in fabricating anisotropic 2D nanodevices.

2.9. Selected Applications

Manipulation of the polarisation state of light at the nanoscale by plasmonic nanostructures of
various shape and size discussed above has led to notable applications in photonics, optoelectronic
devices, plasmonic circuits and optical sensing techniques [94-98]. Of late, key functional elements of
optoelectronic devices and nanophotonic circuitry have been realised utilising plasmonic structures,
providing proof of principle devices at scales, which is otherwise not achievable with conventional
photonics [95,99,100]. Plasmonics also continues to demonstrate progressing utility in biological and
chemical fields, with plasmonic sensing methods providing single-molecule sensitivity at nanoscale
dimensions [101-103]. The unique structural orientation and favourable polarisation direction
of individual nanostructures have given rise to many diverse applications. For example, LSPRs in
nanoparticles have been utilised to locally enhance Raman scattering, with dimer, trimer and quadrumer
nanoparticle arrangements demonstrating confined Raman enhancement hot-spots, with marked
polarisation dependence [104-106]. Nanorods, due to their polarisation dependent longitudinal LSPR
modes, have been employed as orientation sensors, also allowing for precise alignment and rotation
using polarised laser tweezer techniques [33,107]. Recently, one-dimensional nanowires have found
wide-ranging applications, most notably in the development of novel plasmonic circuitry as plasmonic
waveguides, routers, multiplexers and logic gates, etc. [60,100,108,109].
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Photonic devices have been proposed as the foundation for the next generation of
semiconductor-based computing thanks to their remarkable speed, bandwidth and energy efficiency as
compared to their electronic counterparts. Plasmonic analogues of optical components can be replicated
at nanoscale dimensions, and many of the functional elements required for plasmon-based integrated
circuits have been developed recently, including Plasmonic waveguides, multiplexers, de-multiplexers,
emitters, detectors, gain media and Boolean logic gates, etc. [60,100,108,109]. Among the variety
of plasmonic nanostructures, Ag nanowires (NWs) are of particular interest because of the low
loss propagation of surface plasmons (SPs) along the wire in the visible to near-infrared spectral
range [110,111]. The coupling of far-field light to propagating SPs can be achieved when light is
incident on metal NW terminals, allowing for subwavelength confinement as the SP travels along
the NW before being emitted as a photon at the distal end. This in/out coupling process requires a
scattering mechanism to take place and, as such, is found to occur only at areas of symmetry breaking
within the wire, such as wire ends or sharp discontinuities [112]. Coupling of light to the AgNW in
Figure 10a(i) by focused laser illumination is illustrated in Figure 10a(ii), launching a propagating SP
that is re-emitted as scattered light from the NW terminal. These propagating SP distributions can be
successfully imaged by coating the NWs with fluorescent quantum dots (QDs), which are excited by
energy transfer from the propagating SPs [8]. Unique near-field distribution patterns are observed as a
result of the superposition of different SP modes within the NW. It can be seen that these distributions
change as the polarisation of the incident light is varied, with Figure 10a(iii,iv) demonstrating the
patterns obtained for orthogonal polarisations using QD imaging.
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Figure 10. (a) (i) SEM image of an AgNW, scale bar is 5 pm. (ii) Scattering image during focused laser
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illumination of the NW terminal. (iii,iv) Quantum dot fluorescence imaging of the NW’s propagating
SP field distribution for different incident polarisations indicated by the green arrows. (b) (i) White
light image, (ii) scattering image, and (iii) QD fluorescence image of a branched NW structure during
polarised illumination. 6 indicates the angle of polarisation of the incident light. (c) Output intensity of
branch terminals A and B as the incident polarisation angle 0 is varied. Selective routing into either
branch can be achieved by tuning of the incident polarisation. All the figures were reprinted (adapted)
with permission from [8], Copyright 2015, Royal Society of Chemistry.

Coupling of light to NWs at regions other than terminals or discontinuities is observed only
as a result of near-field interactions and cannot occur through far-field illumination [61]. However,
these near-field interactions were shown to facilitate the transfer of propagating SPs from one NW
to an adjacent NW due to near-field coupling, allowing SPs to propagate through branched NW
networks [60]. The successful coupling of propagating SPs from one NW to another depends on the
near-field intensity at the junction between the two, with the SP either being routed into the adjacent
wire or continuing in the original wire. The near-field patterns observed in these NWs are found to
be strongly dependent on the polarisation of incident light. For example, the simple branched NW
network shown in Figure 10b(i,ii) allows selective routing of propagating SPs into either branch A or B
by tuning the incident polarisation. The near-field coupling to branch A from the main wire occurs due
to the large near-field intensity at the junction between the two (marked by the upper white arrow in
Figure 10b(iii)), while the weak near-field intensity at the junction with branch B (lower white arrow)
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does not lead to successful coupling. Figure 10c shows the output intensity from both A and B as the
polarisation is rotated. A polarisation angle of 6 = 150° exhibits a maximum scattering intensity from
A and a minimum from B, while an angle of 0 ~ 230° exhibits a maximum from B and minimum from
A, demonstrating the polarisation selective routing behaviour. The routing process is also found to
be dependent on the incident wavelength, leading to light at different frequencies being routed into
different branches within the network, allowing for de-multiplexing of multi-wavelength signals [60].

In another pioneer work, Wei and co-workers demonstrated that, in simple AgNW networks,
interference of plasmons between primary and secondary/branched NWs modulates the near-field
distribution to control the output optical signal, which can be exploited to realise the complete family
of Boolean logic gates [108,113]. NW networks with two input terminals (I1 and I12) were used to
combine propagating SPs within the main wire, where both the phase difference and polarisation angle
led to interference that dictated the output (O) of the NW network as shown in Figure 11a. Polarisation
control allows coupling between wires to be maximised while tuning the relative phase difference
between the propagating SPs allows their interaction to lead to constructive or destructive interference.
Specific input phase and polarisations demonstrate a maximum to minimum intensity ratio larger
than 10, allowing for simple binary classification of ‘ON’ and ‘OFF’ states, and the performance of
basic logical functions (Figure 11a). For example, when inputs I1 and 12, separately or together, leads
to maximum output at O, an “OR” gate is realised. On the other hand, when the output signal is
obtained only for individual inputs and disappears (OFF) when two SPs propagate together owing to
destructive interference between them, the NW network behaves as XOR gate. Further complicated
NW networks with two inputs, I1 and 12, and two output terminals, O1 and O2, (Figure 11b) are also
exploited to realise the additional logic gates. It can be seen from Figure 11b that for simultaneous
inputs from I1 and 12, the outputs O1 and O2 are complementary to each other. An “AND” gate can
be realised by considering O2 as the gate output, setting the output intensity threshold for the ‘ON’
state to 450 au, and tuning the relative phase delay so that simultaneous inputs at I1 and 12 lead to a
maximum output at O2. In this case, inputs at I1 and 12 individually lead to a sub-threshold output at
02 (~100 and ~350 au, respectively) yielding a ‘low” output, but simultaneous inputs at I1 and 12 leads
to an output at O2 that exceeds the threshold (~800 au) yielding a “high’ output. Similar four-terminal
NW networks are also proposed to demonstrate other logical functionalities like 'NOT’, 'NAND’ and
binary ‘Adder’ operations as illustrated in Figure 11c.

Wei et al. further demonstrated the ability of AgNW networks to cascade basic logic functions to
create more complex logic functions [109]. In their work, a four-terminal branched AgNW network
was exploited to realise a universal logical ‘NOR’ gate by cascading ‘OR’ and ‘NOT’ gates as illustrated
in Figure 11d. Operation of both the ‘OR” and ‘NOT” gates can be tuned by varying the intensity;,
polarisation and phase of I1 and 12. The ‘NOR’ gate is illustrated by considering terminals I1 and 12 as
inputs where C serves as control terminal which inverts the signal, resulting in the binary ‘high/low’
states. The first section of the network consists of a primary and branched NW, with inputs I1 and 12
that operate as an ‘OR’ gate (as before), with inputs from I1 and I2 separately or together leading to a
‘high’ output from the gate. The second section takes the output from the first and, using a control
input C from the second NW branch, uses destructive interference to realise a logical ‘NOT’ gate,
inverting the output of the ‘OR’ gate. The realisation of the ‘'NOR’ gate can be understood clearly by
looking into the scattering images of the NW network with different combination of the inputs I1, 12,
and C as shown in Figure 11f-k. For example, following inputs from I1 and 12 separately or together,
the output is ‘high’ (as depicted by the yellow circle), indicating the ‘OR” functionality (Figure 11f-h).
Alternatively, when I1 and 12 are ‘low” and C is enabled, the network output is ‘high’, thus depicting
the ‘NOT’ operation (i). Finally, the ‘’NOR’ gate is demonstrated when the ‘NOT” gate acts upon the
‘OR’ gate, i.e., when the output is inverted to ‘low” with both or either I1 and 12 being ‘high’, due to the
control input C (j,k).
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Figure 11. (a) Optical image of a simple branched NW network with two inputs (I1 and 12), and one
output (O). The graph shows the output scattering intensity at O as a function optical phase delay when
input is either I1 or 12 (green), and for simultaneous inputs I1 and 12 (black). Phase change does not
impact output intensity for single inputs, however, for dual inputs, relative phase delay between I1 and
12 leads to interference that modulates the intensity at output O. (b) Optical image of a two-input (I1, 12)
two output (O1, O2) NW network. The graph shows the variation in output intensity as a function
of phase delay for both outputs with various input combinations. As before, no change in output
intensity is observed as the phase of single inputs are varied (green, blue, dark blue). When propagating
SPs are launched in both inputs simultaneously, the relative phase between I1 and 12 dictates the
output intensity at O1 (red) and O2 (black). (c) Proposed schematics for various other interferometric
logic operations in simple NW networks. All the figures were reprinted (adapted) with permission
from [108], Copyright 2011, American Chemical Society. (d) Schematic of an optical cascaded logic gate
in a four terminal AGNW network. (e) Optical image of the network. Propagating SPs can be launched
at inputs I1 and 12 to perform the OR operation using phase-dependent interference before the output
interferes with the control C to perform the interferometric NOT operation. (f-k) Scattering images
illustrating the operation of the OR and NOT gates (with the green and yellow circles locating the
outputs of the OR and NOT gates, respectively, while the red arrows indicate polarisation orientation).
Launching propagating SPs at inputs I1 or 12 individually (f,g) or simultaneously (h) leads to a high
output intensity from the OR gate. A low input to the NOT gate leads to a high output (i), while a high
input leads to a low output (j k). All the figures were reprinted (adapted) with permission from [109],
Copyright 2011, Springer Nature.

‘NOR’ and ‘NAND’ gates are universal logic gates and form the foundation of Boolean logic
networks central to electronic circuitry. Complex phase and polarisation dependent NW networks
constitute a realistic route for plasmonic circuitry to overcome fundamental size limitations of optical
computing devices, allowing for analogous plasmonic integrated circuits to be scaled down to sizes
comparable with standard electronic ICs. Phase and polarisation dependent logic operations are a
promising foundation for future on-chip integrated optical computing.

Manipulation of nanoscale objects by intense laser field through optical trapping and guided
transport in plasmonic nanostructures has found tremendous applications in the field of hydrodynamics,
microfluidics and lab-on-a-chip studies [114-117]. Strong electromagnetic field gradients and resulting
optical gradient forces in localised LSPR of plasmonic nanostructures allows for trapping and
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manipulation of nearby nano-objects. Several plasmonic nanostructures of different shapes have
been proposed for trapping and guided transport of single nanoparticles [114-117]. However, we are
particularly interested in the work by Yang et al. who demonstrated for the first time the guided
transport of TiO; nanoparticles (NP) in AgNW in aqueous solution at single-particle levels with
dedicated applications in microfluidics [118]. Using focused laser illumination of NW terminals,
they successfully demonstrated the trapping of TiO; nanoparticles on NW surfaces in fluids. It was
found that plasmonic trapping also leads to the transport of the nanoparticles along the wire toward the
incident terminal. It is important to note that the nanoparticle trajectory is explicitly determined by the
combination of the nanostructure shape and direction of incident laser polarisation. For example, in a
V-shaped NW dimer, polarisation parallel to the left branch of the NW induces the movement of the
NP along the left branch only (Figure 12a), whereas polarisation parallel to the right branch guides the
NP along the right branch only (Figure 12b). Far-field optical manipulation methods like laser tweezers
have become widely used for particle trapping and transport, however, plasmonic nanostructures
provide a route towards precise control at nanoscale dimensions, with a unique versatility provided by
various nanostructure shapes.
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Figure 12. Images of trapping and guided transport of a TiO, nanoparticle along a v-shaped NW
dimer structure (scale bar is 1 um). Images in (a) illustrate the transport of a nanoparticle along the
left branch for an incident polarisation orientation parallel to the left branch (marked by the white
arrow). Images in (b) demonstrate transport along the right branch for orientation parallel to the right
branch. Transport can be tuned to either the left or right branch by varying the incident polarisation.
All the figures were reprinted (adapted) with permission from [118], Copyright 2016, Royal Society of
Chemistry. Similar NW dimer structures were used to perform polarisation tuneable Remote SERS.
(c) Comparison of the Remote SERS signal generated in NW dimer structures when propagating SPs
are generated in (i) the left branch only (8 mW), (ii) the right branch only (8 mW) and (iii) both branches
simultaneously (4 mW per branch). Incident polarisations are marked by the blue arrows. (d) Tuning of
SERS signal intensity by varying the incident polarisation orientations. (iv) Polarisations parallel to their
respective branches generated the greatest signal enhancement, whereas enhancement was reduced
when both polarisations were perpendicular to their respective branches (i). All the figures were
reprinted (adapted) with permission from [119], Copyright 2013, American Institute of Physics.

Plasmonic nanostructures have also led to notable advancements in various biosensing
techniques [98]. Most notably, Surface Enhanced Raman Spectroscopy (SERS) has demonstrated
the practical abilities of plasmon based sensing methodologies and has been shown to provide up to a
10'°-10!! enhancement over conventional Raman Spectroscopy [120-122]. Plasmonic nanostructures
have been utilised as SERS probes for nanoscale Raman measurements, as LSPRs provide enhanced
electromagnetic field strengths in nanoscale hot-spots regions. SERS has also been employed in NW
structures, utilising propagating surface plasmons to transport incident light and perform Raman
spectroscopy at distances several microns from the laser illumination. Remote SERS, while weaker
than conventional SERS methods, provides notable advantages as the nanoscale volume probed avoids
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background noise due to the incident illumination while also isolating heat from the incident light source
reducing photodamage experienced by samples at high illumination intensities [123]. Following the
work by Dasgupta and co-workers, two AgNWs are coupled serially to form a NW-dimer, where remote
SERS is achieved by performing dual-path illumination at both distal ends of the NW-dimer [119].
They observed that the SERS signal was enhanced significantly when propagating SPs were excited
simultaneously in both NWs (dual-path) compared to single-path excitation, at identical excitation
powers. This observation can be understood clearly from Figure 12¢, where single path excitation
was performed in each branch with an incident power of 8 mW (i,ii), before dual-path excitation was
performed by exciting both branches simultaneously with 4 mW laser power (iii). Dual-path excitation
led to a 70% enhancement in the SERS signal when compared to single-path excitation with the same
total excitation power.

This dual path SERS enhancement was found to be strongly dependent on the incident polarisation
of both excitation beams. For polarisation perpendicular to the NWs (Figure 12d(i)), no SERS signal is
obtained. Rotating the polarisation parallel to either of the NW branches led to a noticeable signal
polarisations were parallel to their respective NW branches (iv). Tuning of the incident polarisations
alters the near-field intensity at the junction hot-spot, allowing for control and modulation of the SERS
intensity generated at the junction between wires.

Polarisation sensitive optical response of plasmonic nanostructures have also been proposed
for use in novel SERS-based security labels [124,125]. These labels are constructed from arrays of
short Ag coated plasmonic NWs orientated orthogonally in specific pattern designs, with embedded
molecular probes that allow information to be read out through pixel-by-pixel SERS analysis of the
target molecules. The polarisation dependence of these nanostructure arrays allows separate images to
be simultaneously encoded and later revealed through polarised SERS imaging. The pixel-by-pixel
SERS response for an individual NW coated in 4-MBT target molecules for horizontal and vertical
polarisations is shown in Figure 13a,b, with the SERS intensity being collected from the 1079 cm™!
band. 2D SERS imaging shows a strong Raman enhancement around the edges and tips of the NW
for horizontally polarised light, while for vertically polarised light enhancement is only seen at the
NW tips. Figure 13c—f represents a few examples of custom made plasmonic nanostructures that
demonstrate the capacity for covert security labels based on polarisation sensitive SERS imaging.
Simple arrays in (c) show how horizontally polarised light (ii) leads to illumination of vertically aligned
NWs, while vertically polarised light (iii) leads to illumination of horizontal NWs. Orthogonally
polarised SERS imaging allow specific designs to be separately resolved by selective excitation of
horizontal or vertical NWs (d,e). Based on this idea the images in Figure 13f demonstrate a more
sophisticated encryption of molecular information from complex plasmonic structures composed of
horizontal and vertical NWs. In short, SERS based plasmonic structures demonstrate the capacity to
be utilised as advanced anti-counterfeiting labels for next-generation securities that are difficult to
replicate yet easily verified.

Other than the NW structures described above, basic nanoparticle dimer, as well as trimer and
quadrumer structures have shown to create polarisation dependent local hot-spots in the region between
nanoparticles due to plasmonic coupling within sufficiently close interparticle separation [102,104-106].
Nanodisk Au dimers, for example, have been used to design nanoscale plasmonic cavities in which
SERS measurements of graphene suspended on cavity exhibits an enhancement of 10> within the
cavity [126] for certain polarisations. The sample configuration is depicted in Figure 13g. It is
also shown that the SERS signal depends strongly on the incident polarisation of 638 nm excitation
(Figure 13h,i). For polarisations parallel to the nanodisk dimer axis, 2D Raman peak (2670 cm™})
exhibits strong enhancement and reaches a maximum (Figure 13h). However, when the polarisation is
rotated by 90° the nanodisks get decoupled and as the localisation is lifted, Raman signal (Figure 13i)
drops by a factor of 20.
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Anisotropic polarisation responses of plasmonic nanostructures have also found applications as
novel orientation sensors DF microscopy at single-particle level [107]. For example, LSPR scattering
of Au nanorods shown in Figure 14a is strongly polarised along the long axis of the nanorod,
which makes them an ideal candidate for orientation sensors. At the same time, AuNRs demonstrate
compelling advantages over conventional fluorescent methods, based on fluorophore dyes in terms of
the photostability of the scattering intensity.
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Figure 13. (a) SERS imaging of a single Ag NW under horizontal and vertical polarised light (scale bar
is 1 um). The NW is coated in 4-MBT target molecules, and the pixel intensities in the image are
collected from the 1079 cm™~! band of the SERS spectra. (b) The SERS spectra obtained at points 1,
2,3 and 4 in (a), demonstrating much stronger enhancement for light polarised perpendicularly to
the NW. (c—f) Encrypted designs formed from horizontal and vertical AgNWs (scale bar is 1 um).
(i) SEM images, (ii) horizontally polarised and (iii) vertically polarised SERS images. All the figures
were reprinted (adapted) with permission from [124], Copyright 2014, Royal Society of Chemistry.
(g) Diagram of the polarisation dependent nanodisk dimer structure with the Raman hot-spot located
in the nanogap between disks. (h,i) SERS spectra obtained from the hot-spot region for polarisation
parallel and perpendicular to the longitudinal dimer mode at an incident wavelength of 638 nm.
Maximum enhancement is obtained when the longitudinal LSPR of the dimer structure is excited with
parallel polarisation, with this enhancement reducing when polarisation is orientated perpendicular to
the long dimer axis and the nanodisks de-couple. (j) The enhancement factor is calculated by estimating
the calculated integrated near-field intensity within the cavity and comparing it to the laser spot
size. Here, the nanogap region is estimated to account for 90% of the enhancement, leading to a local
enhancement factor of 4 x 10 for polarisations parallel to the longitudinal dimer mode. All the figures
were reprinted (adapted) with permission from [126], Copyright 2013, American Chemical Society.

For plasmonic AuNRs, scattering intensity remains constant over the period of measurement
(Figure 14b), whereas fluorescent dyes and quantum dots suffer from photobleaching, thereby reducing
the emitted intensity over time and limiting timescales over which images can be recorded. For Au
nanorods, the scattering intensity (Isca) recorded for a certain polarisation orientation is proportional
to the square of the cosine of the angle 0 between the rod’s longitudinal axis and the incident
polarisation. The NR orientation can, therefore, be back-calculated from the recorded intensity,
where 0 = arccos( \/E), and monitored as the NR rotates (Figure 14b).
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Figure 14. (a) SEM image of the Au nanorod orientation sensors (b) Scattered light intensity time
traces recorded for orthogonal polarisations (channels 1 and 2) observed during DF imaging of a single
rotating Au nanorod. Maximum signals are recorded in a channel when the nanorod orientation is
parallel to the channel’s polarisation axis. The sum of both channels illustrates a constant scatter
intensity as the nanorod rotates. From these intensities, the orientation angle can be calculated. All the
figures were reprinted (adapted) with permission from [107], Copyright 2005, American Chemical
Society. (c) DF images and corresponding scattering intensities of an AgNR rotated using a polarised
laser tweezers. A maximum intensity is recorded when the angle 6 between the nanorod and the
illumination polarisation is 0° (blue line), decreasing as 0 increases, and reaching a minimum when 0 is
90° (yellow line). As such, NR rotation and alignment using focused tweezers can be investigated and
verified. All the figures were reprinted (adapted) with permission from [33], Copyright 2010, American
Chemical Society. (d) Diagram of the polarisation-sensitive BP hybrid plasmonic photodetector.
(e) Photodetector current vs. applied voltage for no illumination (blue), illumination polarised in
the armchair illumination (red) and polarised in the zigzag direction (black) at 580 uW (1550 nm
wavelength). (f) Polarisation ratios (photocurrent for armchair to zigzag directions) for various
illumination powers at 150 mV bias. At 1550 nm illumination, devices with the bowtie apertures (BA)
show an increased polarisation ratio compared to those without. This effect is wavelength dependent
as 633 nm illumination shows similar ratios with and without the plasmonic apertures. All the figures
were reprinted (adapted) with permission from [127], Copyright 2018, American Chemical Society.

Optical alignment and rotation of nanostructures has also been demonstrated using polarised light,
as structures with one dominant LSPR mode, such as the long-axis longitudinal mode in nanorods,
tend to align parallel to the incident laser polarisation [33]. Tong et al. utilised this phenomenon to
rotate and align Ag nanorods using polarised laser tweezers. Rotation of the incident laser polarisation
induces similar rotation of the AuNR to maintain alignment, which was verified using polarised white
light DF imaging (Figure 14c). Maximum scattering is observed when the NR is orientated parallel to
the white light polarisation, whereas for perpendicular polarisations, it reaches a minimum. Precise
control and rotation of nanostructures allow nanoscale manipulation which may aid in the construction
of nano-architectures, the driving of nano-pumps in fluidic devices, or even the testing of particle
adhesion through rotational forces.

Polarisation sensitive LSPR response of hybrid plasmonic nanostructures discussed earlier have
also found tremendous potential applications. For example, enhanced light absorption in 2D materials
leads to enhanced performance of 2D devices [128]. Likewise, very recently Venuthurumilli et al.
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demonstrated that hybrid plasmonic nanostructures made from Black Phosphorous (BP) that can be
exploited for polarisation dependent photodetector devices to enhance polarisation sensitivity at NIR
wavelengths [127]. Their design consists of bowtie nanoapertures in gold film deposited on 2D BP
materials (Figure 14d) to enhance the photocurrent ratio of orthogonal polarisations in BP photodetectors.
BP has gained interest for use in photodetectors owing to its thickness-dependent direct bandgap,
while its intrinsic anisotropic properties, i.e., linear dichroism arising from its higher absorption along
armchair axis compared to its zigzag axis, have been exploited for polarisation-sensitive detection [129].
The bowtie apertures utilised in the hybrid devices (Figure 14e) also exhibit polarisation dependence,
allowing transmission of light polarised along the aperture’s short-axis while suppressing light
polarised along the aperture’s long-axis [130]. By orientating the aperture’s long-axis parallel to
the BP’s zigzag axis they further suppress the absorption in the zigzag direction, thus leading to an
enhanced polarisation ratio (armchair to zigzag) for the photodetector. Measured currents through the
photodetector are notably enhanced when the detector is illuminated with 1550 nm light polarised in
the armchair direction, with little enhancement along the zigzag direction (Figure 14e). The polarisation
ratio (defined as the ratio of photocurrent in the armchair direction to that in the zigzag direction) was
then investigated for various illumination powers (Figure 14f) with and without bowtie apertures
(BA). In general, the polarisation ratio is seen to decrease as the illumination power increases (possibly
owing to saturation of the photocurrent in the armchair direction) for both structures with and without
BA. Comparing structures with and without BA, the polarisation ratio in the device exhibits an increase
from 4 without BA to 5.8 with BA at 1.05 mW illumination. At a lower power of 470 mW, the ratio
reaches an even higher value of 8.7 for BA structures. For applications with lower power requirements
such as IR polarimetry imaging, hybrid nanostructures provide avenues for enhanced sensitivity and
selectivity for novel optical devices.

Plasmonic nanostructures provide unprecedented access to light manipulation at nanoscale
dimensions while demonstrating the flexibility and control required for advancing photonic
technologies. Continued research has motivated advances in optoelectronics, integrated photonics,
telecommunications, biological sensing and nanoparticle manipulation, both furthering fundamental
research and presenting proof of principle devices. Nanoparticles and nanostructures serve as optical
antennas, exhibiting strong local field enhancements while plasmonic nanowires serve as novel
waveguides and plasmon routers allowing for sub-wavelength manipulation and transport of light.
The polarisation dependent responses of many nanostructures have brought about novel techniques
to control and tune plasmon propagations and interactions, while also providing access to sensitive
information through optical probing. The continued development and optimisation of plasmonic
devices promises further advances in efficiency and sensitivity while continuing to integrate Plasmonics
into conventional applications. Plasmonics promises to be at the centre of many notable future advances
in optics, providing a realistic route toward the next generation of optical technologies.

3. Manipulating Polarisation State via Metamaterials

Polarisation state is an important characteristic of electromagnetic waves (EMW) which serves as
a cornerstone in many optical phenomena. Therefore, the ability to control the polarisation state of
EMW has attracted tremendous potential applications in the field of optical polarisation and wavefront
manipulation [131,132], optical communication [133], THz photonics [134,135] and spin-hall effect of
light [136,137], etc. Conventionally, bulky waveplates made of birefringent crystalline solids [138] or
liquid crystals [139] are exploited to manipulate the polarisation state of the EMW. However, due to
their large size, operational bandwidth, their application gets limited in optical system miniaturisation
and integration. Therefore, it remains an important challenge to manipulate the polarisation state of
the EMW at nanoscale for applications in nanophotonics.

Recently, after the emergence of metamaterials, we can unprecedently control the EMWs over a
broad wavelength range from microwave to optical frequencies with multiple degrees of freedom e.g.,
polarisation, phase, and amplitude, which was beyond the scope of natural materials [140-142]. Similar
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to metamaterials, their two-dimensional counterpart, single-layered nanostructured metasurfaces also
provide adequate functionalities of polarisation manipulation in an ultrathin, planar platform [143-145].
In comparison to the volumetric metamaterial, fabrication of metasurfaces requires less complexity
and also, they offer reduced loss. To date, although different anisotropic building blocks including
crossed nanodipoles [146,147], nanorods [148], L- or S-shaped nanostructures [149-151] and elliptical
nanoholes [67] have been employed to fabricate metasurfaces-based waveplates to manipulate the
polarisation state of the EMWs, they suffer from the optical anisotropy of the individual building
blocks which ends up with limited bandwidth and low efficiency. Chiral metamaterials require special
mention because they can arbitrarily manipulate polarisation state of EMWs at nanoscale by combining
additional mirror symmetry breaking and by taking advantage of the fact that chirality in EM resonance
is handedness sensitive [152,153]. In the second part of the review, we will discuss the designing of
metamaterials to control or switch the polarisation states of light, for example by rotating linearly
polarised light, ellipticity and chirality, etc.

In a recently published book chapter in 2017, Chen et al. [30] have demonstrated some of
the important aspects of polarisation manipulation which we will discuss briefly in the following
section. Jiang and co-workers [154] demonstrated anisotropic metasurface of nanorod resonators
for high-efficiency, angle-insensitive polarisation rotation over a broadband wavelength regime.
They design the metasurface structures by optimising by tailoring the interference of light at the
subwavelength scale and the metasurface-based half-wave plate (HWP) and quarter-wave plate
(QWP) work over large bandwidth from 640 to 1290 nm near-visible to IR regime, which converts
linear polarisation to its cross polarisation and circular to linear polarisation, respectively. The book
chapter also includes the observation of Kruk et al. [29], who designed and demonstrated transparent
all-dielectric metadevices for highly efficient polarisation manipulation based on HWP and QWPs
that can operate across several telecom bands. Their system has an advantage to interact with
electromagnetic waves at extremely confined spots without any heat dissipation. Their work paves the
idea of reflection-less HWP, QWP and g-plates with high transmittivity that can operate across multiple
telecom bands with ~99% polarisation conversion efficiency. Similarly, Wu and colleagues [155]
experimentally demonstrate Fano resonances with quality factors as high as Q > 100 in silicon-based
planar chiral infrared metasurfaces. They further demonstrated that by designing silicon-based
metasurfaces planar (2D) chiral metamaterial high (50%) linear-to-circular polarisation conversion
efficiency can be achieved experimentally.

3.1. Multifunctional QWP

Chiral metamaterials designed so far have been exploited for a specific functionality to
do with rotating LP, ellipticity of handedness of circularity. In a very recent work, Liu and
co-workers [145] inverse designed chiral material with multifunctional polarisation manipulation
including Meta-quarter-wave plate (Type 1), bifunctional chiral metamaterial (Type 2) and abnormal
meta-quarter-wave plate (Type 3), all of which we will discuss in this section. The results are validated
through theoretical calculation, numerical simulation and experimental measurements. They inverse
designed the cascaded chiral metamaterials for different polarisation controls, starting from the
scattering matrix S, defining the scattering properties of metamaterials. For an incident wave along
j-polarisation, the reflection and transmission coefficients along i-polarisation are denoted as r;; and t;;.
The forward (Ty) and backward (T}) propagating transmission matrices are expressed as:
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Here 0 is arbitrary real number and by choosing several typical values of 0, the metamaterials
will be exploited for abundant functionalities of polarisation control. To quantitatively evaluate the
performance of the metamaterials as an m-QWP, first the Stokes parameters are introduced as [156]:
2, S5 = 2ltsl|ty|cosAp and S5 = 2lt:l|t,[sinig 3)

2
So = It + |t|", S1= 1P |ty

Here |t,] and |ty| are the amplitude of transmitted electric fields along x and y directions and
Ap = /[ty — /ty is transmission phase difference. The ellipticity angle X is defined as:

1
X = zarcsin(53/50) 4)
When x is +45°, the transmitted waves are perfect RCP and LCP, whereas x = 0° represents a LP
wave. In the following section, we will discuss three extreme cases of polarisation control:
Type 1. Meta-quarter-wave plate (6 = —71/2)
When the variable 0 = —71/2, the forward and backward propagating matrices are expressed as:

1(1 —i
=t 7 ©
Type 2. Bifunctional chiral metamaterial (6 = 0)
For this functionality, a four-layer chiral metamaterial (FLCM) is inverse designed by combining
two TLMs which are oriented from each other at a twist angle of 45° and separated by an identical
dielectric broad. For 0 = 0, the forward and backward propagating matrices are expressed as:

1 1 1
SETEN

1 (1 —i
i

Equation (6) reveals that for forward propagating LP waves, m-QWP is realised for linear-to-circular
polarisation conversion. On the other hand, following Equation (7) the structure works as a 45°
polarisation rotator for backward propagating LP waves. It is quite evident from Figure 15b that

-] -

for the forward propagating LP waves in x- and y-directions, both co-(|tsx|, t,,) and cross-polarised
— — —

transmission (|tyx|, |txy|) exhibit high transmission of 0.7, which makes the total transmission |Tx| and

'Ty' close to 1.

Likewise, a traditional m-QWP is realised that converts x- or y-polarised waves into LCP or
RCP waves, for both forward and backward propagation direction. The m-QWP can be designed
from a two-layer metamaterial (TLM), by keeping two metallic split ring resonators (SRRs) on each
side of an F4B board. The schematic diagram of such optimised unit cell structure is shown in
Figure 15a(i). Simulated results show that for normal incident LP waves, the co-polarised transmissions
are greater than 0.8 (Figure 15a(ii)) with zero cross-polarisation transmission coefficients because of the
mirror-symmetry of the TLM structure with respect to x-z plane. Figure 15a(iii) shows that the phase
difference /t, — /t is ~90° + 10°. Figure 15a(iv) illustrates that the simulated ellipticity angle x > 40° is
within the broadband frequency range of 10.5-12.5 GHz. This clearly demonstrate a nearly perfect
high transmission RCP wave output, for an incident LP wave at 45° with respect to the x and y axes.
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Figure 15. (a) (i) TLM as an m-QWP. The Schematic and geometric dimensions of the unit cell:
p=70mm, D =3.5mm, r =175 mm, R = 3.0 mm, and g = 0.75 mm. (ii) Simulated transmission
spectra and (iii) phase difference for x- and y-polarised incident waves. (iv) Calculated ellipticity
angle x. (b) Experimental results of the FLCM for the forward propagating x- and y-polarised waves.
((i) and (iii)) Transmission spectra, ((ii) and (iv)) transmission phases, (v) transmission phase differences,
and (vi) ellipticity angles x of the transmitted waves. (c) Experimental results of the FLCM for the
backward propagating x- and y-polarised waves. (i) Transmission spectra, (ii) transmission phase
differences, (iii) polarisation azimuth rotation angles 11, and (iv) ellipticity angles x of the transmitted
waves. (d) Multilayer chiral metamaterial as an abnormal m-QWP. (i) Schematic of the unit cell.
Experimental results of (ii) transmission spectra and (iii) ellipticity angles. All the figures were reprinted
(adapted) with permission from [27], Copyright 2019, Springer Nature.

For x and y polarised LP waves, ellipticity angle x was found to be —40° and 40°, respectively,
therefore indicting nearly perfect LCP and RCP output wave. The phase difference of —90° + 10° and
+90° + 10° for x and y polarised waves support the observation further. Experimental results match

well with the simulation.

For backward propagating LP waves, following reciprocity theorem, when the propagation
direction is reversed, although the transmission coefficients of co-polarisation remain unchanged,
it gets interchanged for cross-polarisation. The experimental results in Figure 15c show that the

transmission phase difference Agp_x and A(;J_y are calculated to be 0° and —180°, polarisation azimuth

rotation angle 1 is +45° and —45° and the ellipticity angle is ~—6.3° and 8.3°, and for x and y polarised

waves, respectively, which indicates a nearly linear polarisation.
Type 3. Abnormal meta-quarter-wave plate (6 = 71/2)
When the variable 8 = 71/2, the forward and backward propagating matrices are expressed as

1 i
- -1
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Clearly, such structures can convert the forward x-polarised or y-polarised wave into LCP or RCP
wave, respectively; while it realises an inverse function, i.e., converts the backward x-polarised or
y-polarised wave into RCP or LCP wave, respectively.

To realise this functionality, three m-QWPs are cascaded together as shown in Figure 15d(i). Two of
them form an m-HWP, that together with the back m-QWP, oriented at 45° from the x-axis, gives rise to
mirror symmetry breaking in the propagation direction. In line with the predicted theory, experimental
results shown in Figure 4 match with each other for the forward and backward propagating LP
ellipticities are —40° and 40°, respectively, thus output waves are LPC and RCP, respectively, with very
strong transmission efficiency over a broadband. In contrast, backward propagating x and y polarised
wave ellipticities are 40° and —40°, respectively, i.e., polarisation conversation is reversed to RCP
and LCP, respectively. The proposed chiral metamaterials in this study show potential advantages of
high transmission, broad bandwidth, and multi-functionality, and may find potential applications in
polarisation-controlled devices.

3.2. Linear to Cross Polarisation Conversion

The multifunctional structure proposed by Liu et al. [145] missed an important component of
90° polarisation rotation of LP waves. In this regard, Yuqgian Ye and Sailing He [157] proposed a
bilayer chiral metamaterial (CMM) to realise 90° polarisation rotation with a resonant polarisation
conversion efficiency over 90%. Figure 16a shows the schematic diagram of one-unit cell of the
present bilayered CMM, while the whole sample is composed of 20 X 20 unit cells as depicted by
Figure 16b. In their experiment, the incident wave is polarised in x-direction and normally impinged
on the sample. The experimental and simulation results are shown in Figure 16¢. The co-polarised
transmission (dotted blue line) defined by [tyy| = }Ef(”t|/ (E§”| is below —5 dB in the given frequency
range which suppressed below —20 dB around 12 GHz (Figure 16c). On the other hand, the cross
polarised transmission (dotted red line), defined as |tyx| = |E;”t) / |E§C”| exhibits a resonant peak around
11.4 GHz with maximum amplitude of -2 dB. This clearly indicates polarisation conversion efficiency
of over 90% is achieved through the strong rotatory strength in this bilayered CMM. The simulated
results shown by solid blue and red lines agree well with the experimental observation. To understand
the polarisation rotation in detail, polarisation state of the transmitted signal is studied at six different
frequencies as shown in Figure 16e. The polarisation spectrum is shown in Figure 16d.

At low frequency of 10 GHz the transmission is relatively low and the polarisation is slightly
off the x-axis with an azimuth of 20°. As the frequency increases, transmission polarisation rotates
counterclockwise towards the y-axis followed by increased transmission. At 11.86 GHz maximum
transmission is obtained with a polarisation azimuth angle of 86°. With further increase in frequency
transmission starts reducing. It is important to note that within the frequency range 11.66-12.10 GHz,
output polarisation is aligned in the y-axis. Eventually, at higher frequency the polarisation reverses
back toward the x-axis (Figure 16e) in line with the Gaussian profile of the polarisation azimuth spectra
of Figure 16d. Such observation confirms the 90° polarisation rotation by the bilayered CMM. In this
context, it is also important to mention that in addition to the chiral metamaterial described above,
anisotropic metamaterials also can be used for highly efficient conversions from a linear polarisation
to its cross polarisation as proposed by Chin et al. [158] and Cui et al. [159]. Following the work by
Chin, as shown in Figure 16f that around 10 GHz frequency range, the field intensity of the cross
polarisation is close to 0 dB (p1 to p2) and that of the original polarisation (p1 to p1) is less than —20 dB.
Such observation clearly depicts cross polarisation conversions with high efficiency.
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Figure 16. (a) Unit cell of the present bilayered CMM for transmission calculation. (b) The top
view of the fabricated microwave-scale sample. (c¢) Co-polarised and cross-polarised transmission of
electric field through the present bilayered CMM by both simulation (solid lines) and experimental
measurement (dotted lines). (d) Polarisation azimuth of the transmitted wave as the frequency varies.
(e) Polarisation states at six different frequencies. All the figures were reprinted (adapted) with
permission from [157], Copyright 2010, American Institute of Physics. (f) The simulated (solid lines)
and measured (dots) transmission of electric fields from p1 to p1 (yellow) and from p1 to p2 (blue).
The inset shows the orientation for pl and p2. All the figures were reprinted (adapted) with permission
from [158], Copyright 2008, American Institute of Physics.

3.3. Linear to Left and Right Circular Polarisation Conversion

Most of the modern photonics devices are based on the terahertz (THz) technique with
numerous significant applications, e.g., homeland security [160], communications and sensing [161],
switching [162], etc. Therefore, it is desirable to design polarisation-controlling metamaterial in the
THz regime to manipulate the polarisation state of THz wave and can be used as polarisers [163],
a polarisation rotator [164] and waveplates [165], etc. Most of those structures suffer from low
transmission, limited bandwidth, high cost, size constraint, etc. These shortcomings are overcome by
Cong et al. [166] who designed broadband and highly efficient m-QWP fabricated on a free-standing
flexible dielectric polymide layer that is sandwiched between the metamaterial layers (metallic grating)
as shown in Figure 17a. The first metallic grating is oriented at —45° with respect to the x-axis, while the
second one is along the x-axis.

In addition, the structure is further capped with two additional polymide layers on the top and
bottom of the first and second metallic grating, respectively. For all experiments and simulation,
the incident THz wave is linearly polarised along the x-axis. The experimental scheme is based on
broadband THz time domain experiment. Similar to the work by Liu et al. [27] polarisation states
are numerically determined by Stokes parameter [156]. The ellipticity x is redefined as x = S3/Sy,
where x = 1 and -1 represent LCP and RCP, respectively. It can be seen from Figure 17b that
within 1-1.4 THz regime, orthogonal components of transmission, i.e., both co- and cross-polarised

transmission, |t;;| and |t;;|, respectively, have similar amplitude. In the same regime, the phase
retardance data in Figure 17¢ exhibit around 90° (+5°) change, the signature of the functionality of QWP.
The results are further substantiated with the ellipticity of x ~ 0.99 (Figure 17d) between 1 and 1.4 THz,
thus depicting nearly perfect broadband LCP. To realise RCP, the first metasurface is oriented to 45°,
to make the new m-QWP which is exactly the mirror-symmetry of the pristine QWP. The new QWP is
named as negative m-QWP that can introduce —180°/180° phase retardance between the orthogonal
components. It can be seen from Figure 17e that like the original m-QWP, orthogonal transmission
components for negative m-QWP also reveal a similar transmission value. However, phase retardance
is found to be -90° (Figure 17f) and ellipticity gives the value x ~ —0.99 (Figure 17g) over the broadband,
the signature of RCP. The structure has an added advantage on the tunability of the operational THz
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bandwidth which can easily be adjusted by changing the dimensions of the two metal strips. Apart
from that, the structure is found to be very robust against crude handling which makes it ideal for
practical device applications. It is important to note that broadband THz linear to circular polarisation
conversation also has been theoretically demonstrated by Jiang and co-workers using monolayer black
phosphorus (phosphorene) metamaterial [167].
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Figure 17. (a) Schematic diagram of the sandwiched metamaterial structure with labelled dimensions.
(b) Amplitude transmissions (c) phase retardance between orthogonal components and corresponding
(d) ellipticities change. (e) Amplitude transmissions (f) phase retardance between orthogonal
components and corresponding (g) ellipticities change for the mirror symmetry sample shown
in the inset of (g). All the figures were reprinted (adapted) with permission from [166], Copyright
2014, Wiley-VCH.

3.4. Circular Polarisation Conversion Using Helical Metamaterials

Thus, we are left with the one last important polarisation functionality of the metamaterial,
i.e., the circular polarisation switching, in other words, conversion of the handedness of the circular
polarisation, i.e., LCP to RCP or vice-versa. Helical metamaterials have been used extensively for this
functionality because they exhibit inherent circular dichroism over an unmatched bandwidth above
one octave. Depending on the handedness of the circular beam, a helix can either transmit or reflect
the incident wave. When the handedness of the helix matches with that of the incoming circular beam,
it gets reflected unperturbed whereas for opposite handedness no coupling takes place and light gets
transmitted. Different helix structures have been proposed as circular polarisers with high extinction
ratio and enhanced bandwidth in the mid-IR region. However, research on the asymmetric circular
polarisation conversion has been started of late with generally very narrow operation bandwidths.
There are very few experimental designs for circular polarisation conversions over broadband, however,
conversion efficiency is well below 50% throughout the operational band, thus making the application
limited. For example, Pan and co-workers [168] demonstrated circular polarisation conversion with
20% overall transmission (Figure 18a) using G-shaped chiral metamaterial whereas, Pfeiffer et al. [169]
showed conversion from RCP to LCP with a low extinction ratio of 20:1 (Figure 18b). To overcome
these shortcomings, Johannes Kaschke [28] proposed a novel helical metamaterial based on unit cells
with a single helix. The uniqueness of the structure lies in the fact that the helix changes its handedness
halfway through the helix axis. The device can perform high circular polarisation conversion (up to
80%) from RCP to LCP over a bandwidth of more than one octave.
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Figure 18. (a) Transmission spectra for circular polarisation conversion in G-shaped chiral metamaterial.
All the figures were reprinted (adapted) with permission from [168], Copyright 2014, American
Institute of Physics. (b) Measured (circles) and simulated (solid lines) Jones matrix of the bianisotropic
metasurface. All the figures were reprinted (adapted) with permission from [169], Copyright 2014,
American Physical Society. The top panels in (c,d) depict the numerically calculated transmittance
spectra for both incident circular polarisations not differentiating between emerging polarisations.
In the bottom panels, the calculated normalised current densities are shown for one frequency within
the operation band (f = 75 THz). (e) Experimental data showing polarisation conversions. All the
figures were reprinted (adapted) with permission from [28], Copyright 2015, WILEY-VCH.

To start with, for a single right-handed helix (Figure 18c) an incoming RCP light matches with the
helix handedness, couples strongly to it and is reflected with the same handedness. On the contrary,
for an incoming LCP light, handedness mismatch leads to no coupling between LCP light and the helix
structure, thus gets transmitted as shown in Figure 18c. Following the same logic, for a left-handed helix,
the transmitted light will be dominantly RCP. To substantiate this idea, they numerically calculated
the current density at f = 75 THz along the helix wire (bottom panel of Figure 18c). For incident RCP,
strong coupling leads to large currents at the top end of the helix with little to no transmission, whereas
for incident LCP, weak coupling between light and helix structure results in comparably smaller
current along the entire helix. Next, they performed the same measurement on the helix structure of
both handedness’s as shown in Figure 18d. For incoming LCP, the right-handed lower part of the
overall structure does not play a role, it transmits to the upper left-handed part. At the top end of the
left-handed helix, LCP light undergoes strong coupling and most of the light is therefore reflected.
Thus, transmission remains less for incoming LCP. However, for an incoming RCP strong coupling
takes place with the bottom right-handed helix, which generates large current that transfers from
bottom right- to the top left-handed section of the helix. As a result, the left-handed helix, gets excited
and behaves like a helical antenna. Consequently, owing to time-reversal symmetry, the left-handed
antenna in the far-field emits LCP, consistent with its handedness. Therefore, the double helix structure
converts an incoming RCP to LCP with high efficiency of 75% over a broadband from 50 to 100 THz
(Figure 18e). However, for LCP to RCP, the conversion rate remains very low (<10%), over the same
frequency regime. Apart from that, Sonsilphong and Wongkasem [170] also demonstrated numerically
circular polarisation switching in helical metamaterial.
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3.5. Selected Applications of Metamaterials

As discussed in the previous section, metamaterials can arbitrarily manipulate the polarisation
state of electromagnetic waves which paves the way to design novel devices for real life applications.
Much of the interest in metamaterial devices has stemmed from their potential to overcome fundamental
size and bandwidth limitations in conventional optical materials by specific tuning of metamaterial
properties, allowing for not only selective manipulation, but also completely novel optical phenomena
unseen in natural materials. Engineered metamaterials have advanced research in superlenses,
cloaking, holography, while also demonstrating compelling advantages over conventional optical
devices [171-173]. The arbitrary wavefront manipulation provided by subwavelength nanostructures
affords researchers unparalleled design opportunities for artificial materials, leading to vast and varied
approaches to metamaterial devices. Metasurfaces, in particular, have prompted research into the field
of flat optics, whereby ultra-thin metadevices provide functionalities previously available only through
bulky waveplates and lenses [174]. Functional flat optics would allow for continued miniaturisation of
optical systems and devices as well as integration into emerging nanophotonic technologies.

The design flexibility provided by novel metadevices has also allowed researchers to combine
multiple optical functionalities into one device, allowing for novel multitasking which would previously
require multiple discrete components [175-177]. Very recently, Wang etal. experimentally demonstrated
simultaneous beam shaping and focusing using metasurface devices based on silicon nanobricks
(Figure 19a) [178]. Careful engineering of the device allowed them to fabricate an optical vortex
metalens (OVM) that can produce and focus a vortex beam from incident circularly polarised plane
wave. This focusing behaviour is found to vary with the handedness of the polarised light, however, by
merging two polarity-inverse OVMs a new device can be created to focus both LCP and RCP light to the
same position (Figure 19b—e). Similarly, merging OVMs with different focal points leads to the creation
of a new bifocal OVM, allowing the vortex beam to be focused at (Figure 19f) 2 um and (Figure 19g)
5 um. Other metadevices allow multiple functions to be performed for light at different wavelengths.
Cheng et al. created a multifunctional metasurface based on arrays of plasmonic nanorods (Figure 19h)
that demonstrate nearly perfect absorption, linear cross-polarisation and linear-to-circular polarisation
conversion for different wavelengths of incident linearly polarised light [179]. For wavelengths
~770nm the device demonstrates absorption (Figure 19i), while at longer wavelengths, the device
operates as a polarisation converter, exhibiting linear cross-polarisation at A = 1227 nm (Figure 19j)
and linear-to-circular polarisation conversion at A = 1380 nm (Figure 19k).

Engineered metasurface optics also enable the construction of dynamically tunable and active
devices not possible with conventional materials. Many metadevices have been demonstrated to
dynamically change their optical properties in response to external stimuli. Thermal, electromagnetic,
electromechanical and optical influences have all been shown to dynamically alter metasurface
functionalities, allowing for metadevices to be precisely tuned to illicit desired effects, without
prefabrication of the device [180]. Microelectromechanical systems (MEMS) fabricated in CMOS
compatible materials have been employed as reconfigurable metasurfaces, using the deflection of
microcantilever arrays to alter polarisation response.
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Figure 19. A multifunctional metasurface fabricated from silicon nanobricks functioning as an
optical vortex metalens (OVM) allowing for simultaneous beam shaping and focusing (A = 1500 nm).
(a) Schematic of the metasurface and constituent nanobricks. Intensity (b,d) and phase (c,e) distributions
for left and right circularly polarised light demonstrating the ability to shape and focus light of opposite
handedness. Intensity distributions for the bifocal OVM, demonstrating focusing at (f) f = 2 pm and
(g) f = 5 um. All the figures were reprinted (adapted) with permission from [178], Copyright 2020,
Elsevier. (h) A multifunctional metasurface consisting of nanorod arrays demonstrating nearly perfect
absorption, cross-polarisation and linear-to-circular polarisation conversion for different wavelengths
of incident light. (i) Measured absorption showing maximum absorption at ~ 770nm. Measured
intensity at different polarisations for incident and reflected light illustrating (j) cross polarisation and
(k) linear-to-circular polarisation conversion at A = 1227 nm and 1380 nm, respectively. All the figures
were reprinted (adapted) with permission from [179], Copyright 2017, American Institute of Physics.

Work by Ma et al. demonstrated structurally reconfigurable metasurfaces based on MEMS
resonator arrays to create polarisation sensitive terahertz filters (Figure 20a). Deflection of the curved
microcantilevers by an applied electric field allows for dynamic tuning of the device’s resonant
frequency, leading to tuning of transmitted light for e-polarisation while o-polarised light remains
unaltered. A similar device operating on a thermoelectric principle was demonstrated by Ho et al. [181].
In their device current through the microactuator arrays leads to Joule heating that deflects the
microcantilevers, altering the polarisation response at terahertz frequencies (Figure 20b). Further
polarisation manipulation and control using MEMS metadevices was demonstrated by Zhao et al. as
they realised tunable circular-to-linear polarisation conversion through voltage based microcantilever
actuation (Figure 20c) [182]. Novel metadevices have recently been created using other materials and
techniques. Nouman and others utilised the insulator to metal transition in vanadium dioxide to create
a tunable metasurface device operating at terahertz frequencies. The metasurface is created from wire
grating array on VO, thin film patches (Figure 20d). Varying the current through the device triggers
the insulator to metal transition, altering the resonant frequency of the device for incident polarisations
perpendicular to the wire grating and modulating the phase of transmitted light. Parallel polarisations,
however, do not experience a current dependent phase shift, allowing phase to be independently
varied for orthogonal polarisations. As such, specific tuning of the device enables circular-to-linear
polarisation conversion at THz frequencies. A novel liquid metal-based metasurface device was
demonstrated by Wu et al. to allow for reconfigurable polarisation response within a microfluidic
platform [183]. The device consisted of individually addressable L-shaped microfluidic resonators filled
with liquid Galinstan (Figure 20e). The length of both arms in the L-shaped resonators can be varied
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by tuning the pressure at both outlets, leading to changes in the polarisation response of orthogonal
polarisations. Accordingly, tuning of their device allowed for linear-to-linear, linear-to-circular and
linear-to-elliptical polarisation conversions. The versatility provided by engineered metamaterials
gives metadevices a unique advantage over conventional optics. Ultrathin metasurfaces continue
to demonstrate their utility for wavefront shaping and manipulation, demonstrating functional flat
optics in proof of principle devices. Merging, stacking and cascading of separate 2D devices has led to
multifunctional metasurface devices, allowing for simultaneous control of multiple optical parameters
or specified functions for specified wavelengths. Individually addressable and tunable elements in
metadevice arrays lead to tuning of the metadevice, allowing for active metasurfaces to be controlled
and reconfigured in a variety of ways. Future devices based on engineered metamaterials will afford
users unparalleled versatility in numerous applications through tunable, multifunctional and ultrathin
optical wavefront manipulation.
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Figure 20. (a—c) Tuneable MEMS metasurfaces created using CMOS compatible materials operating
at terahertz frequencies. Polarisation filter devices achieved through electromechanical (a) and
electrothermal (b) actuation of microcantilever arrays. All the figures were reprinted (adapted)
with permission from [181,184], Copyright 2014 and Copyright 2013, American Institute of Physics,
respectively. (c) Reconfigurable linear-to-circular polarisation conversion whereby voltage based
actuation of the microcantilevers allows tuning of the metasurface polarisation response. All the
figures were reprinted (adapted) with permission from [182], Copyright 2018, The Optical Society.
(d) Switchable, voltage-operated quarter wave plate metadevices operating via the insulator to metal
transition in Vanadium Dioxide. All the figures were reprinted (adapted) with permission from [185],
Copyright 2018, The Optical Society. (e) Tuneable polarisation converter metadevice based on a
liquid-metal microfluidic platform whereby polarisation response is varied by tuning the length of
L-shaped resonator metasurface-elements. All the figures were reprinted (adapted) with permission
from [183], Copyright 2017, WILEY-VCH.

4. Polarisation Measurements of Magnetic-Plasmonic Nanostructures

In this third and final section, we will discuss the role of polarisation in magnetic-plasmonic
nanostructures. Beginning with a general introduction to magneto-optics and magnetoplasmonics, we
will then discuss the role of plasmonics in the Faraday effect, inverse Faraday effect and magneto-optical
Kerr effect. Next, we will briefly discuss magnetic plasmon resonances. Then magnetic second-harmonic
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generation and magnetic circular dichroism will be reviewed. Finally, several magnetoplasmonics-based
applications will be explored.

The study of magneto-optical (MO) effects dates back to 1845 when Michael Faraday discovered
that the plane of polarisation of light is rotated when passing through an optically transparent dielectric
material under an external magnetic field (Faraday rotation). This effect, later called the Faraday
effect, was the first experimental evidence of the connection between light and electromagnetism [186].
The Faraday effect is a result of the left and right circularly polarised (LCP and RCP) light propagating
at different speeds through the material (phase difference). Later, John Kerr found that light reflected
from a magnetic surface could change intensity and polarisation, which was later named the Kerr effect.
In reflection, linearly polarised light was seen to rotate (Kerr rotation) and reflected light can become
elliptically polarised (Kerr ellipticity). Microscopically, MO effects require both exchange splitting
and spin-orbit interactions [187]. Macroscopically, these MO effects depend on the off-diagonal
(antisymmetric) elements of the permittivity tensor associated with the material. Magneto-optic
technologies have been applied to microscopy (Kerr microscope) [188], magneto-optic memory
devices [189], optical isolators [190], wave modulators [191] and magnetic field sensors [192].

The fields of plasmonics and magnetics merged about 100 years later when Chiu and Quinn
discovered that external magnetic fields affect the surface plasmon on metal [193]. Later, with the
progression of nanofabrication, complex nanoarchitectures could be developed to further exploit this
interaction, bringing forth exciting new physics and applications. In this section, we will discuss
magnetoplasmonics, with a special emphasis on a vital component of its measurement—polarisation.
The polarisation state of light is integral to magneto-optic measurements, as in MO materials the
magnetic field causes optical anisotropy. This optical anisotropy can be quantified by the non-diagonal
terms of the permittivity tensor of the material, which leads to variations in the intensity and polarisation
state of light.

A plasmon can be used to enhance MO effects, as at the LSPR, diagonal and off-diagonal terms of
the permittivity tensor are enhanced. A simple coupled oscillator model has recently been proposed by
Floess and Giessen to explain the magnetoplasmonic interaction [194]. Typically, noble metals like silver
and gold are selected for plasmonic applications thanks to their low optical losses in the visible and
near-infrared spectral range, giving rise to a sharp plasmon peak. These efficient plasmonic materials
usually have minimal MO activity, and thus are not suited for MO applications alone. Conversely,
some magnetic materials have strong MO effects but cannot sustain a strong plasmon due to optical
losses. For this reason, most magnetoplasmonic structures combine a noble metal and a magnetic
material, typically a ferromagnetic material, into a hybrid structure. Ferromagnetic materials, unlike
paramagnetic materials, possess spontaneous magnetisation resulting from the long-range ordering
of unpaired electron spins, and when magnetised, the bulk magnetisation is strong and retained by
the material. Most ferromagnetic materials have optical losses too large to sustain a plasmon, except
nickel nanoparticles, which have exhibited both localised surface plasmon and ferromagnetism [195].

There are two main reasons to design magnetoplasmonic structures, firstly, to modulate the
LSPR response by using external magnetic fields and secondly, to increase the MO effects using
the LSPR. These two scenarios, i.e., magnetic field modulation of the LSPR and plasmon-enhanced
MOs, are both referred to as magnetoplasmonics; however, the term magnetoplasmonic is also
often used to describe systems that combine magnetic and plasmonic materials without the direct
study of the magnetic—plasmon interaction [196,197]. By combining MO and plasmonic activity into
a single nanostructure, electronic hybridisation between the magnetic and plasmonic material is
anticipated, and localisation of the magnetic field near to the plasmonic material takes place [198].
In ferromagnetic materials, the conduction electron spins are spin-polarised, which can affect the
free electrons of the plasmonic material (electronic hybridisation). Therefore, the magnetic material
must be metallic in nature. Secondly, for magnetic field localisation near the plasmon, the magnetic
field of the material must be sufficiently strong and does not necessarily need to interact with
the free electrons of the plasmonic material (no hybridisation) and therefore, does not need to be
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metallic [198]. Without hybridisation, the LSPR and MO response must be spectrally distinct; otherwise,
the magnetoplasmonic response at the plasmon frequency would not be distinguishable from other
frequencies [198]. The plasmon-enhancement of the MO effects can be improved by introducing
the plasmon-associated enhanced local electric field near to the MO material and/or by changing the
reflectivity of the material to maximise the reflected/transmitted optical signal.

4.1. Faraday Effect and Inverse Faraday Effect

Measurement of the Faraday effect is straightforward, linearly polarised light is passed through
the sample subject to an external magnetic field (parallel with light propagation) which then passes
through an analyser and is detected. In 2005, enhanced Faraday (polarisation) rotation was observed
in CoFe;O4-Ag, dumbbell-like nanoparticles. An enhancement of the Faraday effect was observed
for nanoparticles with the plasmonic component (dimer) compared to the CoFe,O4 monomer [199].
For this experiment, six different laser wavelengths (385, 421, 455, 532, 633 and 850 nm) were used with
varying magnetic fields from —1000 to 1000 Oe to collect a Faraday rotation (FR) loop as a function
of the magnetic field. Both the CoFe,O4 nanoparticles with and without Ag exhibited a maximum
absorption for the 385 nm laser. Both samples gave a large FR of about 0.75°, but the Ag dimer had a
marginally larger rotation. The difference between the samples became more pronounced at longer
wavelengths. Beyond 633 nm, the FR for monomer CoFe,Oschanged sign, i.e., instead of positive FR
at positive magnetic fields, negative FRs were observed at positive magnetic fields. Such sign reversal
was not observed for the plasmonic hybrid nanostructures (see Figure 21a). Plasmon-enhanced FR
has also been observed in magnetic-plasmonic, y-Fe;O3-Au, core-shell nanoparticles suspended in
solution [200]. Using a tunable laser, an improved spectral resolution was obtained compared to the
CoFepOy that used select laser wavelengths. Here, a clear peak in the FR spectrum was observed for
the gold-coated y-Fe; O3 at the LSPR (~540 nm), which was not observed in uncoated nanoparticles
(Figure 21b). Later, the FR was also found to be dependent on the cobalt core radius with silver shells
when the total diameter is fixed [201]. As the LSPR blue-shifted due to higher silver content, the FR
maximum also blue-shifted with higher magnitude.

The FR is not limited to nanoparticle form. Chin et al. studied yttrium and bismuth iron garnet
films with gold nanowires deposited periodically, maintaining high transparency [202]. Polarisation
rotation due to the Faraday effect was enhanced by one order of magnitude owing to the plasmonic
structures, with spectral dependency on the period of the nanowires (see Figure 21c). Plasmon-enhanced
FR was also observed in Bi:YIG films with a gold nanoparticle coating [203]. The measurements were
conducted between 500 and 700 nm, with a plasmon-associated absorption observed at ~630 nm.
When the angle of rotation of the light polarisation was studied using an external magnetic field of
5 kOe, a clear peak is observed at the SPR maximum which was not observed in the sample without
gold coating. Floess et al. observed a tunable and switchable polarisation rotation in gold nanowire
coated EuSe thin films [204]. In these structures, the period and the width of the gold nanowires
allowed wavelength selectivity; and rotations up to 8.4° were observed. Recently, Kuzmichev et al.
studied Bi-substituted iron garnet films with gold nanodisks at different depths [205]. They found
that the Faraday effect was most enhanced by the gold nanodisk plasmon when submerged near
the upper surface of the magnetic film (see Figure 21d). This finding may aid the future design of
plasmon-enhanced FR materials.

Along with noble metal plasmons, single and multilayer graphene deposited on SiC substrate
demonstrated large FR, as a result of either the cyclotron effect or inter-Landau-level transitions [206].
Large magnetic fields of 7 T were used to achieve FR of ~6° within 2—4 THz range. Later, Tymchenko
et al. calculated large FR in graphene microribbon arrays at higher frequencies (>10 THz) and with
smaller magnetic fields than in continuous graphene sheets [207], thus opening up new possibilities in
ultrathin tunable MO devices.

Magnetisation can also be induced in purely metallic structures through illumination with
circularly polarised light; this is called the inverse Faraday effect. This measurement is typically
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conducted using time-resolved pump-probe, with the pump beam circularly polarised and the probe
beam linearly polarised. The scheme is similar to standard Faraday effect measurements, but with
the absence of an external magnetic field and the filtering out of the pump beam. First observed in
DyFeOs [208], inverse Faraday effect was seen in various films [209,210]. Recently, the inverse Faraday
effect was observed in gold nanoparticles in solution [211].
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Figure 21. (a) FR of CoFe;O4 nanoparticles (monomer, pink) and CoFe,O4-Ag nanoparticles (dimer,
blue) at 385 (top) and 850 nm (bottom), showing a reversal in the magnetisation loop only for the
monomer nanoparticles at long wavelengths. Adapted with permission from [199], Copyright 2005,
American Chemical Society. (b) FR of iron oxide nanoparticles (top) enhanced by gold coating (bottom),
with a peak corresponding to the LSPR of the nanoparticle. Adapted with permission from [200],
Copyright 2009, American Chemical Society. (c¢) FR and transmittance dependency on gold nanowire
period atop a magnetic film. Adapted with permission from [202], Copyright 2013, Springer Nature.
(d) Plasmon-enhanced FR of samples (1-3) with different depths of gold nanodisks in films, with sample
2 where nanodisks are submerged inside the magnetic film achieving the highest rotation. Adapted with
permission from [205], Copyright 2020, Wiley-VCH. (e) Inverse Faraday effect in gold nanoparticles
measured using a pump-probe setup. Left, FR for different ellipticity angles (¢) of the pump, for two
different polarisation angles between the pump beam and probe (5), with a maximum for & = 45°
at linear polarisation (Kerr effect) and at & = 0° for circular polarisation (¢ = 45°) (inverse Faraday
effect). Right, time response of Faraday rotation, showing picosecond regime magnetisation and
demagnetisation. Adapted with permission from [211], Copyright 2020, Springer Nature.
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In this work, a pump-probe setup was used. The linearly polarised probe beam was passed
through the sample and detected with an analyser, while the pump beam was circularly polarised to
induce the inverse Faraday effect. The ellipticity angle (¢), handedness and polarisation angle between
the pump beam and probe () were varied to confirm the inverse Faraday effect (see Figure 21e).
Where 6 = 0°, increased pump ellipticity led to increased FR, with maximums for pure LCP and RCP
light; while for 6 = 45°, the maximum rotation was observed for linear polarisation (arising from the
Kerr effect). Furthermore, the time-response indicated the mechanism was related to the coherent
circular motion of the electrons in the gold nanoparticles as opposed to the spin dynamics as seen in
ferromagnetic materials, shown in the right panel of Figure 21e.

4.2. Magneto-Optic Kerr Effect

There are three types of magneto-optic Kerr effect (MOKE) measurement techniques, which are
classified by the sample’s magnetisation vector direction with respect to the sample surface and the
incident light [188]. Polar MOKE (PMOKE) denotes the measurement where magnetisation vector
is orthogonal to the surface and parallel to the incident light plane, longitudinal MOKE (LMOKE)
corresponds to a magnetisation vector in parallel with the surface and incident light plane and lastly,
the transverse MOKE (TMOKE) involves the magnetisation vector orthogonal to the light plane
and parallel to the surface [188]. All three types of MOKE measurements have been employed
in magneto-plasmonic measurement. P/LMOKE are used to study the effects of the plasmon on
the reflected light polarisation, while TMOKE involves a plasmon-enhancement of the reflected
light intensity.

Plasmonic nickel nanoferromagnet discs have shown plasmon-controlled Kerr rotation, in LMOKE
configuration [212]. Three differently sized nanodisks with distinct LSPR responses were studied with
two excitation lasers (405 and 670 nm), with MOKE rotation exhibiting contrasting characteristics for the
differently sized discs. For the smallest disc diameter, the magnetisation loop shows a maximum MOKE
rotation for negative magnetic fields for both wavelengths, while the largest disc shows a maximum
MOKE rotation for positive magnetic fields for both wavelengths. Conversely, for the intermediate
disc size, the MOKE magnetisation loop shows an excitation wavelength-dependent sign change
(see Figure 22a). Considering nickel-based magnetoplasmonics avoid the complex chemistry and
fabrication techniques often required for hybrid plasmonic-ferromagnetic structures, this observation
opened up a more straightforward method to study and apply plasmon-enhanced MO.

Surface plasmons have been shown to enhance the PMOKE effect in Au/Co/Au multilayer
films [213], then later in Au/Co/Au nanodisks [214]. The optical and MO properties of the latter
could be tuned by varying the nanoparticle disk size and shape. Recently, asymmetric geometry
magnetoplasmonic nanocavities were designed which support multipolar dark plasmons [215]. In this
work, gold nanoring arrays had a permalloy nanoparticle disc added inside, either in the centre to create
the symmetric nanocavity (CRD) or off centre, forming the asymmetric cavity (NCRD) (see Figure 22b).
The authors showed unprecedented MO enhancement in the broken symmetry structure, facilitating
effective control of light polarisation using weak magnetic fields. This enhancement was explained
by dark multipolar Fano resonance modes (at ~820 nm, see Figure 22b middle and bottom panel) in
the ring nanostructure hybridising and enhancing the magnetic-field-induced radiant dipole of the
permalloy, measured using PMOKE configuration.

Kreilkamp et al. reported 1.5% modulation of transmitted light intensity, using plasmonic gold
nanowire enhanced TMOKE while maintaining transparency of ~45% [216]. The 1.5% modulation
occurred when the localised plasmon hybridised with the propagating waveguide mode of the
nanowire. By reducing the period of the nanowires, the resonance seen in the transmission and
TMOKE spectra could be blue-shifted, with a gradual reduction in the TMOKE signal (see Figure 22c).
MO activity was also detected in gold nanoparticles sputtered on glass in TMOKE configuration,
which was also applied to SPR refractive index sensing [217]. Rizal et al. recently compared the
efficiency of Ti/Au/Co/Au against Ti/Ag/Co/Au by using two plasmonic sensing schemes (TMOKE vs.
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SPR) [218] (see Figure 22d). Both of the samples showed TMOKE enhancement over the SPR, while the
Ag-based one gave overall higher TMOKE and SPR activity. They found that the TMOKE sensor had a
Q-factor more than twice that of the SPR sensor, and suggested this enhanced sensitivity could be used
to detect lower analyte concentrations.
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Figure 22. (a) LMOKE rotation studies of nickel nanodisks with varying diameters (60, 95 and
170 nm) at 405 and 633 nm, with insets of the extinction spectrum of the nanodisks arrays. A clear
wavelength-dependent MOKE magnetisation loop reversal can be seen for the 95 nm array. Adapted
with permission from [212], Copyright 2011, American Chemical Society. (b) Scanning electron
microscopy images of magnetoplasmonic concentric ring disks (CRD) and non-concentric ring disk
(NCRD) composed of a gold ring and FeyyNigy enclosed disk, the transmittance spectra are shown
below in the middle panel. The green transmittance spectra correspond to NCRD which has a second
peak that can be observed at 820 nm. MO activity (measured by PMOKE) of the nanocavities is
shown in the bottom panel, with a large enhancement at 820 nm in the asymmetric cavity. Adapted
from [215], CC BY 3.0 2020, Springer Nature. (c) Transmittance and TMOKE of iron garnet films with
gold nanowires deposited atop with varying period, 450 nm (red), 475 nm (blue), and 500-nm period
(green). The TMOKE peak can be seen to redshift with increased period. Adapted from [216], CC BY
2013, American Physical Society. (d) P-polarisation reflectivity and TMOKE profiles for Au/Co/Au or
Ag/Co/Au samples, used to find the quality factor of the different sensing schemes. Adapted with
permission from [218], Copyright 2020, IOP Publishing.
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4.3. Magnetic Plasmon Resonances

At optical frequencies, the magnetic permeability of most materials is small and, therefore,
the magnetic interaction is typically less than electric interaction, likewise; magnetic plasmon resonances
at optical frequencies are more challenging to achieve in natural materials. Pendry et al. [219]
demonstrated resonance of the magnetic plasmon incident on double split-ring resonator structures,
tuning the effective magnetic permeability of nonmagnetic material to negative values. Furthermore,
the permeability could be tuned by changing the geometry of the nanostructure, but the resonance
was limited to the microwave region. These split ring structures were modelled as a LC circuit, with a
capacitance (C) and inductance (L). In this model, the ring structure can be considered a coil winding,
while the branches of the horseshoe are capacitor plates. By scaling down the dimensions of the
nanostructure, the inductance and capacitance of the structure also scale down. As the resonant
frequency of an LC circuit is inversely proportional to the product of the inductance and capacitance,
scaling down the structure was assumed to lead to an increased resonance frequency. Klein et al. [220]
demonstrated a breakdown of this rule, achieving a magnetic plasmon resonance in more compact
horseshoe split rings at 900 nm. The authors attribute this to the metal deviating from “ideal” metal
explained by the Drude model (LC resonance frequency << plasma frequency of the metal), and instead
the complex dielectric function of the metal was needed to support the experimental results theoretically.
Horizontal light polarisation at normal incidence may be used to excite the magnetic resonance by the
electric field component by inducing a circulating circuit in the structure, provided it is perpendicular
to the branches of the horseshoe-like, split ring structure. For vertical polarisation at normal incidence,
neither the electric nor magnetic field can excite the LC resonance. However, both linear polarisations
may excite the electric resonance of the structure, and so the different polarisation schemes can be used
to identify the magnetic and electric plasmon resonances.

Bao et al. [221] studied gold split ring hexamer nanostructures using scattering spectroscopy,
showing magnetic and electric plasmon modes appearing depending on the illumination polarisation,
shown in Figure 23a. Two electrical dipolar modes were observed at 650 and 775 nm. The magnetic
dipole mode was observed at 900 nm, which results from the x-component of the electric field and
could only be detected using azimuthally polarised light. This magnetic mode was most prominent for
0° (parallel to split) and decreased in magnitude with increased angle of incidence. These experimental
findings were supported by finite-difference time-domain (FDTD) simulations, supporting the authors’
experimental determination of the magnetic and electric resonances by polarisation resolved scattering
spectroscopy. Furthermore, these split-ring hexamer structures were then assembled into 6-piece and
12-piece ring structures that exhibited narrowband single and double Fano resonance, respectively.
The narrow FWHM of these Fano resonances is noteworthy for lineshape engineering applications.

Kuznetsov et al. partially cut gold and silver nanoparticles into split-ball resonator structures
shown in the top panel of Figure 23b [222]. These split-ball resonators are similar to upright split-ring
resonators, but these structures facilitate coupling of the incident light to the magnetic resonance mode
yielding higher efficiency owing to a combined electric and magnetic field contribution (LC mode).
These split balls were capable of sustaining a magnetic plasmon at 600 nm in gold and 565 nm in silver.
To study the electric and magnetic plasmons, s- and p-polarised light was used. P-polarised light
was expected to couple with the electric dipole resonance, whereas the s-polarisation excited both the
electric and magnetic dipole (LC) (see Figure 23b). Simulations showed that the deeper the depth of
the cut in the nanosphere, the more blue-shifted the LC resonance while increasing the width of the cut
led to a red-shifting of the LC resonance.

DNA-origami-based strategies have been used by Wang et al. to assemble gold nanoparticles
into hexagon rings and then combining these rings into more complex nanoarchitectures, which were
subsequently coated with silver [223], as depicted in the left panel of Figure 23c. In the single DNA
origami ring composed of six nanoparticles, the peak at ~520 nm is the electric dipole whereas the
smaller peak at ~570 nm is attributed to the magnetic dipole, which could be isolated by using a
cross-analyser. Combining these rings into more complex structures, yielded scattering spectra with
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multiple modes, and magnetic SPPs could be supported in ring chain-like structures. For further
details about magnetic plasmons, a comprehensive review on optical magnetism was carried out by
Monticone and Alu [224] and by Calandrini et al. on magnetic hot-spots [225].
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Figure 23. (a) Split ring nanostructure image and geometry, right, scattering spectra of nanorings
with differing angles of incidence. At 0°, two resonances are observed 650 (electric) and 870 nm
(magnetic), then at 15° a third mode at 750 nm (electric) appears and becomes prominent for the larger
angles. Adapted with permission from [221], Copyright 2015, Wiley-VCH. (b) Electron microscopy
image of split ball resonators, gold nanoparticles with a cut width of 15 nm, with different depths
(where left is deeper). Below, their respective scattering spectra where s-polarisation light polarisation
perpendicular to the cut and p-polarisation is parallel. The marked LC resonance is the combined
electric and magnetic resonance, while the p-polarised peak is attributed to electric resonance. Adapted
with permission from [222], Copyright 2014, Springer Nature. (c) Simplified construction of gold
nanoparticles assembled using DNA origami, which are subsequently coated with silver, scattering
spectra of the nanostructure, with the electric (520 nm) and magnetic dipolar contributions (570 nm).
Adapted with permission from [223], Copyright 2019, Wiley-VCH.

4.4. Second-Harmonic Generation (SHG)

Second-harmonic generation (SHG) is a nonlinear optical phenomenon where two photons of
coherent light with the same frequency interact with a material and combine to generate a new
photon that has twice the frequency of the incident photons. SHG is sensitive to breaks in the spatial
or temporal inversion symmetry of material, and so has been applied to study magnetics (MSHG)
by adding the application of an external magnetic field. MSHG has better sensitivity to interfaces
than linear MOKE, owing to the increased sensitivity to breaks in symmetry. In the simplest form,
SHG setups consist of a fundamental laser focused onto the sample that generates the SHG signal,
the fundamental signal is filtered out and the SHG signal is sent to the detector, in either reflection
or transmission.
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Purely plasmonic nanostructures have demonstrated plasmon-enhanced (non-magnetic) SHG [226]
and third harmonic generation, (non-magnetic) THG [227]. Similarly, magnetic-dipole plasmons have
been shown to enhance (non-magnetic) SHG activity in metal—-dielectric—metal disk nanoparticles [228]
and colloidal gold nanocups [229]. Silicon nanodiscs that exhibit both electric and magnetic dipolar
resonances were shown to have enhanced third-harmonic generation near the magnetic dipolar
resonance [230].

Nickel nanorods have exhibited plasmon-enhanced MOKE, both linear and nonlinear
(MSHG) [231]. The geometric anisotropy of the nanorods led to differing contributions to the
second-order susceptibility tensor that has magnetisation and crystallographic dependent components.
Linear measurements (TMOKE) were performed using p-polarised light at an incident angle of 68° and
was varied between 300 and 850 nm. The TMOKE spectrum exhibits a peak at 380 nm, corresponding
to the transverse plasmon of the nanorods. A second peak emerged at 600 nm in the TMOKE spectrum,
which was also seen as a minimum in the reflectivity spectra, and therefore was attributed to the
Fabry—Perot resonance mode of the material. Magnetic and nonmagnetic SHG measurements were
conducted using s- and p-polarised light at various angles of incidence. Nonmagnetic SHG showed no
resonant features, while its magnetic counterpart showed a maximum at 760 nm (twice the fundamental
wavelength) for the s-polarised pump beam, but was not observed in the p-polarised pump beam
spectra and thus, is not an effect of interference (see Figure 24a). The 100 nm gold nanoparticle arrays
covered with a 90 nm thick layer of iron garnet exhibited MSHG which could be spectrally shifted
(by up to 5 nm) by changing the magnetic field direction [232] (see Figure 24b). This spectral shift is not
attributed to shifting of the LSPR, but rather due to interference of resonant and nonresonant MSHG
signals of both crystallographic and magnetic origin.
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Figure 24. (a) MOKE spectrum obtained for nickel nanorod (open circles) vs. film material (filled
squares) with fundamental and doubled frequency marked. Below left, MSHG magnetic contrast
spectrum of the nickel nanorod is given for two angles of incidence of s-polarised light, a maximum is
observed for 760 nm, where the SHG emission matches the LSPR maximum of 380 nm. Below right,
the same for p-polarised light with an absence of peak. Adapted with permission from [231], Copyright
2013, American Physical Society. (b) MSHG spectra for gold nanoparticle array coated by an iron garnet
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layer with an applied magnetic field of varied sign (positive open circle, negative filled circle), showing
a spectral shift. Insets show the transmission spectra and MSHG for a non-plasmonic film. Adapted
with permission from [232], Copyright 2016, The Optical Society. (c¢) MSHG of G-shaped nickel
nanostructures to determine magnetisation direction, where the sample is rotated azimuthally in
different magnetic field directions. The four-fold polarisation profile is asymmetric (secondary peaks)
and resembles a ratchet wheel. Middle, MSHG intensity as a function of rotation angle for two
magnetic fields, a clear asymmetry can be seen. Right, the MSHG for different wavelengths, with longer
wavelengths yielding high MSHG intensity. Adapted with permission from [233], Copyright 2011,
American Chemical Society.

Valev et al. used the plasmon contributions to the MSHG to find the magnetisation direction
in G-shaped Ni nanostructures [233]. Here, the surface plasmons could create asymmetries in the
rotational dependant MSHG response, similar to a ratchet wheel, so that directionality could be
inferred (see Figure 24c). In this work, the magnetic field is in the plane of optical incidence, with the
polariser and analyser along the vertical direction. In this configuration, a single odd element of the
effective nonlinear susceptibility tensor contributes to the signal. Asymmetric peaks and magnetic field
direction dependence can be seen in the MSHG intensity as a function of azimuthal sample rotation.
Furthermore, the position of the secondary peak depends on the wavelength. The asymmetric MSHG
response is therefore attributed to the plasmon, where incident light selectively couples to the plasmon
modes of the nanostructure at certain sample rotation angles.

4.5. Magnetic Circular Dichroism

Magnetic circular dichroism (MCD), an extension of circular dichroism (CD), is a technique where
the difference between a sample’s absorption of right and left circularly polarised light is measured
in the presence of an external magnetic field. MCD has been used to study circularly propagating
magnetoplasmonic modes in symmetric gold nanospheres, where MCD signal is a derivative-like,
bisignated curve with the x-axis crossover point aligning spectrally with the LSPR [234] (see Figure 25a).

The MCD bisignated curve is a result of the differing response of the electrons in the nanoparticle
to the incoming LCP and RCP light, with the polarisations shifted in energy per the right panel in
Figure 25a. Thanks to the sensitivity of the LSPR to the refractive index of the surrounding medium
and the strong dependency of the MCD signal on this LSPR, MCD measurements utilising plasmonic
nanoparticles have good potential in refractometric sensing. MCD was also used to monitor the linking
of silver-coated gold nanorods to supramolecular J-aggregates [235]. When the J-band exciton and
plasmons coupled at resonance, enhancements were observed in the MCD signal. This finding opened
up the possibility of magnetic-based chemo- and biosensing.

Shiratsu and Yao demonstrated that the bisignated MCD dipolar response of Ag nanocubes
depends strongly on the nanocube edge length, with the zero crossover point in the MCD spectra
corresponding to the LSPR maximum [236]. Furthermore, the smallest nanocube exhibited the highest
MCD as shown in Figure 25b, and this size dependency arises from spectral inhomogeneity in the LSPR
extinction. In stark contrast, MCD signal attributed to higher-order multipolar LSPR modes did not
correspond to the optical extinction spectra and was size-independent, which the authors hypothesised
was as a result of an unequal response to the RCP and LCP light under the magnetic field.
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Figure 25. (a) Left, MCD/absorbance spectrum of gold nanoparticles, with MCD y-crossover at the
LSPR wavelength. Right, schematic showing the differing response for RCP and LCP light, due to
different electric (Fg) and magnetic (Fp) contributions of the Lorentz force on the electrons. Adapted
with permission from [234], Copyright 2013, American Chemical Society. (b) MCD spectra for silver
nanocubes of varied size, exhibiting dipolar and higher-order multipolar resonances. MDC dipolar
response decreases with increased size, but multipolar effects are less size-dependent. Adapted with
permission from [236], Copyright 2018, Elsevier. (c) Electron polarisation scheme for Doped-ITO
nanoparticles. Top left, MCD spectrum at different field strengths is given in dashed coloured lines.
Right, the temperature dependency of the MCD signal. Lastly the schematic of the conduction band
splitting due to the angular momentum of the magnetoplasmonic modes due to RCP and LCP excitation.
Adapted with permission from [237], Copyright 2018, Springer Nature.

Yin et al. used MCD to study the excitonic properties of degenerately doped (Sn/Mo) In,O3
nanocrystals [237]. The measured MCD signal for the ITO nanocrystals was temperature-independent
and linearly dependent on the magnetic field (see Figure 25c), and thus specific to the cyclotron
motion of the nanocrystals free electrons (magnetoplasmon) leading to splitting of the electronic band
state, as opposed to interband sublevels, because the electrons are spin polarised. This result was
noteworthy as the spin polarisation coupling is non-resonant; with magnetoplasmons resonant in the
near-infrared, whereas the excitons at the bandgap are resonant in the ultraviolet. Furthermore, the
charge carrier polarisation could be controlled in the IMO nanocrystals by varying the doping level
and magnetic field strength, thus, the magnetoplasmonic mode could be harnessed as a new degree of
freedom. This finding opens up a new field, plasmontronics, involving intrinsic plasmon-exciton and
plasmon-spin interaction phenomena.

Spin-polarisation transfer from iron oxide to gold has been observed using X-ray magnetic circular
dichroism (XMCD) [238]. A magnetic moment arose in the 5d band of gold-iron oxide, core-shell
nanoparticles observed at the gold L edge in the XMCD spectrum. The phase of the iron oxide was
demonstrated to be crucial for spin polarisation transfer.

4.6. Applications of Magneto-Plasmonics

In this final section, we will explore selected applications of magnetoplasmonic materials, in
particular sensing and nanophotonic devices. SPR sensors (e.g., Biacore) are a common biosensing tool
used to measure biomolecular interaction. These sensors detect variation in the refractive index at
the sensor surface using total internal reflection of plane polarised light incident on a liquid—-metal
film interface. At the opposite side of the metal face, the photon-induced plasmon propagates
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which is sensitive to the refractive index that varies with analyte binding. Combining SPR and
MO technology into MOSPR devices, an enhancement of p-polarised light can be achieved due
to MO Kerr enhancements. Septulveda et al. [239] and Rizal et al. [240] showed an improvement
of MOSPR biosensor technology over SPR sensor by a factor of 3—4. Figure 26a demonstrates the
superiority of MOSPR sensitivity (compared to conventional SPR) to isopropanol vapours at different
concentrations [241].

Magnetoplasmonics have also been applied to measure nanoscale distances [242]. The distance
between nickel nanodiscs was measured using Kerr polarisation rotation, with a precision ~2 orders of
magnitude higher than state-of-the-art plasmon rulers. Moreover, the system allowed intrinsic spatial
orientation adoptability for optimising the nanogap measurement orientation. Figure 26b shows the
effect of the spatial orientation of the ruler with respect to the electric and magnetic field direction
(90°, 45° and 0°) on the Kerr rotation angle in the 625-635 nm spectral region. When the electric and
magnetic fields are 90° to the ruler (p-short) a figure-of-merit (FOM, the ratio between sensitivity and
the width of the resonance peak) of 1.5 was achieved. For the electric and magnetic fields at 45° (p-45)
a FOM of 1 was attained. When the electric and magnetic fields were aligned parallel with the ruler,
the best separation in the Kerr rotation angle for the different ruled distances was achieved with a
FOM of 26.7. Considering a standard plasmon ruler could reach a FOM of 0.67, all magnetoplasmonic
ruler orientations were superior.

Iron oxide nanorods coated in silica and gold, have been designed by Wang et al. [243] that can be
oriented using an external magnetic field, which in turn elicits a varied optical polarisation response.
Furthermore, a device was created based on the hybrid nanorods, capable of sensing the magnetic field
orientation based on the optical response.

Along with sensing, magnetoplasmonics can also be utilised in photonic applications. Pancaldi
et al. fabricated arrays of elliptical Au-Py-Au layered nanoparticles on glass to study the plasmonic
photo-heating of nanomagnets using specific light polarisations for selective element heating [244].
Figure 26¢ shows the extinction spectrum (1-T) using light polarisation along the major/minor axis of
the elliptical nanoparticles and the spectral position of the pump and probe. This pump beam was used
to measure LMOKE hysteresis loops using polarisation along the long axis of the nanoparticle. A higher
power pump led to a decreased coercive field and increased photo-heating, with the magnitude
depending on the aspect ratio of the particular nano-ellipse. This finding supports thermally triggered
magnetisation reversal in single nanostructures. This technology has interesting applications for
selective thermalisation in say, multisystem chips.

Belotelov et al. reported light intensity modulation of 24% by varying the transparency of
a magneto-plasmonic crystal [245]. By using in-plane magnetic fields to excite a perpendicularly
polarised waveguide mode to vary the transmission spectrum of a magneto-plasmonic crystal [245].
The authors theorise that the effect could exceed 100% using higher quality material. Zubritskaya et al.
reported a magneto-chiral trimer nanoantenna surface that consisted of gold and nickel nanodisks.
The structure could tune the chiroptical transmission up to 150% using an external magnetic field
perpendicular to the nanoantennas plane [246] as depicted in Figure 26d.

Under an applied magnetic field, magnetic nanoparticles can assemble into 1D chains due to
magnetic dipolar interaction forces. Song et al. utilise this phenomenon by assembling iron oxide coated
silver nanoparticles into long chain-like structures for eventual applications in optical filtering [247].
By varying the polarisation of light, the longitudinal and transverse LSPR can be tuned from visible to
near-infrared wavelength regime (see Figure 26e). The redshift of the longitudinal LSPR is caused by
near field coupling of neighbouring plasmonic NPs, whereas a blueshift of the transverse LSPR arises
from far-field coupling. A summary of the polarisation-based applications of magnetic-plasmonic
materials is shown in Table 1.
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Figure 26. (a) Signal response of SPR and MOSPR to isopropanol vapours of different concentrations,
with MOSPR showing a clear superiority. Adapted with permission from [241], Copyright 2012,
American Institute of Physics. (b) Magnetoplasmonic ruler based on nickel nanodiscs, the distance
between the nanodiscs can be calculated from the Kerr rotation angle. The Kerr rotations for electric
and magnetic field directions (with respect to ruler orientation) are shown, with the parallel fields
yielding superior rotations. Bottom right compares figure-of-merit and error bars for the various
orientations compared to standard plasmonic rulers (dashed line). Adapted with permission from [242],
Copyright 2015, American Chemical Society. (c) Left, Extinction spectrum of tri-layer Au-Py—-Au
elliptical nanostructure along the long axis (thick line) and short-axis (thin line), with pump and
probe wavelengths marked. Right, thermoplasmonic heating effects on the magnetic properties
obtained by LMOKE, with increased power leading to a decreased coercive field (light blue lines),
below, the power-dependent decrease in the coercive field against the calculated temperature increase.
Adapted with permission from [244], Copyright 2019, Royal Society of Chemistry. (d) Shows the
scheme of Au—-Au-Ni trimer nanoantennas arrays to study chiral differential transmission (CDT) under
magnetic field application. Below left, the tunability of up to 150% for a specific geometry shown in
CDT spectrum to the right with a varied external magnetic field. Adapted with permission from [246],
Copyright 2018, American Chemical Society. (e) Assembled silver-magnetite nanoparticles electron
microscopy image and photograph inset, where the LSPR extinction peak varies with the change in the
polarisation angle. Adapted with permission from [247], Copyright 2017, American Chemical Society.
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Table 1. Overview of the polarisation dependent applications of magnetic, plasmonic materials.

Material Mechanism Possible Application References

Plasmonic nanowire on Tunable and switchable polarisation
- Faraday effect - oo
magnetic film rotation for optical isolators
Gold nanoparticles in Optical isolation without external

[202,204]

solution Inverse Faraday effect magnetic fields [211]
Plasmomc;—magnetlc Kerr effect Magneto-optical surface plasmon [218,239]
film resonance
Active ruler utilising polarisation,
Nickel nanodiscs Kerr effect monitoring polarisation-selective [242,244]
photo-heating
Plasmonic resonator Magnetic plasmon Surface-enhanced Raman scattering, [221,222]
structures resonance nanoantennas !
. Magnetic
G-shaped nickel second-harmonic Probing the magnetisation direction [233]
nanostructures .
generation
Plasmonic nanoparticles Magr}etlc (Elrcular Sensmglby monitoring the intensity [235]
dichroism of circularly polarised light
Assembled chains of Dipole-dipole magnetic
magnetic-plasmonic P P & Optical filtering [247]

. interaction
nanoparticles

5. Conclusions and Perspectives

In this review, we covered three important aspects of polarisation response from plasmonic
nanostructures. In the first section, we discussed the tailoring between LSPR scattering and symmetry of
various plasmonic nanostructures with potential applications in optics and optoelectronics. Numerous
techniques including SERS scattering, DF extinction and IR transmission/absorption have been
employed to investigate the polarisation response, starting from the simplest nanostructure of single
nanoparticle to complicated nanoprisms or nanocrescents. In general, all such measurements allow
to identify the symmetry of the plasmon modes and distinguish differently shaped particles in a
nanoparticle cluster. Moving forward, the strong optical anisotropy and polarisation response obtained
from differently shaped plasmonic nanostructures intrigued much interest to exploit such effects SPR
sensing. Most of the established SPR sensing relies on the dip or shift in reflected intensity (amplitude)
profile at certain wavelength or incident angle. However, we believe that polarisation sensitive
selective excitation and detection of particular plasmonic mode and measuring phase shift between
them opens up more contrasting sensing opportunities which is yet to be explored. In the second
section, we discussed how the artificially fabricated new generation metamaterials can manipulate the
polarisation state of light in different ways, e.g., linear polarisation rotation to its cross polarisation,
linear-to-circular (or vice versa) polarisation or handedness change for circular polarisation. It is
always desirable to achieve all the functionalities within a single metamaterial structure. Although, Liu
and co-workers inverse designed chiral metamaterials with multifunctional polarisation manipulation
ability, it operates in the GHz regime and remains a real challenge to facilitate such structures to operate
in the high frequency THz regime which have more potential applications in ultrafast photonics and
optomagnetism. In the last section, we discussed the newly emerged field of magneto-plasmonics
with particular emphasis on polarisation in magnetic-plasmonic nanoparticles and thin film structures.
These nanostructures either consist of a magnetic material which can sustain a plasmon (e.g., nickel)
or, more commonly, consist of hybridisation of a magnetic and plasmonic material (e.g., iron + gold).
Various topics including Faraday and inverse Faraday effect, MOKE, magnetic plasmon resonance,
magnetic second harmonic generation and magnetic circular dichroism are discussed, along with
many potential applications. Magnetoplasmonics is a constantly evolving field, with new sub-fields
such as plasmontronics emerging and nanofabrication advancing, it is safe to assume that many
more interesting developments are on the horizon and it is likely that polarisation will be pivotal
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to the measurement. Subsequently, many applications will emerge, particularly in sensing and
nanophotonic devices.
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