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Abstract: The shortest path problem is a topic of increasing interest in various scientific fields.
The damage to roads and bridges caused by disasters makes traffic routes that can be accurately
expressed become indeterminate. A neutrosophic set is a collection of the truth membership,
indeterminacy membership, and falsity membership of the constituent elements. It has a symmetric
form and indeterminacy membership is their axis of symmetry. In uncertain environments,
the neutrosophic number can more effectively express the edge distance. The objectives in this study
are to solve the shortest path problem of the neutrosophic graph with an edge distance expressed
using trapezoidal fuzzy neutrosophic numbers (TrFNN) and resolve the edge distance according to
the score and exact functions based on the TrFNN. Accordingly, the use of a circle-breaking algorithm
is proposed to solve the shortest path problem and estimate the shortest distance. The feasibility of
this method is verified based on two examples, and the rationality and effectiveness of the approach
are evaluated by comparing it with the Dijkstra and Bellman algorithms.

Keywords: circle-breaking algorithm; neutrosophic graph; shortest path problem; trapezoidal fuzzy
neutrosophic numbers

1. Introduction

The shortest path problem (SPP) is a topic of significant interest in various scientific fields
pertaining to flow in additive networks. In traditional problems, the distances among the nodes are
determined. The calculation of the minimum cost of the path from every vertex is referred to as the
single-source SPP. The objective of the traditional SPP is to obtain the minimum cost path from the
starting node to the ending node [1]. However, in uncertain environments, the fuzzy number technique
can be used instead. Dubois and Prade solved the problem of the fuzzy shortest path for the first
time [2]. The key problem of combinatorial optimization is to determine the shortest path of the digraph.
Its main format cannot express the situation when the value of the separation function is found based
on the preference of each individual arc [3-5]. Samarandache first described the theory of Chinese
Intelligence in 1995 and proposed an important mathematical mechanism referred to as the theory of the
neutrosophic set (NS) to deal with various inaccuracy, uncertainty, and inconsistency problems. The NS
is obtained from three autonomous mappings of the truth membership (t), indeterminacy membership
(i), and falsity membership (f), where the range of values is [0—, 1+]. They respectively indicate the
degree of affirmation, uncertainty, and negation of the event. Once the uncertainties of the vertex and
edge sets have been obtained, the fuzzy graph can be used to address the SPP. However, if uncertainty
exists in the relationship between nodes, the NS theory will be a suitable concept for dealing with
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real-life problems [6]. The shortest path of a network can be found by treating the edge distances as
neutrosophic numbers (NN). These may be single-valued, interval-valued, or bipolar [7]. NN can deal
with uncertainty more effectively. The NS model can deal with uncertain, inconsistent, and inaccurate
information. It is an important mechanism for handling practical science and engineering issues.

The route of emergency rescue is often uncertain owing to the different degrees of damage caused
by sudden disasters. In recent years, the SPP of a network graph, whose edge distance is an imprecise
number, has attracted increasing attention from scholars globally. Buckley et al. [8] introduced the
concept of fuzzy logic into the SPP. Deng et al. [9] proposed a fuzzy Dijkstra algorithm for the SPP
in inaccurate environments. Biswas et al. [3] introduced an algorithm to determine the shortest
path in an intuitionistic fuzzy environment. Ye and Peng et al. [10-12] presented the score function
and sorting function of single-valued and trapezoidal fuzzy NN. Broumi et al. [6] used the Dijkstra
algorithm to solve the SPP given a neutrosophic background. Nancy and Harish [13] proposed an
improved score function and applied it to the decision-making process. Broumi et al. [14] calculated the
minimum spanning tree in an interval-valued bipolar neutrosophic setting. Peng and Dai [15] proposed
an interval decision-making algorithm based on the neutrosophic environment. Smarandache [16]
used trapezoidal fuzzy neutrosophic numbers (TrFNN) to find the shortest path. Wang et al. [17]
proposed an SV-trapezoidal neutrosophic preference in decision-making problems. Deli and Subas [18]
presented the ranking method of single-valued NN and applied it to decision-making problems.
Broumi et al. [19] introduced several concepts regarding NSs and analyzed the existing concepts and
proposed NN. Broumi et al. [20] proposed an SPP under an interval-valued neutrosophic setting.
Bolturk and Kahraman [21] presented a new interval-valued neutrosophic analytic hierarchy process
with a cosine similarity measure. Biswas et al. [22] reported on a distance measure using interval TrFINN.
Deli [23] presented detailed work on the expansion and contraction of the conventional neutrosophic
soft set and later [24] proposed single-valued trapezoidal neutrosophic operators and applied these
to decision-making problems. Deli and Subas [25] proposed weighted geometric operators with
single-valued triangular NN and applied these to decision-making problems. Basset et al. [26]
introduced a mixed method of project selection in a neutrosophic environment and subsequently [27]
proposed a mid-intelligence group decision-making model with TrFENN. Moreover, Kumar et al. [28]
developed an algorithm for solving the SPP in triangular and trapezoidal neutrosophic environments.
Broumi et al. [29] presented a study on the neutrosophic shortest path with interval-valued NN on a
network. Tan et al. [30] and Broumi et al. [31] proposed the Bellman algorithm for solving the SPP in
a neutrosophic graph. Broumi used the original Bellman algorithm to search the shortest path from
the start point to the end point, whereas Tan used the improved dynamic programming algorithm
for application to the SPP of a trapezoidal fuzzy medium intelligence graph, starting the search from
the end point, and the NN was not accurate in the operation process. Chakraborty [32] applied the
developed score function and accuracy function of the pentagonal NN to the SPP. Schweizer [33]
proposed uncertain factors that could be considered in the process of building the model and developed
a formula to transform their model into a neutrosophic representation. Edalatpanah [34] proposed a
direct algorithm to solve neutrosophic linear programming, in which the variables and right-hand side
were represented by triangular NN. Yang et al. [35] developed an ant colony algorithm for solving the
SPP on a network with interval-valued neutrosophic edge distances.

Guan [36] proposed the circle-breaking algorithm in 1975 to solve the minimum spanning tree
problem of undirected graphs, and this approach has been widely used in the power and network
fields [37]. The circle-breaking algorithm starts from the original graph, continuously deletes the largest
edge in the closed circle, and finally obtains a minimum spanning tree. Therefore, when this algorithm
is applied to the directed neutrosophic graph, one edge of the longer of the two paths forming the
closed circle can be deleted continuously, such that any two points in the neutrosophic graph can be
connected while disconnecting the relatively longer path. Finally, the algorithm solves the SPP of the
neutrosophic graph. In comparison with the Dijkstra algorithm, the circle-breaking algorithm operates
more intuitively. For a complex neutrosophic graph with numerous vertices, distributed computing
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can be used. Therefore, the shortest path solution method in neutrosophic graphs is evaluated in this
study based on the circle-breaking algorithm.

2. Theoretical Basis

We present several basic concepts for NS and TrFNN, as well as existing ranking functions
for TrFNN.

2.1. NS

Definition 1. [16]: Let X be the object set, x be any one of these sets, and an NS, A on X, be represented by the
true degree function, T 4 (x), uncertainty degree function I (x), and error degree function F(x), where Tx(x),
I4(x), and F4(x), are the standard or nonstandard real subsets of 107,17 [; that is, Ta(x) : X - ]07, 17[,
Ip(x): X =07, 17, Fa(x): X —]07, 1] (where the nonstandard finite number 17 = 1+¢, “1” is

its standard part, and ¢ > 0 is an infinite decimal, which is its nonstandard part), and 0~ < supT4(x) +
supls(x) + supFa(x) < 3%,

2.2. TrTFNN

Definition 2. [10]: X is a domain, and a trapezoidal fuzzy NS N can be expressed as follows:
N = {(x Ty (x), Ig(x), Fg(x) )k € X}, O

where Tg(x) < [0,1], I5(x) < [0,1], and Fg(x) < [0,1] are trapezoidal fuzzy numbers, expressed

[0,1]
a5 To(x) = (t]lv(x),t%(x),ti](x),t;%(x)) X5 [0,1], Ig(x) = (%(x),i%(x),i%(x),i%(x)) L X - [0,1],
and Fg(x) = (f}%](x , %(x),f%(x),f%(x)) : X — [0,1], respectively, which meet the condition 0 < t%(x) +

Definition 3. [11]: A TrFNN in domain X can be expressed as
n = {(ay,az,a3,a4), (b1, ba, b3, bs), (c1,c2,¢3,¢4)). The parameters can satisfy the following relationships:
a1 <ap <az <ay, by <by < b3 < by, and c; < ¢y < c3 < cq. The truth membership function of a trapezoidal

fuzzy NS can be expressed as
X—a1

moa M <x<ap
1 ap <x<az
T~(X) = < ag—x I <x<a . (2)
ag—as 3= =4
0 otherwise

The indeterminacy membership function of a trapezoidal fuzzy NS can be expressed as

liz—_ljcl by <x<by
0 by<x<b
) :< b pyex<t, > o
1 otherwise
The falsity membership function of a trapezoidal fuzzy NS can be expressed as
% cp<x<0cp
0 o=<x<c
Fﬁ(x)_< o <o > @

1 otherwise
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Definition 4. [12]:

7{1 == <(a1/a2/a3/a4)/ (blleI b3/ b4)/ (C1/CZ/ C3, C4)> and ;{2 =
((e1,e2,e3,e4), (f1, f2, f3, fa), (81,82, 83, 84)) are two TrENN. Then,
1)
(a1 +e1 —aje1, a0 + ex —azer, a3 + €3 —azes, ag + e4 — agey),
%@7r=<@ﬁLbﬁﬁﬂ5hﬁL } (5)
(6181,0282,6383,C4g4)
)
(01161,61262,%63,61464),
1 ®ny = < (b1 + fi—bifi,bo+ fo—bafo, b3+ f3 = bafz, by + fa —bafs), >; (6)
(c14+81—c181,C2+ 82 — 282,63 + 83 — €383,C4 + g4 — Ca84)
3)
(1 - (1 - 611)/‘, 1- (1 - QZ)A/ 1- (1 - a3)A/ 1- (1 - a4)/1)/
Ay = < (b7, b3, b3,0}), > A>0; @)
(e cb el i)
4)
A A A A
ﬂl,lZZ,ﬂ3,ﬂ4),
= < 1-(1-b1)"1-(1-b)", 1= (1-b3)", 1= (1-by)"), > A>0; (8)

(1-1-c)"1-(1-c)" 1= (1-c3)" 1= (1-cx)")

(5)ny =mnpifa; =e;, b; = f;, and ¢; = g; are valid fori = 1, 2, 3, and 4; that is, (a1, a2, a3, a4) =
(elr €, €3, 64)/ (blr b2/ b3/ b4) = (fl/ fZ/ f3/ f4)/ and (Clr C2, C3, C4) = (glr g2/ 831 g4)

2.3. Ranking Function

Definition 5. [10]: n = {(ay, a2, a3, ag), (b1, b, b3, by), (c1, ¢2, c3, ¢4)) is a TrENN and its score function
can be expressed as
— 1 111+112+(13+a4_b1+b2+b3+b4_C1+C2+C3+C4

,S(n) € [0,1] ©)

A larger value of S(n) results in a larger TrFNN n.

Definition 6. [11]: n = {(ay, a2, a3, a4), (b1, by, b3, ba), (c1, ¢2, ¢3, c4)) is a TrENN, and its exact function
can be expressed as

_mtatazta gttt H

H(@) = ; . (@) € [-1,1]. (10)

As the value of H(n) increases, the value of the T'ENN of n also increases. The ordering relationship of the
two TrFNN can be achieved based on the score function, S(n), and exact function, H(n).

Definition 7. [101:  m = (a1, az, a3, a4), (b1, by, b3, by),(c1, c2, 3, ¢4)) and ny =
((e1, €2, €3, 1), (f1, f2, f3, f1), (81, §2, €3, §a)) are two TrFNN, S(n7) and S(ny) are the score functions of
1y and ny, respectively, and H(ny) and H(ny) are the exact functions of ny and ny, respectively. The ordering
relationship of the TrFNN is as follows:

it S > S(), thenTy >
if S(;lil) < S(Fﬁz), then ny < np
if S(ny) = S(ny), then
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@) lfH(;ﬁ) >H(ﬁ2), then 1y > 1
®  if H(R) < H(in), then i, <7y

3. Neutrosophic Graph Theory

A disaster-stricken area consists of n locations, whose network topology can be abstracted
as a directed graph G(V,E), where the node set V = {vq, - - -, v,} represents n disaster-stricken
settlements and the edge set E € V XV represents a directed connection between the affected
settlements. A directed edge (i, j) € E represents a path from node i to node j. According to the
geographical location and terrain, the degree of damage is classified based on the disaster and other
factors, and the edge distance is represented as a TrFNN 7, where node i is the parent node and node j
is the child node. A directed path from node i to node j can be represented as a set of directed edge
sequences of the form (i, i,), (i,, i3), - -+, (i), j) in a directed graph. The connected nodes differ
according to the strength of the directed graph. The number of paths from node i to node j varies.

4. Method for Solving SPP of Trapezoidal Fuzzy Neutrosophic Graph Based on
Circle-Breaking Algorithm

The circle-breaking algorithm can be used to solve the minimum cost spanning tree problem with
weighted, connected, and undirected graphs. Furthermore, it can extend the SPP for directed graphs
and search for a closed circle in the graphs, which is shared by the same starting and ending nodes.
The end of the road is surrounded. A larger path can be found using Equations (9) and (10) as well as
Definition 7. Subsequently, the last edge of the larger path is deleted and the above steps are repeated
until there are no circles in the figure. The specific steps are as follows:

Step1: Arbitrarily define a closed circle in the trapezoidal fuzzy neutrosophic graph, and find the
two paths p; and p, surrounding the closed circle, whereby p; and p; have a common starting
node recorded as Ny and a common ending node recorded as Nj.

Step2: According to Equation (5), all edges of each path are summed. The trapezoidal fuzzy numbers
1,1 and 1, are then obtained, which represent the two paths.

Step3: Obtain the score function value S(7,1) and exact function value H(11,1) of 1,1, as well as the
score function value 5(7,2) and exact function value H(1,2) of 11,5.

Step4: Compare the sizes of 11,1 and 71,7 according to the ranking function, and find and delete the
edge in the larger path whose vertex is N1.

Step5: Determine whether a closed circle still exists on the map. If so, go to Step 1; if not, the algorithm
terminates. At this time, only one path exists from the starting node to the ending node in the
neutrosophic graph, which is the shortest path.

Figure 1 illustrates the flowchart of the circle-breaking algorithm according to the
aforementioned steps:
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Initialize all edges

No If there is a closed
circle in the graph
No Yes
Delete the last edge in p2 Delete the last edge in p1
Update edge information <
[
Qutput the only path from the

start point to the end point

Figure 1. Flowchart of the circle-breaking algorithm.

In actual programming, determining whether a neutrosophic graph contains closed circles can be
considered equivalent to judging whether there are vertices with in-degrees greater than one. If the
in-degree of node i is greater than one, the predecessor is searched for based on the two edges pointing
to node i. For node sets R; and R,, there must be a vertex k € Ry N R, that satisfies two different
paths p; and p, from k to i. According to the flowchart in Figure 1, the pseudocode for calculating the
designed Algorithm 1 circle-breaking algorithm is as follows:

Algorithm 1 Circle-breaking Algorithm.

fori=Ntol
while(in-degree;; > 1)
if(ﬁpl > F”TpZ)
Delete the last edge in pq
else
Delete the last edge in p,
end while
end for

5. Case Study and Comparative Analysis

In this section, we describe the use of the circle-breaking algorithm to calculate two cases and
compare this algorithm with other existing algorithms.
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5.1. Case Analysis

Example 1. Since 20 July 2020, there has been a series of rainstorms in Wuhan City, China, with the maximum
rainfall exceeding 100 mm. Owing to the rainstorms, waterlogging has become a major problem in many parts of
Wuhan City, considerably hindering the traffic. According to Wuhan police, some sections of Huangpu Street,
Fazhan Avenue, and Jiefang Avenue in Hankou, Wuhan are substantially waterlogged, resulting in traffic being
blocked. The water under the light rail bridge of Huangpu Street is half a meter deep, preventing cars from
passing and making it difficult to conduct rescue work. In view of the road conditions, it is necessary to identify
the best paths to rescue points and provide decision support for the emergency rescue teams of the relevant
departments. Figure 2 depicts the topological structure of the road network during this period, and Table 1
presents the side lengths involved. The rescue team of Wuhan city must move from start point @ to end point ®
to rescue the trapped residents. Therefore, the objective of this example is to determine the shortest path from @

to ®.

Figure 2. Trapezoidal fuzzy neutrosophic graph.

Table 1. Details of edge information in terms of trapezoidal fuzzy neutrosophic numbers (TrFNN).

Edges Trapezoidal Fuzzy Neutrosophic Distances
(1,2) <(0.1,0.2,0.3,0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>
1,3) <(0.2,04,0.5,0.7), (0.3,0.5,0.6,0.9), (0.1, 0.2, 0.3, 0.4)>
2,4 <(0.3,0.4,0.6,0.7), (0.1,0.2,0.3,0.5), (0.3, 0.5, 0.7, 0.9)>
(2,5) <(0.1,0.3,0.4, 0.5), (0.3,0.4,0.5,0.7), (0.2, 0.3, 0.6, 0.7)>
3,4 <(0.2,0.3,0.5,0.6), (0.2,0.5,0.6,0.7), (0.4, 0.5, 0.6, 0.8)>
3,5 <(0.3,0.6,0.7,0.8),(0.1,0.2, 0.3, 0.4), (0.1, 0.4, 0.5, 0.6)>
(4, 6) <(0.4,0.6,0.8,0.9), (0.2, 0.4, 0.5, 0.6), (0.1,0.3, 0.4, 0.5)>
(5,6) <(0.2,0.3,0.4,0.5), (0.3,0.4, 0.5, 0.6), (0.1, 0.3, 0.5, 0.6)>

The shortest path from @ to (® is solved based on the circle-breaking algorithm in Figure 2. A circle
is randomly selected in the figure, the larger of the two paths surrounding the circle is determined,
and the last edge of the circle is deleted. This process is repeated until no other circle can be found.
Finally, the only path remaining from @ to @® is the shortest path.

Step 1: Circle ®@®@® in Figure 2 and paths p; = {(1,3),(3,4)} and p» = {(1,2),(2,4)} that
make up the closed circle, as indicated by the thick lines in Figure 3, are found.
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Figure 3. Closed circle D@@QD.

Step 2: According to Equation (5), all neutrosophic edges of each path are summed, and the
TrENN of the two paths are obtained by determining 1, and 71,,,.

1 =113 O34
(02+02-0.2%0.2,04+0.3-0.4%0.3,054+0.5-0.5%0.5,0.7+ 0.6 — 0.7 0.6),
< (0.3%0.2,0.5%0.5,0.6%0.6,0.9%0.7), >
(0.1%0.4,0.2%0.5,0.3%0.6,0.4+0.8)
—< (0.36,0.58,0.75,0.88), (0.06,0.25,0.36,0.63), (0.04,0.1,0.18,0.32) >

Ty = 112) & 73
(0.1403-0.1+0.3,02+04-02+04,0.3+0.6-03%06,0.5+0.7 - 05%07),
< (0.2%0.1,0.3%0.2,0.5%0.3,0.6 x0.5), >
(0.4%0.3,0.5%0.5,0.6+0.7,0.8+0.9)

—< (0.37,0.52,0.72,0.85), (0.02,0.06,0.15,0.3), (0.12,0.25,0.42,0.72) >
Step 3: S(np1), H(np1), S(112), and H(1y,2) are obtained.

31

1)
—_ f(z 0.364-0. 58+0 75+0.88 _ 0.06+0.254-0.36+0.63 _ 0.044-0.1+0.184-0. 32)
3 4 4
=07
S(np2)
—_ 1(2 4 0.3740.524-0.7240.85 _ 0.024-0.06+0.154-0.3 0.12+O.25+0.42+0.72)
3 4 4 4
= 0.702
H(,,) = 036 +058+075+088 004+0.1+018+032_ 00
P 1 1
_ 0.37+052+0.72+0.85 0.1240.25+0.42+0.7
H(s) — + Z +085 012+ ZO 24072 g

Step 4: Because S(1,1) > S(ny2), np1 > 1y can be obtained according to Definition 7. Thus,
by deleting the last edge, (3, 4), in p1, the neutrosophic graph in Figure 4 can be obtained.
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X

Figure 4. Removal of edge (3, 4).
Step 5: Closed circle ®@®®® in Figure 4 is selected, and paths p3 = {(1,3),(3,5)} and

ps ={(1,2),(2,5)} that make up the closed circle, as indicated by the thick lines in Figure 5, are obtained.
Once this task is completed, we return to Step 2.

Figure 5. Closed circle D@G®D.

Step 2: According to Equation (5), all neutrosophic edges of each path are summed, and the
TrENN of the two paths are obtained by determining 7,3 and 71,,4.

s = 11,3 @735
(02403 -02+03,0.4 + 0.6~ 0.4%0.6,0.5 + 0.7 — 0.5%0.7,0.7 + 0.8 — 0.7+ 0.8),
- < (0.3+0.1,0.5%0.2,0.6%0.3,0.9+ 0.4), >
(0.1 %0.1,0.2%0.4,0.3%0.5,0.4 + 0.6)
=< (0.44,0.76,0.85,0.94), (0.03,0.10,0.18,0.36), (0.01,0.08,0.15,0.24) >

Tpy = 1(1,2) @125
(0.1 +01-01%0.1,02+03-02%03,03+04-0.3+04,054+05-0.5+ 0.5),
= < (0.2*0.3, 03%04, 0.5*0.5,0.6*0.7), >
(0.4 +0.2,05%0.3,0.6+0.4,0.8% 0.7)
=< (0.19,0.44,0.58,0.75), (0.06,0.12,0.25,0.42), (0.08,0.15,0.24,0.56) >

Step 3: Score function value S(7,3) and exact function value H(11,3) of 11,3, as well as score function
value S(7,4) and exact function value H(11,4) of 714, are calculated.

W
N
3|
=
)
el

24+ 0.444-0.764-0.85+0.94 _ 0.034-0.104-0.184-0.36 _ 0.01+0.08+0.15+0.24)
4 4 4

|
O W=
® TS
N
(=]
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S(ﬁpﬁi)
_1 24 0.1940.44+0.584-0.75 _ 0.06+0.124-0.254-0.42 _ 0.08+0.15+O.24+0.56)
- 3 4 4
=0.673
— 44 7 . 94 .01 . 1 24
H(”ps) _ 044 +0 6:0854—09 _ 0.0 +008:0 5+0 0628
— d 44 . 7 . A1 24 .
H(np4) _ 0.19+0 1—0584—0 5 0.08+0 510 —1—056:0.233

Step 4: Because S(1,3) > S(1p4), Np3 > 11py can be obtained according to Definition 7. Thus,
by deleting the last edge, (3, 5), in p3, the neutrosophic graph depicted in Figure 6 can be obtained.

Figure 6. Removal of edge (3, 5).

Step 5: Another closed circle @@®®Q@ in Figure 6 is identified, such that paths ps = {(2,4), (4,6)}

and pg = {(2,5), (5,6)} make up a closed circle, as indicated by the thick lines in Figure 7. Once this
task is completed, we return to Step 2.

Figure 7. Closed circle @@®G®.

Step 2: According to Equation (5), all neutrosophic edges of each path are summed, and the
TrENN of the two paths are obtained by computing 7,5 and 76.

Tps = T(2,4) DM(46)
(0.3+04-0.3%0.4,04+0.6—0.4%0.6,0.6+0.8—0.6%0.8,0.7+0.9-0.7%0.9),

= < (0.1+0.2,0.2%0.4,0.3%0.5,0.5%0.6), >
(0.3%0.1,0.5%0.3,0.7+0.4,0.9+0.5)

—< (0.58,0.76,0.92,0.97), (0.02,0.08,0.15,0.30), (0.03,0.15,0.28,0.45) >
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T =T(2,5) D1(56)
(0140.2-0.1#0.2,03+0.3-0.3%0.3,04 + 0.4 - 0.4%0.4,0.5+ 0.5-0.5%0.5),
= < (0.3%0.3,0.4%0.4,0.5%0.5,0.7+ 0.6), >
(0.2%0.1,0.3%0.3,0.6+0.5,0.7 + 0.6)
=< (0.28,0.51,0.64,0.75), (0.09,0.16,0.25,0.42), (0.02,0.09,0.30,0.42) >

Step 3: Score function value S(71,5) and exact function value H(15) of 11,5, as well as score function
value S(11p6) and exact function value H(7,¢) of 716 are obtained.

S(1ps)

_ lp<2 0.58+0. 76+0 92+0.97 _ 0.02+0.084-0.15+0.30 _ 0.034-0.154-0.284-0. 45)

- 3 4 4

—08

S(1ps)

_ lp(z + 0.2840.514-0.6440.75 _ 0.094-0.16+0.254-042 0.02+0.09+O.30+0.42)

- 3 4 4 4

— 0.703

. 0584076+0.92+097 0.03+0.15+028+ 045
H(nps) = i Z i * Z 0% 580

. 028+0514064+075 0.02-+0.09+0.30 +0.42
H(ityg) = w0t 201 £ 06307 D02+ 0+ 0.0+ 022 0338

4 4

Step 4: Because S(71,5) > S(716), according to Definition 7, we can obtain 71,5 > 11,6. The last edge,
(4, 6), in p5 is deleted, and the neutrosophic graph is obtained, as depicted in Figure 8.

Figure 8. Removal of edge (4, 6).

Step 5: In the neutrosophic graph illustrated in Figure 8, it is no longer possible to find a closed
circle and the circle-breaking algorithm ends. As indicated by the dotted line in Figure 9, only one path
exists from starting node @ to ending node ®, which is the shortest path sought.

Figure 9. Shortest path of example 1.

Example 2. The objective of this example is to determine the shortest path from starting node @ to ending
node @ in Figure 10. The edge weights are represented as TrFNN, and Table 2 lists the edge weight data.
The circle-breaking algorithm is used to solve the SPP.
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Figure 10. Trapezoidal fuzzy neutrosophic graph.

Table 2. Details of edge information in terms of TrFNN.

Edges

Trapezoidal Fuzzy Neutrosophic Distance

1,2
(1,3)
(1,4)
(2,4)
2,5
(,4)
(3,6)
(4,5)
(4,6)
4,7)
6,7)
(,8)
6,7)
(6,9)
7,8)
7,9
8,9)

<
<
<

2,04,05,0.7
2,0.3,04,0.6
.1,03,04,0.5

A AN A

©

©

©

©

©

(0.3,0.6,0.7, 0.8
(0.1,0.2,0.3,0.4
(0.2,0.3,0.4,0.5
(0.4,0.6,0.7,0.9
©
©
©
©
©
©
©
©

A AN A A

.1,0.3,05,0.6
2,0.3,05,0.6
.3,0.5,0.6,0.7
.3,0.4,0.6,0.7
2,0.3,05,0.6
1,02,03,0.5
4,0.6,0.8,0.9
2,0.3,05,0.6

AN AN AN A

<
<
<

RO N N N N N s NN s N

1,0.3,04,0.5), (0.3,0.5,0.6,0.7), (0.1,0.3, 0.4, 0.6)>
,(0.3,0.5,0.6,0.9), (0.1,0.2, 0.3, 0.4)>
,(0.2,0.4,0.5,0.6), (0.4,0.5,0.7, 0.8)>
,(0.3,04,0.5,0.7), (0.2,0.3, 0.6, 0.7)>
4,0.5,0.7,0.8), (0.2,0.3,0.5, 0.6), (0.1, 0.2, 0.3, 0.5)>
,(0.1,0.2,0.3,0.4), (0.1,0.4, 0.5, 0.6)>
,(0.2,0.4,0.5,0.6), (0.4, 0.5, 0.6, 0.7)>
,(0.3,0.4,0.5,0.6), (0.1,0.3, 0.5, 0.6)>
,(0.1,0.2,0.4,0.5), (0.1,0.3, 0.4, 0.6)>
,(0.2,0.3,0.5,0.7), (0.4, 0.5, 0.7, 0.8)>
,(0.2,0.5,0.6,0.7), (0.4, 0.5, 0.6, 0.8)>
,(0.2,0.3,0.5,0.6), (0.1,0.2, 0.4, 0.5)>
,(0.1,0.2,0.3,0.5), (0.3,0.5,0.7, 0.9)>
,(0.2,0.3,0.4,0.5), (0.5, 0.6, 0.7, 0.9)>
,(0.2,0.3,0.5,0.6), (0.4, 0.5, 0.6, 0.8)>
,(0.2,0.4,0.5,0.6), (0.1,0.3, 0.4, 0.5)>
,(0.1,0.2,0.4,0.5), (0.5, 0.6, 0.7, 0.8)>

12 of 20

The removal of the last edge of the larger path in all closed circles using the circle-breaking

algorithm enables the generation of the neutrosophic graph, as illustrated in Figure 11.

Figure 11. Shortest path of example 2.

The path indicated by the dotted line is the shortest path from @ to @.
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5.2. Comparative Analysis of Different Algorithms

1. To illustrate the validity and rationality of the algorithm, the circle-breaking algorithm proposed
in this study is compared with the Dijkstra algorithm, and the adjacency matrix is established according
to Table 1.

[ 0.0,%(1’2),5(1’3),M,M,M ]
M, 0.0, M, (3, 4),71(2,5), M
M, M, 0.0,%(3’4),’7:[(3’5), M

M, M, M,0.0,M,74)
M, M, M, M,0.0,75)
M, M, M, M, M, 0.0

In this case, ﬁ(i,j) represents the edge weight from node i to node j. The specific values are listed in
Table 1. M represents an infinite number, thereby indicating that no direct directed edge connection
exists between nodes i and j.

Figure 12 illustrates the flowchart of the Dijkstra algorithm, where Vs represents the start point
and V, represents the end point.

Initialize R = {Vs},

=0
L,=min{lL;}.ieR )
!
R=RU{b}
S=5U{L}
No

lYes

Output the only path from the
start point to the end point

Figure 12. Flowchart of the Dijkstra algorithm.

Table 3 displays the shortest path and the shortest path weights from starting node @ to all nodes
using the existing Dijkstra algorithm: the shortest path fromnode @ tonode®is ® - @ —» ® — ©®,
and the weights are as follows:

((0.352,0.608,0.748,0.875), (0.018,0.048,0.125,0.294), (0.008, 0.045, 0.180, 0.336) )
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Table 3. Shortest paths and their weights from starting node (D to all nodes (Example 1).

Nodes Distance of Shortest Path Shortest Path

® ((0.1,0.2,0.3,0.5), (0.2,0.3,0.5,0.6), (0.4,0.5,0.6,0.8)) D- @
® ((0.2,0.4,0.5,0.7), (0.3,0.5,0.6,0.9), (0.1,0.2,0.3,0.4)) D- 0
@ ((0.37,0.52,0.72,0.85), (0.02,0.06,0.15,0.30), (0.12,0.25,0.42,0.72)) @D — @ — @
®
®

((0.19,0.44,0.58,0.75), (0.06,0.12,0.25,0.42), (0.08,0.15,0.36,0.56)) @D — @ — ©
< (0.352,0.608,0.748,0.875), (0.018,0.048,0.125,0.294), >

(0.008, 0.045,0.180, 0.336) OD-20-0-06

For the same calculation process, the shortest path and shortest path weights of starting node @
to all nodes in the second example are listed in Table 4. The shortest path from node @ to node @ is
(0.424,0.664,0.825,0.928),
D - ® — ® — @, and the shortest path weights are < (0.012,0.06,0.12,0.27), >
(0.02,0.06,0.126,0.252)

Table 4. Shortest paths and their weights from starting node D to all nodes (Example 2).

Nodes Distance of Shortest Path Shortest Path
® <(0.1,0.3,0.4,0.5), (0.3,0.5,0.6,0.7), (0.1,0.3,0.4,0.6) > D> @
® <(0.2,0.4,0.5,0.7),(0.3,0.5,0.6,0.9), (0.1,0.2,0.3,0.4) > D— 0O
@ <(0.2,0.3,0.4,0.6), (0.2,0.4,0.5,0.6), (0.4,0.5,0.7,0.8) > D- @
< (0.36,0.51,0.64,0.8), (0.06,0.16,0.25,0.36),
® (0.04,0.15,0.35,0.48) > ©- @®-0
< (0.28,0.52,0.65,0.82), (0.06,0.2,0.3,0.54),
C (0.04,0.1,0.18,0.28) > ©-> 0-6
< (0.28,0.51,0.7,0.84), (0.04,0.12,0.25,0.42),
@ (0.16,0.25,0.49,0.64) > ©- @~ 0
< (0.352,0.608,0.79,0.92), (0.008,0.036,0.125,0.252),
(0.064,0.125,0.294,0.512) > O- @- O
< (0.424,0.664,0.825,0.928), (0.012,0.06,0.12,0.27),
© (0.02,0.06,0.126,0.252) > O-> Q- ©-0

2. Use of the enumeration algorithm in various examples

According to the adjacency matrix, all of the paths from node @ to node (® are traversed.
The distances of the neutrosophic edges of all paths are calculated according to Equation (5), and their
score functions and exact functions are listed in Table 5.

Table 5. List of all paths from node @ to node ® (example 1).

Optional Path Score Function Exact Function
pl: ®—-» @—-> @®— ® 0.872 0.686
pPR2: > @— G- ©® 0.798 0.504
p3: > @®—> @®—> ® 0.871 0.780
pd: - @®@— G®— ® 0.889 0.755

According to Definition 7, the edge distance of p, is the smallest, and the shortest path is
O—->0->0- 0.
When using the enumeration algorithm to calculate the second example, there are 22 possible
paths, and their scores and exact functions are calculated. The shortest pathis @ - @ - ® —» ©,
(0.424,0.664,0.825,0.928), (0.012,0.06,0.12,0.27),
(0.02,0.06,0.126,0.252) >
3. Use of the Bellman algorithm in various examples

and the shortest path distance is <
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Here, NOgpq is the number of the end point, N (ij) is the distance between point i and point j,
and f (i) is the shortest distance from point 1 to point i. Figure 13 shows the calculation flowchart of
the Bellman algorithm in [31].

Start

Initialize f(1)=0

N

£ =min{f(H® N, |

k++

No

Output f(NO, )

Figure 13. Flowchart of the Bellman algorithm.

The calculation process for Case 1 is as follows:

f) =0,

£(2) = min{f(}) ® N()} = min{f (1) ® N1z)|
= min{0®((0.1,0.2,0.3,0.5),(0.2,0.3,0.5,0.7), (0.4,0.5,0.6,0.8) )}
=((0.1,0.2,0.3,0.5),(0.2,0.3,0.5,0.7), (0.4,0.5,0.6,0.8) )

f(3) = mm{f(i) @N(ia‘)} = min{f(l) @ﬁ(w)}
— min{0®((0.2,0.4,0.5,0.7), ( 0.3,0.5,0.6,0.9), (0.1,0.2,0.3,0.4) )}
— ((0.2,0.4,0.5,0.7), (0.3,05,0.6,0.9), (0.1,02,03,0.4))

mm{ ® N (id) }

= m{ )®N), f(3) ® N3y

((0.1,0.2,03,0.5), (0.2,0.3,0.5,0.7), (0.4,0.5,0.6,0.8) )@

0 3,0.4,0.6,0.7),(0.1,0.2,0.3,0.5), (0.3,0.5,0.7,0.9)),

0 2,0.4,0.5,0.7),(0.3,0.5,0.6,0.9), (0.1,0.2,0.3,0.4))®

((0.2,03,05,0.6), (0.2,0.5,0.6,0.7), (0.4,0.5,0.6,0.8))

( o 37,0.58,0.62,0.85), (0.02,0.06,0.15,0.35), (0.12,0.25,0.42,0.72)),

{ {(0.36,0.58,0.75,0.88), (0.06,0.25,0.36,0.63), (0.04,0.10,0.18,0.32) ) }
(0.37,0.58,0.62,0.85), (0.02, 0.06,0.15,0.35), (0.12,0.25,0.42,0.72))
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mm{ &N 15)}

mm{ )N (25), f(3) & N(35)}
0 1,02,0. 3 0.5),(0.2,0.3,0.5,0.7), (0.4,0.5,0.6,0.8))®
(0 1,03,0.4,0.5), (0.3,0.4,0.5,0.7), (0.2,0.3,0.6,0.7)},
((0.2,0.4,0.5,0.7), (0.3,0.5,0.6,0.9), (0.1,0.2,03,0.4))®
((0.3,0.6,0.7,0.8), (0.1,0.2,0.3,0.4), (0.1,0.4,0.5,0.6))
((0.19,0.44,0.58,0.75), (0.06,0.12,0.25,0.49), (0.08,0.15,0.36,0.56)),
{ ((0.44,0.76,0.85,0.94), (0.03,0.10,0.18,0.36), (0.01,0.08, 0.15,0.24)} }
0.19,0.44,0.58,0.75), (0.06,0.12,0.25,0.49), (0.08, 0.15,0.36,0.56 ) )

mm{ 2] N(l(,)}

{ EBN(46) f( )@N56)}

0.37,0.58,0.62,0.85), (0.02,0.06,0.15,0.35), (0.12,0.25,0.42,0.72) )&
((0.4,0.6,0.8,0.9), (0.2,0.4,0.5,0.6), (0.1,0.3,0.4,0.5)),
0.19,0.4,0.58,0.75), (0.06,0.12,0.25,0.49), (0.08, 0.15, 0.36, 0.56) )&
0.2,0.3,0.4,0.5),(0.3,0.4,0.5,0.6),(0.1,0.3,0.5,0.6))
0.622,0.832,0.924,0.985), (0.004,0.024,0.075,0.210), (0.012,0.075, 0.168, 0.360) ),
{ ((0.352,0.608,0.748,0.875), (0.018,0.048,0.125,0.294), (0.008, 0.045, 0.180, 0.336) ) }
= ((0.352,0.608,0.748,0.875), (0.018,0.048,0.125,0.294), (0.008,0.045, 0.180, 0.336) )

Thus,

(
(
(
(

() &N
@M>@M> _
5] N(u) 2 N(25) 2 N(56)
(12) ®N(25) ® Nis6)
Therefore, path p1,56) is recognized as the neutrosophic shortest path, its neutrosophic distance is
< (0.352,0.608,0.748,0.875),

(0.018,0.048,0.125,0.294), >, and its score function and exact function are
(0.008,0.045,0.180,0.336)

2+ 0.3524-0.608+-0.748+-0.875

1 4
S(p(1256)) _ 5 % _0.018-‘,—0.0481-0‘125-&-0.294 = 0.794
_ 0.008+0.0451-0.180+0.336
352 . 74 .87 . .04 A1 .
H(P(1256)) _ 0.352 + 0.608 + 0.748 4- 0.875 3 0.008 +0.045+0 80—i—0336:0'504

4 4
respectively.
The same calculation process can be used to determine

f(9) = £(6) ®N(g9) = £(3) ®N(36) ® N
f(1)®N13) ® N(36) ® N(9)
= N(13) ® N(36) ® N9)

Its shortest path is p(1369).

Based on the comparison of the four algorithms, the proposed circle-breaking algorithm is
equivalent to the Dijkstra and enumeration algorithms, achieving the same shortest path and shortest
path distance. Additionally, the implementation of the algorithm is feasible and reasonable. Moreover,
the circle-breaking algorithm is easy to understand, and its implementation is relatively simple.

Furthermore, from the perspective of the time complexity of the algorithm, the Bellman algorithm
is a two-layer loop, and the inner loop includes one iteration; therefore, the time complexity of the
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Bellman algorithm is O(n3). In contrast, the circle-breaking and Dijkstra algorithms are both two-layer
loops with a time complexity of O(n?); however, there is no inevitable sequence for evaluating the
in-degree of all vertices in the circle-breaking algorithm. Nevertheless, multithreaded or distributed
programming can be employed to reduce the time complexity of the algorithm. Therefore, we use
the code of the circle-breaking algorithm; when run using 10 threads, the time complexity of the
algorithm can be reduced to O(n?) /10. The pseudocode of the Algorithm 2 circle-breaking algorithm
is as follows:

Algorithm 2 Multi-threaded realization of circle-breaking algorithm

Class Circle-breaking extends Thread(
public Circle-breaking(int k){
for(inti = (k — 1)*N/10, i < k*N/10, i++)
{
while(in-degree[i] > 1)
{
if(ﬁpl > ”pz)
{
Delete the last edge in p;

}

else

{
Delete the last edge in p»

public static void main(String[] args) {
Circle-breaking[] ¢ = new Circle-breaking [10];
for(int i = 0; i < c.length; i++)
{
c[i] = new Circle-breaking(i + 1);
c[i].start();
}

Assuming that the computer requires 0.0001 s to perform a calculation, the execution times of the
program when using the circle-breaking, Dijkstra, and Bellman algorithms are determined, as depicted
in Figures 14 and 15.

0.3

Time of program execution

1 3 5 7 9111315171921 2325272931333537394143454749

Number of vertices of neutrosophic graph

== Circle-breaking algorithm Dijkstra algorithm

Figure 14. Comparison of the execution times of the circle-breaking and Dijkstra algorithms.
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NS
[ SIS

o

I'ime of program execution

o N & o ®

1 3 5 7 9111315171921 23 2527 29 31 33 35 37 39 41 43 45 47 49

Number of vertices of neutrosophic graph

== Circle-breaking algorithm Bellman algorithm

Figure 15. Comparison of the execution times of the circle-breaking and Bellman algorithms.

In these figures, the abscissa represents the number of vertices of the neutrosophic graph, and the
ordinate represents the running time of the algorithm. As shown in Figures 14 and 15, in the case of the
same number of vertices in the neutrosophic graph, the running time of the circle-breaking algorithm
is lesser than those of the Dijkstra and Bellman algorithms. Hence, the circle-breaking algorithm is
feasible and reasonable.

6. Conclusions

In this study, we developed a circle-breaking algorithm for solving the SPP of a trapezoidal fuzzy
neutrosophic graph and verified the feasibility of the algorithm using an example. Furthermore,
we compared the algorithm with the Bellman and Dijkstra algorithms and obtained a consistent
shortest path, thereby demonstrating the effectiveness of the algorithm. Finally, we compared the
operating efficiencies of the three algorithms and proved that the circle-breaking algorithm could
achieve better operating efficiency through multithreaded or distributed programming. In the future,
we intend to appropriately sort the in-degrees of the nodes when initializing the data for further
efficiency improvement.
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